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Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are
small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic
simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this
process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in
expression levels of hes1 mRNA and Hes1 protein.
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Introduction

The mathematical modelling and simulation of genetic
regulatory networks can provide insights into the compli-
cated biological and chemical processes associated with
genetic regulation. However, it is important that the models
are kept simple but nevertheless capture the key processes. In
addition, by incorporating experimental data into such
models (where available) their accuracy can be improved.

An important aspect associated with genetic regulation is
that mRNA and protein expression levels can be quite low,
and so continuous models, as described by ordinary differ-
ential equations, may be inappropriate. Furthermore, pro-
cesses such as transcription and translation do not occur
instantaneously and may have considerable delays associated
with them. It is these two issues that we pursue in terms of
understanding oscillatory expression levels of both mRNA
and protein of the Notch effector Hes1.

There are many types of molecular clocks that regulate
biological processes, but apart from circadian clocks [1] these
clocks are still relatively poorly characterised. Oscillatory
dynamics are also known from mRNAs for Notch-signalling
molecules such as Hes1 (a bHLH factor) that oscillates with a
two-hour cycle during somite segmentation [2]. In a recent set
of experiments, Hirata et al. [3] measured the production of
hes1 mRNA (M) and Hes1 protein (P) in mouse. Serum
treatments on cultured cells (that have already been shown to
induce circadian oscillation [4]) result in oscillations in
expression levels for hes1 mRNA and Hes1 protein in a two-
hour cycle with a phase lag of approximately 15 min between
the oscillatory profiles of mRNA and protein. The oscillations
in expression continue for 6–12 h and are not dependent on
the stimulus but can be induced by exposure to cells
expressing Delta. It was argued that the lag between protein
and mRNA oscillation levels of 15 min reflects the time
needed for protein degradation.

Specifically, the data presented in the paper by Hirata et al.
(Figure 1 in [3]) indicates sustained oscillation of hes1 mRNA
over six periods while it suggests oscillation of Hes1 protein
that dies away after 6–8 h. Furthermore, the peaks in the
expression levels of Hes1 protein seem to be about twice that
of the mRNA peaks. Unfortunately, it is not clear what the
units are in terms of expression levels and whether the scales

are the same from experiment to experiment—valuable
information that might help to validate a mathematical
model.
Hirata et al. examined the underlying mechanisms for the

observed oscillations and showed that in the presence of the
proteasome inhibitor MG132, hes1 mRNA is initially induced
but after 3 h it is suppressed because of constant repression
of transcription by persistently high protein levels (negative
autoregulation). Treatment with cycloheximide leads to
sustained increase of hes1 mRNA and blocks its oscillation.
A similar effect occurs with overexpression of dnHes1, a
dominant-negative form of Hes1 that is known to suppress
Hes1 protein activity [5]. These results reveal that both Hes1
protein synthesis and degradation are needed for oscillations
in the expression levels of hes1 mRNA. Other experiments
showed that the same mechanisms hold for hes1 mRNA
expression levels in the presomitic mesoderm in mouse.
Interestingly, it is known that in mouse presomitic mesoderm
the expression levels of other signalling molecules such as lnfg
also oscillate [6]. However, lnfg is not expressed in the
cultured cells of Hirata et al., indicating that serum-induced
Hes1 oscillation does not depend on lnfg. Nevertheless, this
does suggest that Hes1 and lnfg oscillations are controlled by a
similar mechanism. Hirata et al. estimate the half-lives of hes1
mRNA and Hes1 protein to be 24.1 6 1.7 min, 22.3 6 3.1
min, respectively. Experiments with various protease inhib-
itors suggest that Hes1 protein is specifically degraded by the
ubiquitin–proteasome pathway. They also lower the temper-
ature in their experiments from 37 8C to 30 8C, which lowers
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both the synthesis and degradation rates, and this alters the
period of the oscillation (unpublished data).

To explain the observed behaviour, Hirata et al. modify a
mathematical model developed by Elowitz and Leibler [7] for
a synthetic gene network constructed in Escherichia coli cells by
introducing one gene from k-phage. By postulating a Hes1
interacting factor as a third molecular species, they obtain a
system of three ODEs that give rise to sustained oscillatory
behaviour. However, there is no direct experimental evidence
for such an interacting factor. Rather, the introduction of a
third variable is due to the fact that certain systems of two
ODEs cannot generate sustained oscillations.

This observation together with the experimental results of
Hirata et al. led to a number of papers in which simple
coupled delay differential equations (DDEs) representing M

and P were developed to explain the sustained oscillations
without recourse to the addition of a third variable (Monk [8],
Jensen et al. [9], Lewis [10], and Bernard et al. [11]).
In fact, one of the first people to consider feedback

differential equation models for the regulation of enzyme
synthesis was Goodwin [12]. U. an der Heiden [13] modified
these ideas by including transport delays into Goodwin’s
model. The oscillatory behaviour of the ensuing DDEs as a
function of the size of delays was investigated by an derHeiden.
The ideas underpinning these works are that the processes

of transcription, translation, and export are not instanta-
neous. Monk notes that there is an average delay of 10–20 min
between the action of a transcription factor on the promoter
region of a gene and the appearance of the corresponding
mRNA in the cytosol. Similarly, there is a delay of typically 1–
3 min for the translation of a protein from mRNA. Note that
the model proposed by Lewis is for zebrafish but it does offer
insights into the Hes1 mechanisms via the general nature of
the model.
These papers were able to explain some of the observed

experimental results quite well, but there are still some
aspects that these delay continuous models do not address.
These aspects relate to the fact that production numbers of
mRNA and protein can be quite low and that intrinsic noise
effects due to the uncertainty in knowing when a reaction
and what reaction takes place in any given time interval can
be very important. Thus the aim of this paper is to
incorporate delay effects into the discrete stochastic simu-
lation algorithm (SSA) of Gillespie [14] and to see whether the
dynamical behaviour of this delay stochastic simulation
algorithm (DSSA) can give greater insights into the nature
of hes1 mRNA and Hes1 protein in mouse and, by extension,
to other genetic regulatory networks.

Methods

Let M(t) and P(t) represent the concentrations of hes1
mRNA and Hes1 protein, respectively. Absorbing all the
delays (including transcription and translation) into one
delay, s, the model presented in Monk [8] and Jensen et al. [9]
is represented by the following DDE:

Figure 1. DDE Solution: Exploring the Effect of h on Protein

DOI: 10.1371/journal.pcbi.0020117.g001
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Synopsis

Delay processes are ubiquitous in the biological sciences but are not
always well-represented in mathematical models attempting to
describe these biological processes. Additional issues arise when
attempting to capture the uncertainty (intrinsic noise) associated
with chemical kinetics in dealing with when and in what order
reactions take place. Complicating the situation further are
important instances when certain key molecules occur only in small
numbers, so that it is not meaningful to talk about concentrations.

In this paper Barrio et al. show how to incorporate delay, intrinsic
noise, and discreteness associated with chemical kinetic systems
into a very simple algorithm called the delay stochastic simulation
algorithm (DSSA). This algorithm very naturally generalises the
stochastic simulation algorithm that does not treat delays. The
authors then apply the DSSA to a specific set of experiments
performed by Hirata et al. who showed, amongst other things, that
serum treatment of cultured cells induces cyclic expression of both
mRNA and protein of the Notch effector Hes1 with a two-hour
period. The authors show how this approach can explain additional
experiments performed by Hirata et al., and, because this approach
is very general, suggest that it can provide deep insights into the
relationship between delayed processes, intrinsic noise, and small
numbers of molecules in many biological systems.

Oscillatory Regulation of Hes1



ðmodel 1Þ dM=dt ¼ am f ðPðt� sÞÞ � lmMðtÞ ð1Þ

dP=dt ¼ apMðtÞ � lpPðtÞ:

Here lm and lp are the degradation rates for M and P, am is
the maximal mRNA transcription rate in the absence of
protein repression, and ap is the translation rate, while f(P(t))
is a monotonically decreasing Hill function representing the
repression of mRNA production by the binding of Hes1
dimers to the promoter region. It takes the form

f ðPðtÞÞ ¼ 1

1þ ðPðtÞ=P0Þh
;

where h is the Hill coefficient representing the cooperative
character of the binding process and P0 is such that f(P0)¼1/2.

Bernard et al. [11] give a modification to model 1 by
arguing that the Hirata et al. observations could be better
explained by the existence of an additional agent in the Hes1
repression loop. A new variable Q(t) represents the concen-
tration of a repression complex of hyper-phosphorylated
Gro/TLE1 with Hes1 protein. This leads to the delay model

ðmodel 2Þ dM=dt ¼ am f ðQðt� sÞÞ � lmMðtÞ ð2Þ

dQ=dt ¼ aqgðMðtÞÞ � lqQðtÞ ;

where f is as before, aq is the maximal phosphorylation rate,
and

gðMðtÞÞ ¼ MðtÞm

Mm
0 þMðtÞm

is a monotonically increasing Hill function representing the
Gro/TLE1 protein activation.

The astute reader might ask what happens if the transcrip-
tional and translational delays, sm and sp, respectively, are not
lumped together. This would lead to

ðmodel 3Þ dM=dt ¼ amf ðPðt� smÞÞ � lmMðtÞ ð3Þ

dP=dt ¼ apMðt� spÞ � lpPðtÞ :

But if we let N(t)¼M(t – sm), which is a phase-lagged mRNA
variable, then we can always write model 3 in the form of
model 1 with s ¼ sp þ sm. Thus, it is sufficient to consider
model 1 (Lewis [10] noted this relationship when he used the
delay model 3 to describe alternating bands of gene

expression that distinguish anterior and posterior compo-
nents of somites in zebrafish).
Monk and Jensen et al. investigate the dynamics of model 1,

especially in terms of the onset of sustained oscillations,
through simulations; while Bernard et al. give a mathematical
investigation of the dynamics of models 1 and 2 by a scaling
process and performing a linear stability analysis around the
steady state values. Lewis shows that, given h¼ 2, model 3 will
have sustained oscillations if

ap

lp

am

lm
.2; lm; lp �

17
s
; s ¼ sm þ sp

and that the period of the oscillations is approximately

T ¼ 2ðsþ 1=lm þ 1=lpÞ; for 1=lm; 1=lp � s:

Bernard et al. have given a detailed mathematical bifurca-
tion analysis of the dynamics of the models 1 and 2. In the
case of model 1 let the time period of the oscillations be T
and define

w ¼ 2p=T; �lm ¼ lm=w; �lp ¼ lp=w;

then sustained oscillations will occur if

h � 1
�lm�lp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �l2

mÞð1þ �l2
pÞ

q
ð4Þ

s � 1
w
arccos

1
h

1
�lm�lp

� 1

 ! !
ð5Þ

where they have used a scaling such that with

Ph
0 ¼

lm

am � lp

ap

lp

 !h

; the steady states are Meq ¼ 1;Peq ¼
ap

lp
:

It is clear that h, lm, and lp have crucial roles in the onset of
sustained oscillations, while am, ap, and a0 play no significant
role. Using the data from the Hirata et al. experiments, we
can now see how well model 1 matches the observed results.

Model Analysis
We now give a brief analysis of model 1 and see how well it

can describe the results of Hirata et al. and what sort of
predictions it can make.
The relationship between h and s. Using some of the values

in Table 1, Bernard et al. have shown that sustained
oscillations can be obtained with h 2 (3,7), s 2 (15,30), and

Table 1. Model Parameters Used for DDE and DSSA

Parameter Description Rate Constant Reference

am Maximum transcription rate 1 min�1 Normalised [8,9,11]

ap Translation rate 1 min�1 Experimental data [15] and estimations [8,11]

lm mRNA degradation rate 0.029 min�1 Experimental mRNA half-life (24.1 min) [3]

lp Protein degradation rate 0.031 min�1 Experimental protein half-life (22.3 min) [3]

P0 DNA dissociation constant 10 � 100 Estimations of binding affinity [8,10]

h Hill cooperativity factor 2 � 4 Estimations of binding mechanism [8–11]

s Total delay (transcription/translation/transport) 10 � 40 min Estimations [8–11]

DOI: 10.1371/journal.pcbi.0020117.t001
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T 2 (90,150). For the experimentally observed period T¼ 120
min, then h � 4.1, s � 19.7. On the other hand, Hes1 is a
dimer, but there are at least three separate binding sites for
Hes1 dimers in the regulatory region of the hes1 gene, so that
an appropriate value of h is at least 2. However, whether h
should be as large as 4.1, as this model predicts, is debatable.
We show later in this paper that h need not be that large to
get sustained oscillations when discrete models are used.

Jensen et al. show via simulations that for the case h ¼ 2,
oscillations are only sustained for s . 80 and there are no
oscillations for s , 10. For s 2 (10,80), the period of the
damped oscillations is approximately 170 min, which is much
greater than the observed period of 120 min.

Parameter sensitivity. Simulations and mathematical anal-
ysis show that there is no qualitative difference in terms of
the onset of sustained oscillations and their period for a wide
range of values for am, ap, and P0. Monk has performed a
linear stability analysis and has shown that for a certain range
(that is quite wide) of these parameters the oscillatory period
is approximately constant.

It is interesting to note that when Hirata et al. lowered the
temperature from 37 8C to 30 8C there was a change in the
period of oscillation, but as the data is not given we are
unable to test these effects in terms of model 1 except to
reaffirm that the model is not sensitive to the production
terms.

More significantly, in the continuous model, the Hes1
protein concentration rarely falls below the repression
threshold P0, which means that Hes1 transcription is always
repressed. While this does not contradict experimental data,
as there is no mention of this threshold, it does mean that
there is not a strong link between the continuous model and
the actual mechanism of transcription.

Overshoot. Bernard et al. note that systems with just one
nonlinear term often display large overshoot before solutions
converge to an attractor. Indeed, that is one of the reasons
why they introduce model 2. They attempt to estimate this
overshoot, which is essentially due to the lack of repression
mechanisms in the first few minutes. Defining the overshoot
to be the ratio of the protein concentration at t ¼ s to its
steady state value, then under the assumptions that

lm ¼ lp; s ¼ ln 2=lm

the expression for overshoot is

overshoot ¼ ð1� ln 2Þam

lm
:

With am ¼ 1, lm ¼ 0.03, this implies an overshoot of
approximately 11.

However, the overshoot only becomes an issue with
simulations if the initial conditions are set close to zero.
Monk avoids this large overshoot in his simulations by setting
the initial conditions close to their steady state values. The
real issue here, however, is of course how the oscillations are
set off within a cell by serum treatment. The Hirata data does
not show any overshoot and so there is a need to relate the
initial conditions of any model to the experiment itself.
Inevitably, this treatment will change one or more of the
model parameters, perhaps continuously. Thus more work
needs to be done to understand how serum treatment induces
oscillations before we can address this issue more appropri-
ately from a modelling perspective.

Peak-to-trough ratio. Deterministic, continuous models do
not match very well the peak-to-trough ratios observed by
Hirata et al. Indeed, for model 1 this ratio is higher for mRNA
than protein, and this appears to contradict the Hirata data.
Experimental validation. We acknowledge that it is often

hard to compare experimental and simulated results for the
purposes of model validation. However, we note that Hirata
et al. performed some experiments in terms of blocking
protein degradation and translation, and while model 1 has
not been tested in this regard we do attempt to mimic these
experimental results in this present paper through our use of
discrete models.
In summary, model 1 predicts possibly high Hill factors,

overshoot (if the initial conditions are not chosen very
carefully), and no obvious link between the values of P0 and
the actual physical basis of transcription. The model is also
very sensitive to the degradation parameters but not sensitive
to the production parameters. Thus, it can explain some (but
not all) of the Hirata data.
However, there are two fundamental issues that the model

does not address and which could well explain some of the
discrepancies mentioned above. These are that mRNA and
proteins can be expressed in quite small numbers and that
there is intrinsic noise in terms of the uncertainty of knowing
when a certain reaction and what reaction takes place. These
points lead us into a discussion on discrete stochastic models
for chemical kinetics and the SSA. This in turn will lead to the
main idea of this paper, namely the incorporation of delays
into discrete, stochastic models and how this approach may
address the issues raised here.

Discrete, Stochastic Models
Key molecules that are produced at low levels and a

chemical systems’ intrinsic noise led to Gillespie (1977) [14]
introducing the SSA, which describes the evolution of a
discrete, stochastic chemical kinetic process in a well-stirred
mixture:
Let there be m chemical reactions between N chemical

species inside some fixed volume V held at constant temper-
ature. The reactions can be uniquely characterised by the m
stoichiometric vectors v1,. . .,vm, and propensity functions
a1(X),a2(X),. . .,am(X). Here X(t) is the vector of chemical
species (X1(t),. . .,XN(t))

T, where Xi(t) is the number of
molecules of species i at time t. The propensity functions
represent unscaled probabilities of a particular reaction
taking place. More formally, aj(X(t))dt represents the proba-
bility of reaction j occurring within the time interval (t,tþ dt).
For elementary kinetics the propensity functions take very
simple forms. For instance, for the second order reaction X1þ
X2 !k X3, it is a(X) ¼ kX1(t)X2(t). Similar formulas apply for
unimolecular and dimer reactions. The evolution of X
through time can be considered to be a discrete nonlinear
Markov process that is described by the SSA.
The underlying idea behind the SSA is that at each time

point t a step size h is determined from an exponential
waiting time distribution such that at most one reaction can
occur in the time interval (t,tþ h). If the most likely reaction,
as determined from the relative sizes of the propensity
functions, is reaction j, say, then the state vector is updated as

Xðtþ hÞ ¼ XðtÞ þ mj: ð6Þ

See Algorithm 1 for a pseudo-code description of the SSA.
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Algorithm 1 : SSA
Data : stoichiometry; reaction rates; initial state;

simulation time
Result : state dynamics
begin

while t , T do
generate U1 and U2 as U ð0; 1Þ random variables
a0ðXðtÞÞ ¼ Rm

j¼1ajðXðtÞÞ

h ¼ 1
a0ðXðtÞÞ

lnð1=U1Þ
select j such that

Rj¼1
k¼1akðXðtÞÞ , U2a0ðXðtÞÞ � Rj

k¼1akðXðtÞÞ
Xðtþ hÞ ¼ XðtÞ þ vj
t ¼ tþ h

end

The SSA has been used successfully in many settings (e.g.,
Arkin et al. [16] for the study of k-phage). But its limitation is
that it can be very computationally expensive, as large
numbers of simulations are needed to calculate moments of
X(t) accurately and because the time step can become very
small. For this reason a number of approaches have been
recently developed to improve the performance of SSA.
These include the Poisson leap method (Gillespie [17]) and
the Binomial leap method (Tian and Burrage [18]) in which
larger time steps are allowed so that all reactions can fire in
that step with a frequency sampled from a Poisson or
Binomial distribution, respectively.

Other approaches for improving the performance of SSA
are based on the chemical master equation (CME) that
describes the evolution of the probability density function
p(X,t) such that

dpðX; tÞ
dt

¼
Xm
j¼1

ajðX � mjÞpðX � mj; tÞ �
Xm
j¼1

ajðXÞpðX; tÞ: ð7Þ

It is possible to cast this problem into the form dp/dt ¼ Ap
where A is the state space matrix, which can be enormous. To
make this problem more computationally tractable, quasi–
steady state assumptions can be used (where possible) to
either reduce the size of the problem or to partition the
problem into different regimes with different methods being
applied (Haseltine and Rawlings [19], Goutsias [20], Burrage
et al. [21]).

We note that an approximation to the mean behaviour l(t)
¼ E[X(t)] can be derived from Equation 7 to give

dl
dt
¼
Xm
j¼1

mjajðlðtÞÞ;

which is the standard chemical kinetics rate order equation
for describing concentrations. This can be seen by multi-
plying both sides by X(t) and summing over all possible
configurations of the state space (see [22]).

Given this overview of SSA, our intention is now to
introduce delays into SSA and to investigate the dynamics of
model 1 in this setting. Unlike the SSA, there is not
necessarily a unique implementation of delay SSA (DSSA),
and issues pertaining to this are discussed in more detail in
Text S1.

Briefly, DSSA implementations can differ in the way they
handle (1) the waiting time for delayed reactions, (2) the time
steps in the presence of delayed reaction updates, and (3)
delayed consuming reactions. The DSSA version we used to
produce the results presented in the following section works
as follows: initially we specify which nonconsuming reactions
are delayed and the delay size (constant or variable)
associated with each reaction. Delayed consuming reactions
are not allowed. Simulations proceed by drawing reactions
and their waiting times (for delayed and nondelayed
reactions). If a nondelayed reaction is selected, then the state
is updated in the standard way (SSA), but if it is a delayed
reaction that is selected then it is not updated until the
appropriate time point would be passed by another simu-
lation step. In this case, the last drawn reaction is ignored and
instead the state is updated according to the delayed reaction.
Simulation continues at the corresponding time point.
Algorithm 2 shows a pseudo-code description of the DSSA
implementation.
In general, delays in time evolutions are difficult to handle

because of the non-Markovian character they introduce into
the dynamical process. In this context we note that our DSSA
implementation ignores the elapsed time between the last
triggered reaction and the update of the next scheduled
delayed reaction. It is unclear whether this affects the
distribution of waiting times until the next reaction happens.
It also ignores the selected reaction that should be updated
beyond the current update point by preferentially updating
the delayed reaction. However, it is an open question
whether we should select for the delayed reaction and
ignore the other. For further discussions we refer the reader
to Text S1.
Furthermore, we note that as soon as we introduce delays

into SSA then the evolution of X(t) is no longer described by a
Markovian process and the nature of the CME in this case
needs further consideration. We have made additional
material available in Text S2 in which we derive from first
principles a CME for the DSSA. It generalises Equation 7 in a
very natural manner. Having constructed the CME for the
delay case, we can then multiply both sides by all possible
configurations of the state space and this will lead to a DDE
for the mean (see Text S2 for further details).

Model 1 can be presented in DSSA form with four
reactions defined by

m ¼ 1 �1 0 0
0 0 1 �1

� �
;

aðM;PÞ ¼ ðam f ðPÞ; lmM; apM; lpPÞ ;

with the delay occurring in the first reaction.
We note that the time step we use for DSSA is self-selecting

based on the assumption of exponential waiting times, as is
the case for SSA. The stiffer the kinetics system becomes (due
to large rate constants and/or large numbers of molecules),
the smaller the time step. Thus, the algorithm intrinsically
controls the stability of the evolution. However, in the case of
the continuous DDE representation, an important issue is
stepsize selection for any numerical method to avoid
instabilities in the computed solutions.
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Algorithm 2 : DSSA
Data : stoichiometry; reaction rates; initial state;

simulation time; delay
Result : state dynamics
begin

while t , T do
generate U1 and U2 as U ð0; 1Þ random variables
a0ðXðtÞÞ ¼ Rm

j¼1ajðXðtÞÞ

h ¼ 1
a0ðXðtÞÞ

lnð1=U1Þ
select j such that

Rj�1
k¼1akðXðtÞÞ, U2a0ðXðtÞÞ � Rj

k¼1akðXðtÞÞ
if delayed reactions are scheduled within ðt; tþ h�

then let k be the delayed reaction scheduled next
at time tþ s
Xðtþ sÞ ¼ XðtÞ þ vk
t ¼ tþ s

else
if j is not a delayed reaction then

Xðtþ hÞ ¼ XðtÞ þ vj
else

record time; tþ hþ s; for delayed reaction j
t ¼ tþ h

end

Results

Parameter Exploration and Model Comparison
In this section we present a selection of DDE solutions and

DSSA trajectories displaying the dynamical properties of
model 1. As for the DSSA, what we present are single
simulations of just one particular strong solution based on a
particular path generated by the random variables. Never-
theless, these individual solutions are very representative of
the dynamics of the processes being modelled. In some cases,
we perform a number of independent simulations to collect
information about mean behaviour.

All DDE plots were generated using the dde23 function in
MatLab. The initial conditions are set to (M(0),P(0))¼ (3,100).
In Figures 1–3 we have scaled the protein concentrations by

lp so that both mRNA and protein numbers fit conveniently
on the same figure. Figures 1 and 2 show the dynamics of the
continuous DDE model for protein concentration with P0 ¼
10, h ¼ (4.6,4.1,3.6), s ¼ 19.7 and P0 ¼ 10, h ¼ 4.1, s ¼
(20.7,19.7,18.7), respectively.
In Figure 1 the delay is kept fixed and the Hill factor h

varies around the bifurcation point 4.1. We clearly see that
for h¼ 3.6 the oscillations damp quickly, while for h¼ 4.6 the
oscillations are sustained. In Figure 2 the Hill factor is kept
fixed and instead the delay varies around the bifurcation
point 19.7. We observe a similar behaviour as in Figure 1,
namely that for s ¼ 18.7 the oscillations damp quickly, while
for s ¼ 20.7 the oscillations are sustained. Interestingly,
however, the size of P0 can affect these dynamics. For values
of s ¼ 18.7 up to about 10 there is no essential difference
when the sustained oscillations arise. In Figure 3 both the
concentrations of mRNA and protein are plotted. We see that
when P0 is increased to 100 oscillations damp for values of h
greater than the critical value of 4.1, namely for (h,s) ¼
(4.6,19.7). In this case the concentrations of P are always
greater than P0.
We now consider the dynamics of the DSSA. If not stated

otherwise, the initial molecular numbers of mRNA and
protein are M(0) ¼ 3 and P(0) ¼ 100, respectively. We also
make a comment about the scaling for mRNA and protein
numbers that we use in the rest of this paper. In the Hirata et
al. paper, it is clear that the data has been scaled but it is not
clear what the scaling is. To be able to compare our results
with those of Hirata et al. we perform one simulation with the
values (P0,h,s)¼ (100,4.1,19.7). We then use a scaling such that
for this simulation the maximum amplitude of the mRNA is 4
and the protein is 7. This is consistent with the Hirata et al.
data in their Figure 1. We then use this fixed scaling for all
other DSSA simulations in this paper. The scaling factors for
mRNA and protein are 0.3 and 0.03, respectively.
In Figure 4 we keep P0 and h fixed and vary s with P0¼ 100,

h ¼ 4.1, s ¼ (10,15,20,25). We note that the oscillations are
sustained and regular for s ¼ 15, 20, and 25, while there is
some oscillatory behaviour even with s¼ 5, but the dynamics
are very irregular. Moreover, for all values of s, protein

Figure 2. DDE Solution: Exploring the Effect of Delay on Protein

DOI: 10.1371/journal.pcbi.0020117.g002
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numbers go mostly below P0, albeit for only small periods of
time. However, for small delay (s ¼ 5) this happens far less
often. Coincidentally or not, in this case the oscillations are
very irregular. We also note that for larger values of s (s¼25),

the amplitudes of protein concentration are generally larger
than the values presented by Hirata et al.
In Figure 5 we perform a similar set of experiments but now

we keep the delay fixed and vary the values of h with P0¼ 50,

Figure 3. DDE Solution: Exploring the Effect of Large P0

DOI: 10.1371/journal.pcbi.0020117.g003

Figure 4. DSSA Simulations: Exploring the Effects of Delay

The horizontal dotted line marks P0, mRNA is represented by the solid line, and protein by the dashed line.
DOI: 10.1371/journal.pcbi.0020117.g004
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h¼ (2.1,3.1,4.1,5.1), t¼ 19.7. Again, sustained and more or less
regular oscillations are noticed for h¼ 4.1 and 3.1, but more
irregular behaviour with h¼ 2.1 and 5.1.

Simulations in Figures 4 and 5 are performed with (P0 ¼
100) and (P0 ¼ 50), respectively. Since the values of P0 might
well be a significant factor in determining the dynamics of the
system, we simulate also with varying P0 (10,50,100,1000)
choosing parameters (h,s) ¼ (4.1,15) (Figure 6). We observe
sustained, regular oscillations for P0¼ (10,50,100). However, if
P0 is very large (P0¼ 1,000), the oscillations are very irregular
and the numbers of protein are much larger than in the other
cases. On the other hand, if P0 is low (P0¼ 10), the amplitudes
of mRNA and protein are not as large as in the other cases.

The data shown by Hirata et al. represents the average of
the samples from a number of cells. We computed the time-
dependent arithmetic mean over 1,000 independent simu-
lations using the DSSA with P0 ¼ 100, h ¼ 4.1, and s ¼ 19.7
(Figure 7). By comparing the result with the solution of the
corresponding DDE (that is derived in Text S2), the following
two aspects become evident. First, in spite of the differences
between individual simulations due to the inherent stochas-
ticity, the arithmetic mean over 1,000 independent simu-
lations with either constant delay or variable delay is very
close to the corresponding solutions of the DDE. Second,
there appears to be no qualitative difference between the

arithmetic mean of DSSA with constant delay compared with
a uniformly distributed delay in an interval of width 6
centred around the bifurcation point of 19.7. The reason why
the oscillation dies away is not that the system does not
oscillate any more. Rather, the oscillations show a progressive,
increasingly randomly distributed phase shift cancelling each
other.
In addition, by performing numerous simulations for

values (P0,h,s) ¼ (100,4.1,19.7) with initial conditions (M(0),
P(0))¼ (1,1), we searched for the occurrence of overshoot. The
resulting trajectories did not show significant overshoot in
the system, indicating that overshoot is not an issue for model
1 in the DSSA regime.

Experimental Comparison
In this subsection we compare our simulations with specific

experiments performed by Hirata et al. One of the most
important aspects of the Hirata data is the regularity of the
oscillatory period, which is 2 h. We therefore performed a
spectrum analysis (more than 300 independent simulations)
that takes a signal in the time domain and transforms it into
its component frequency representation (frequency analysis
has been done using a software package provided by Barrio et
al., see Acknowledgements).
The oscillation frequencies can be determined for different

values of the parameters: P0, h, s, and the degradation rates.

Figure 5. DSSA Simulations: Exploring the Effects of h

The horizontal dotted line marks P0, mRNA is represented by the solid line, and protein by the dashed line.
DOI: 10.1371/journal.pcbi.0020117.g005
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For each set of values the mean frequency of all the
simulations is calculated. Figure 8 illustrates results for two
cases where we seem to get regular dynamics in the
oscillations, namely P0¼ 100, h¼ (3,4). In both of these cases
the frequency is plotted against the delay in the range [6,30].
It shows that the frequency decreases more or less linearly
with the delay. This has a very important meaning for the
oscillatory nature of the Hes1 regulatory system. It also
confirms that the single snapshots of trajectories that we
present in this paper do indeed capture the significant
dynamics of the Hes1 model. We can conclude that for an
oscillatory period of 2 h (frequency ¼ 0.5), then if h ¼ 3 an
appropriate value for s is about 10 while if h ¼ 4 an
appropriate value for s is about 15. Of course, these
relationships between h and s are not completely precise, as
simulations with h ¼ 4 and s ¼ 19.7 (Figure 5) still show very
regular behaviour with a period close to 2 h. Nevertheless,
taking (h,s) ¼ (3,10) and (4,15) as being very appropriate
values, we then performed a single simulation over 12 h
(Figure 9, left plots). The first 2 h of each plot are shown
separately (Figure 9, right plots). The simulations obtained
compare very favourably with the Hirata et al. data in terms
of the regularity of the period (2 h), the amplitude of the
profiles, and the time lag of approximately 15–18 min (seen
best from the simulations over 2 h).

Figure 6. DSSA Simulations: Exploring the Effects of P0

The horizontal dotted line marks P0, mRNA is represented by the solid line, and protein by the dashed line.
DOI: 10.1371/journal.pcbi.0020117.g006

Figure 7. DSSA Simulation: Calculating the Arithmetic Mean over 1,000

Simulations for Both Constant and Variable Delay

DOI: 10.1371/journal.pcbi.0020117.g007
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By perturbing the reaction rate constants, we can attempt
to get an idea of the system’s sensitivity (we note that Hirata
et al. observed alterations in the oscillatory period as the
temperature was lowered). This approach does not replace a
thorough analysis. However, it still leads to insights about the
different dynamics and the sensitivity of the model. Figure 10
shows DSSA trajectories for simulations with parameters P0¼
100, h¼4.1, s¼15, and one of the four reaction rate constants
am, ap, lm, and lp varied in each figure while the others are
kept fixed with values as shown in Table 1 (am¼ 0.1,0.5,1,2, ap
¼ 0.1 ,0 .5 ,1 ,2 , lm ¼ 0.01,0.029,0 .05,0 .1 , and lp ¼
0.01,0.031,0.05,0.1). Perturbing am or ap in these ranges leads
to similar dynamical behaviour: oscillations become more
regular, with larger amplitudes and shorter periods, the
larger the production rate constant. Oscillations are barely
visible for am ¼ ap¼ 0.1. For am¼ ap¼ 0.5, we obtain regular
oscillations (although the trajectory for ap ¼ 0.5 in Figure 9
does not look very regular). For am ¼ ap ¼ 2, oscillations are
very regular with high peaks and short period. By varying the
value of lm, we observe very irregular dynamics for low
degradation rates (0.01) and regular oscillations with larger
rates (0.029, 0.05). However, for even larger degradation rates
(0.1), oscillations become irregular again. The average scaled
population level decreases with lm increasing. For lp, we
observe the opposite behaviour, namely that oscillations
occur for all four values of lp, but that the period increases
and peaks decrease in size as lp becomes smaller. Small
perturbations around (am¼ 1, ap¼ 1, lm¼ 0.029, lp¼ 0.02) do
not seem to have any visible effect on the oscillatory
dynamics. Because data is not available on how a reduction
in temperature from 37 8C to 30 8C affects the period of
oscillation, we are unable to compare our simulations with

experimental results, but our simulation results are not
unreasonable.
Finally, we compare the results of some actual experiments

by Hirata et al. with the corresponding modified DSSA
simulations. The experiment in which Hes1 protein degra-
dation is blocked by application of proteasome inhibitor
MG132 is mimicked by setting the fourth stoichiometric
vector to v4 ¼ (0,0)T, thus making the protein degradation
reaction ineffective. This happens at a predefined time texp
after oscillation is initiated. Figure 10 illustrates the effect on
the model for parameters h¼4.1, s¼15, P0¼100, and texp¼60
min when protein degradation is blocked. Evidently, the
dynamics of the modified model matches with those from the
experiment quite well (Figure 3A in [3]). For the experiment
in which translation is inhibited by cycloheximide treatment,
we neutralize translation by setting the third stoichiometric
vector at v3 ¼ (0,0)T. As with the first experiment, the
modification is set off at a predefined time after simulation
starts. Figure 10 shows a typical trajectory resulting from a
DSSA run with parameters h¼ 4.1, s¼ 15, P0¼ 100, and texp¼
30 min when translation is blocked. The model performs in
much the same way as described in the experiment (Figure 3C
in [3]).

Discussion

When we compare the dynamics of DSSA with the
continuous delay case, we can make a number of important
conclusions. Perhaps the most significant is that there are
sustained oscillations for values of h , 4.1 and s , 19.7, unlike
the continuous case. Indeed, Figure 5 shows sustained regular
oscillations with values of h about 3. This is an important

Figure 8. Mean Oscillation Frequencies for Different Delay Values (P0, h, lm, lp Are Fixed)

DOI: 10.1371/journal.pcbi.0020117.g008
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point. In the continuous setting, there is a large set of Hill
functions that represent a wide variety of bindings of
molecules to operator regions. Modellers infer information
about the nature of the cooperativity at the binding sites
from the dynamics of simulations of models with different
types of Hill functions. What our simulations show is that
these values may be overestimated from continuous models
and that discrete delay models may well give more realistic
values for cooperativity. Furthermore, it is clear that with our
model if the value of h is too small, certainly h , 2, then the
oscillations are very noisy and very irregular. Indeed, Figure 8
strongly suggests that for an oscillatory period of two hours to
occur, h cannot be much less than 3.

The same remarks apply for estimates of the values of s that
lead to sustained regular oscillations. Thus from Figure 9 we
observe reasonably well-defined sustained regular oscillations
for values of s¼15 with h¼4, and s¼10 with h¼3. Values for
s lower than s¼ 10 result in noisy and irregular delay. On the
other hand, values of s bigger than 20 suggest an h larger than
5, and this seems to be too high a value for the Hill parameter
in terms of the number of operator binding sites. For values
of (P0,h,s)¼ (100,3,10) and (100,4,15), the simulations in Figure
9 compare very favourably with the data given by Hirata et al.
(their Figure 1). The oscillations are regular with a period of 2
h, the amplitudes have more or less the same values in the

simulations, and the experiments and the time lag of about
15–18 min, seen in the rightmost plots of Figure 9, is very
close to that observed by Hirata et al.
Another feature of the dynamics of DSSA that we would

like to emphasise is the role of P0. For continuous models, the
role of P0 appears not to be too significant as long as it is not
too large. But from Figure 6 we see that P0 plays an important
role. Apparently, when the numbers of P are below P0, there
is expression. This expression only occurs for very small time
windows but seems to be crucial in driving the oscillations.
This behaviour does not occur for the continuous determin-
istic models. If the value of P0 is increased too much to P0 ¼
1,000, say, then there are no oscillations and P never goes
below P0. On the other hand, if P0 is too low (P0 ¼ 10), then
the amplitudes of the mRNA and protein appear to be too
small. This provides a prediction that should be able to be
tested experimentally.
Furthermore, simulations in Figures 4–6 and 9 suggest that

the peak-to-trough ratios of mRNA and protein are in closer
agreement to the Hirata et al. data than those obtained from
the deterministic model. The Hirata data suggests ratios of
between 3 and 4 for mRNA and between 3 and 8 for protein,
although we note that these only approximate values as there
are significant error bars for the protein concentrations. On
the other hand, a rough estimate from the discrete

Figure 9. DSSA Simulations for P0 ¼ 100, h ¼ 3, s ¼ 10 (Top) and P0 ¼ 100, h ¼ 4, s ¼ 15 (Bottom) over 12 h and 2 h

Left, more than 12 h. Right, more than 2 h. The dotted horizontal line corresponds to P0. Solid lines represent mRNA, dashed lines protein populations.
DOI: 10.1371/journal.pcbi.0020117.g009
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simulations gives a peak-to-trough ratio for protein of
between 3 and 4 with a larger ratio for mRNA due to the
fact that the numbers of mRNA can become quite small in
some cases.

We have also shown from the mathematical analysis in the
supporting information (Text S2) that the mean behaviour of
the DSSA is well-described by the corresponding DDE when
there are large numbers of molecules. This naturally general-
izes the SSA/DDE case and provides a comprehensive frame-
work for studying noise in biology.

Furthermore, our simulations suggest that overshoot is not
an issue for model 1 in a discrete delay setting. One of the
reasons that Bernard et al. [11] introduced model 2 in the
continuous delay setting was because overshoot is not so
pronounced when there are more nonlinearities in the

model. However, in the discrete setting, these differences
appear not to be significant, and so choosing a model based
on overshoot issues appears not to be important.
The sensitivity analysis in Figure 10 shows that the DSSA is

more sensitive to the degradation parameters than the
production parameters in terms of their effect on the period
of oscillation. However, there is more sensitivity of the
discrete model to the production parameters than for the
continuous model 1. Moreover, the DSSA simulations in
Figure 11 mimic very well the experiments when either
protein degradation or translation is blocked, both in terms
of the time of the degradation of mRNA numbers and in
actual values of mRNA and protein.
Putting all this information together we see that we get very

good comparisons between simulation and experiment if the

Figure 10. Sensitivity Analysis: DSSA Simulations with Perturbed Rate Constants

(A) am.
(B) ap.
(C) lm.
(D) lp.
DOI: 10.1371/journal.pcbi.0020117.g010
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value of P0 is on the order of 50 to 100, if the value of h is
somewhere between just less than 3 to just bigger than 4, and
if the delay is somewhere between 10–20 min We can be more
precise if more accurate values of the transcription and
translation delays are available. If this sum of delays is about
15, then this suggests a Hill factor of about 4, while if the
delay is about 10, then a Hill factor of 3 is more appropriate.

Conclusions
In this paper we have compared continuous delay models

and discrete, stochastic delay models to explain oscillations in
numbers of hes1 mRNA and Hes1 protein in mouse. Given
that the numbers of mRNA and proteins produced are
relatively small, the discrete delay approach may well be more
appropriate than the continuous approach. Furthermore, the
discrete delay approach seems to give greater insight into the
underlying cellular dynamics in terms of the system param-
eters.

By careful comparisons of our simulations with the Hirata
et al. data, we have been able to suggest quite specific ranges
for P0, the Hill parameter h, and the delay s. We have also
shown by both mathematical analysis and simulations that the
mean behaviour of DSSA is described by a DDE. This
naturally generalises the nondelay case and provides a
comprehensive and consistent mathematical framework for
understanding the role of noise in biology.
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Text S2. DDEs and the Master Equation

Found at DOI: 10.1371/journal.pcbi.0020117.sd002 (45 KB PDF).
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