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The prediction of protein structure from sequence remains a major unsolved problem in biology. The most successful
protein structure prediction methods make use of a divide-and-conquer strategy to attack the problem: a
conformational sampling method generates plausible candidate structures, which are subsequently accepted or
rejected using an energy function. Conceptually, this often corresponds to separating local structural bias from the
long-range interactions that stabilize the compact, native state. However, sampling protein conformations that are
compatible with the local structural bias encoded in a given protein sequence is a long-standing open problem,
especially in continuous space. We describe an elegant and mathematically rigorous method to do this, and show that
it readily generates native-like protein conformations simply by enforcing compactness. Our results have far-reaching
implications for protein structure prediction, determination, simulation, and design.
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Introduction

The prediction of a protein’s structure from its amino acid
sequence remains one of the greatest unsolved problems in
computational molecular biology. The problem attracts much
interest because it both is intellectually challenging and has
important practical applications such as drug development
and genome annotation.

According to Anfinsen’s famous hypothesis, a protein’s
native structure is determined by its sequence and corre-
sponds to minimal Gibbs energy [1]. Levinthal’s paradox
implies that a brute force enumeration of all possible
conformations for a given sequence is both computationally
and physically impossible [2]. This paradox is solved, at least
in part, by the fact that the sequence introduces local
structural bias, which narrows the conformational search
space [3–6]. The native fold is thought to be the result of
favorable local and long-range interactions [7,8]. As a
consequence, protein structure prediction methods need
two key ingredients: an energy function and an efficient
method to explore the relevant parts of the conformational
space associated with the sequence. The latter problem is
considered to be the primary bottleneck in protein structure
prediction today [9].

In practice, one first chooses a particular representation of
a protein, ranging from a full-atom model to a Ca-atom–only
model. Based on the amino acid sequence of the protein,
plausible protein-like conformations called decoys are
generated. These decoys are subsequently accepted or
rejected based on an energy function.

The strategy to generate decoys that are subsequently
rejected or accepted comes in different flavors. One can
generate a large set of decoys, and then select the decoy with
the lowest energy [10–13]. The ROSETTA method generates
decoys as part of a simulated annealing procedure to identify
structures with minimum energy [9,14]. Markov Chain Monte
Carlo (MCMC)–based methods [3,15,16] propose decoys that
are accepted or rejected depending on their Boltzmann

weights. The subject of this paper is the generation of decoys,
that is, the exploration of the conformational space that is
compatible with a given sequence. In particular, our goal is to
generate decoys based on local sequence/local structure
preferences [7,8], which we will refer to as ‘‘local structural
bias.’’
Recently, important progress in structure prediction was

made due to the use of fragment libraries for decoy
generation [9,14]. Fragment libraries consist of fragments
derived from experimentally determined high-quality protein
structures [17–20]. By combining fragments that are chosen
based on sequence information, one can generate decoys that
have a protein-like local structure [6,9,14]. The main idea
behind the use of fragment libraries is to decrease the size of
the vast conformational search space by taking local
structural bias into account and using a finite set of
fragments.
Despite the clear success of the fragment library approach,

the method has some important shortcomings. The limited
size of the Protein Data Bank (PDB) makes it very difficult to
map a sequence stretch of even moderate length to a relevant
set of structure fragments. Using fragment libraries in MCMC
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simulations is problematic because of their incomplete
covering of the conformational space and nonprobabilistic
nature [16,21]. Finally, the inherent discrete nature of
fragment libraries conflicts with the continuous character
of a protein’s conformational space.

An important step forward was the HMMSTR method
[22,23], which uses a Hidden Markov Model (HMM), trained
from a fragment library [24], to predict local structure based
on sequence. HMMSTR, and HMM-based approaches that do
not include sequence information but are purely geometric
[25,26], can be considered as probabilistic versions of frag-
ment libraries.

Despite these advancements, probabilistic sampling in
continuous space of plausible protein-like conformations
that display realistic dihedral angles and secondary structure
content is still an important unsolved problem [27–32]. A
solution to this problem could have a profound effect on the
success of protein structure prediction, design, and simu-
lation [9].

Here, we provide such a solution by developing a
probabilistic model that uses directional statistics to describe
protein geometry in a natural, continuous space. The model
makes it possible to sample plausible protein backbone
conformations for a given sequence. We show that we readily
generate near-native decoys for several proteins simply by
enforcing compactness and self-avoidance, without using any
additional energy terms. Our results thus support the view
that relatively few compact structures are compatible with
the sequence-encoded local structural bias [6], and provide
the means to capture this bias in protein structure
prediction, simulation, and design.

Results/Discussion

FB5–HMM: A Probabilistic Model of Local Protein
Structure

Our goal is probabilistic sampling of plausible backbone
conformations given a protein’s sequence, and, optionally,
given secondary structure information as well. A protein’s
backbone conformation, here taken to be characterized by
the sequence of Ca positions, can be effectively represented
as a sequence of (h,s) angle pairs (Figure 1) [33,34]. Such a (h,s)
sequence is equivalent to a sequence of unit vectors, each
vector pinpointing the Ca position of one amino acid (see

Materials and Methods). Hence, a probabilistic model needs
to be developed that allows sampling a sequence of unit
vectors based on one or two sequences, respectively specify-
ing amino acid type and secondary structure class (that is,
helix, b-strand, and coil).
An HMM can deal with the sequential aspect of the

problem [35], provided a way can be found to represent the
unit vectors. A solution to this problem comes from the field
of directional statistics, a branch of statistics that deals with
probability distributions over orientations, directions, or
angles [36]. Directional statistics has for example been
applied to the modelling of wind directions and astronomical
observations on the celestial sphere. To represent the unit
vectors, we used the 5-parameter Fisher-Bingham (FB5)
distribution [37], which is the equivalent on the sphere of
the Gaussian distribution in the plane.
Figure 2 shows the conditional dependency graph of an

HMM (called FB5–HMM) that combines amino acid sequence,
secondary structure, and detailed geometric information.
Two discrete nodes, A and S, represent the 20 amino acid
types and the three secondary structure classes, while the
continuous node F represents the unit vector describing Ca
geometry. The three nodes A, S, and F are conditionally
dependent on a hidden, discrete node H. That is, the hidden

Figure 1. Schematic Representation of a Protein’s Ca Backbone

The Ca positions are numbered, and the pseudo bond angles h and
pseudo dihedral angles s are indicated. The segment has length 5, and is
thus fully described by two pseudo dihedral and three pseudo bond
angles. The numbering scheme of the angles is chosen so that the angle
pair (hi,si), associated with position i, specifies the position of the Ca
atom at position i þ 1.
DOI: 10.1371/journal.pcbi.0020131.g001

Figure 2. Conditional Dependency Graph of FB5–HMM

Squares represent discrete nodes, circles represent the FB5 node with
unit vector output. The arrows indicate conditional dependencies. Three
slices are shown, corresponding to three consecutive amino acid
positions. A possible set of node values is shown in color (v1, v2, and
v3 are unit vectors). The hidden node sequence (34,34,3) corresponds to
two C-terminal positions of an a-helix, followed by a coil residue.
A, amino acid node; F, FB5 node; H, hidden node; S, secondary structure
node.
DOI: 10.1371/journal.pcbi.0020131.g002
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Synopsis

Protein structure prediction is one of the main unsolved problems in
computational biology today. A common way to tackle the problem
is to generate plausible protein conformations using a fairly
inaccurate but fast method, and to evaluate the conformations
using an accurate but slow method. The main bottleneck lies in the
first step, that is, efficiently exploring protein conformational space.
Currently, the best way to do this is to construct plausible structures
by stringing together fragments from experimentally determined
protein structures, a method called fragment assembly. Hamelryck,
Kent, and Krogh present a new method that can efficiently generate
protein conformations that are compatible with a given protein
sequence. Unlike for existing methods, the generated conformations
cover a continuous range and come with an associated probability.
The method shows great promise for use in protein structure
prediction, determination, simulation, and design.

Local Structural Bias



node value at a given sequence position specifies the
probabilities of observing a specific amino acid type,
secondary structure class, and unit vector at that position.
The dependencies between the sequence positions are
encoded in the transition probabilities of going from one
hidden node value to another. Hence, FB5–HMM aims to
capture the joint probability distribution of an amino acid
sequence A, a secondary structure sequence S, and a sequence
of unit vectors or angle pairs X describing the backbone
geometry. The joint probability distribution is given by

PðA; S;XÞ ¼
X

H

PðAjHÞPðSjHÞPðXjHÞPðHÞ

where the sum runs over all possible hidden node sequences
H. In the trained model, each hidden node value ties together
matching preferences for amino acid type, secondary
structure, and local geometry. The use of an HMM with
multiple outputs makes challenging operations such as
sampling a set of backbone angles given an amino acid
sequence computationally feasible.

The optimal number of hidden node values (which is 75)
and all other associated parameters of FB5–HMM were
determined by training the HMM using a large set of
representative protein structures (see Materials and Meth-
ods). Figure 3, which shows the most important transitions
between the hidden node vales, gives an impression of the
overall structure of FB5–HMM.

Nearly all hidden node values (73 out of 75) are associated
with a strong preference (P . 0.8) for a single secondary
structure class (helix¼ 16, b-strand¼ 21, coil¼ 36). The only
amino acid types that are associated with a probability
greater than 0.3 (given a hidden node value) are Gly and Pro,
which reflects their special geometric preferences. The
trained HMM is quite sparse: only 1,352 (24%) of all possible
hidden node transitions occur with a probability above
0.0001. The parameters of FB5–HMM are available online as
supporting information (Dataset S1).

The HMMSTR method [22,23] also uses an HMM approach
to represent local structural bias, but makes use of a
discretized representation of the full-atom protein backbone.
Here, the final number of hidden node values was consid-
erably higher (281), but the number of nonzero transitions
was lower (371) than for FB5–HMM. It should be noted that
HMMSTR was extensively manually optimized for prediction,
while training of our model was fully automated.

Generating Protein-Like Backbones
In this section, we show that FB5–HMM generates Ca

backbones with realistic, protein-like geometries, and briefly
explain the sampling method.

To sample a Ca backbone given an amino acid sequence,
and optionally given a secondary structure sequence as well, a
sequence of hidden node values needs to be sampled from
FB5–HMM first. Once the hidden node values are sampled, it
is trivial to sample a sequence of unit vectors describing a Ca
backbone (see Materials and Methods, and the example
discussed below). The classic inference methods for HMMs,
Viterbi path decoding, and posterior decoding [35], do not
apply here because they are not aimed at sampling but
predicting. However, the problem can be solved using Forward-
Backtrack (FwBt) sampling, a little-used inference method
previously used in gene finding [38]. Using FwBt sampling, it

also becomes possible to resample the angles of a stretch of
residues seamlessly. Note that the Forward-Backtrack algo-
rithm (a sampling method) should not be confused with the
related Forward-Backward algorithm (a method to calculate
the posterior distribution) [35].
How a hidden node value specifies a probability distribu-

tion over unit vectors deserves some more explanation. Each
hidden node value is associated with a set of parameter values
for the FB5 distribution that specify its mean direction,
shape, extent, and orientation. For example, in Figure 4,
three sets of 1,000 points sampled from the FB5 distributions
associated with hidden node values 3, 34, and 44 are shown on
the unit sphere. These hidden node values are associated with
coils, a-helices, and b-strands, respectively.
The entire (h,s) space accessible to proteins is covered by a

mixture of 75 FB5 distributions, of which the 75 mean
directions are shown in Figure 5. It should be noted that
mean directions that are close together in the plot might
belong to hidden node values that specify very different
secondary structure class and amino acid type preferences.
A simple example will serve to explain the process of

sampling a Ca trace given a sequence. Suppose we want to
sample a set of (h,s) angles given the sequence (Ala, Leu, Gly).
In the first step, a hidden node sequence of length three is
sampled using the FwBt method with the (Ala, Leu, Gly)
sequence as input. Note that if a secondary structure
assignment is given as well, the hidden node sequence can
be sampled using both the amino acid sequence and the
secondary structure sequence. A plausible hidden node
sequence resulting from the sampling from the amino acid
sequence (Ala, Leu, Gly) is, for example, (34,34,3). Examining
these hidden node values shows that hidden node value 34 is
associated with a high probability of emitting Leu and Ala as
amino acid symbol and helix as secondary structure symbol,
while hidden node value 3 is mainly associated with Gly and
coil. Hence, the sampled sequence of hidden nodes corre-
sponds to the two hydrophobic C-terminal residues of a helix,
followed by a coil beginning with a Gly residue. Next, the (h,s)
angle pairs are sampled from the FB5 distributions associated
with hidden node values 34 and 3. The FB5 distributions
associated with hidden node values 34 and 3 have (h¼90.5,s¼
50.4) and (h¼ 95.1,s¼ 116.3) as mean directions, respectively.
A possible sampled sequence of (h,s) angle pairs could be for
example:

ð89:9; 47:5Þ; ð89:9; 51:6Þ; ð96:2;�128:9Þ

Note that the two first (h,s) pairs have values that are typical
for an a-helix (Figure 5).
The FB5–HMM model correctly captures the distribution

of pseudo bond and dihedral angles found in proteins. To
show this, we sampled a set of backbone angle sequences with
the same total number of residues as the dataset and
constructed histograms of the (h,s) angles. The (h,s) plot can
be considered as the Ca equivalent of the classic Ramachan-
dran plot [34,39]. The similarity of the resulting 2-D histo-
grams, both in terms of overall shape and detailed angle pair
frequencies, indicates that FB5–HMM accurately reproduces
the (h,s) distribution found in real proteins (Figure 6).

Secondary Structure Content
FB5–HMM not only captures the distribution of the (h,s)

angles, but also their sequential dependencies, and as a
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Figure 3. Transitions Occurring between (h,s) Angle Pairs in Proteins according to FB5–HMM

The graph shows some of the most important possible hidden node transitions in FB5–HMM. Each hidden node value is represented as a box, showing
the associated mean direction as a pair of (h,s) angles. For clarity, only a subset of all transitions is shown: for each hidden node value, the incoming and
the outgoing transition with the highest probability is shown as an arrow. If one of them is a self-transition, the second best incoming or outgoing
transition is also shown. Hidden node values mainly associated with a-helices are shown in light red, with b-strands in light blue, and with coils in white.
DOI: 10.1371/journal.pcbi.0020131.g003
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consequence generates secondary structures that follow
realistic length distributions. To show this, we generated a
large set of decoys, and analyzed the lengths of their
secondary structures.

For each protein in the dataset, a matching decoy with the
same length was generated. Secondary structure was assigned
using the program P-SEA [40]. This program only makes use
of the Ca coordinates and evaluates local geometry, which

allowed us to use exactly the same secondary structure
definitions for both dataset and decoys.
The overall secondary structure content of the protein

dataset and the decoy set are remarkably close to each other
(helix, including a-helix, 310-helix, and p-helix: 34% and 32%;
b-strand: 25% and 24%; coil: 41% and 44%). Figure 7 shows
the length distributions of helices, b-strands, and coils in the
protein dataset and the decoy set. The length distributions of
the secondary structures in the decoys closely match those in
the protein structures, especially in the case of b-strands. As
the generated decoys were not enforced to be compact, the
secondary structure content cannot be ascribed to compacti-
fication effects that can give rise to extensive secondary
structure formation in lattice [41] and tube [42,43] models.
The quality of the generated decoys was confirmed by

constructing all-atom backbones from the Ca coordinates
using the program MAXSPROUT [44]. According to the DSSP
program [45], which requires proper hydrogen bonding for
secondary structure assignment, the dataset contains 32%
helix (of which 30% is a-helix), which is identical to the
percentage calculated by PSEA. Note that the same procedure
does not apply to b-strands because DSSP requires inter-
strand hydrogen bonds to recognize b-strands and b-sheets,
while our model is not meant to incorporate nonlocal
interactions and hence does not bring b-strands together
into b-sheets. However, manual inspection of the generated
b-strands confirms they have the expected geometry, includ-
ing the distinct right-handed twist observed in real proteins
[46].

Compact Decoys Using Sequence Information
We used FB5–HMM to generate compact decoys for six

target proteins that were the subject of two previous studies
[13,14]. Four of them are all-helical, while two consist of a-
helices and a single b-sheet (Table 1).

Figure 4. Three Point Sets Sampled from the FB5 Distribution on the

Sphere

The three sets consist of 1,000 unit vectors sampled from the FB5
distributions associated with hidden node values 3 (blue), 34 (red), and
44 (green), respectively These three node values are typical representa-
tives of coil, a-helix, and b-strand geometry. The samples were plotted
on the unit sphere, and the mean directions of the three FB5
distributions are indicated with arrows.
DOI: 10.1371/journal.pcbi.0020131.g004

Figure 5. Scatter Plot of the (h,s) Angles in a Sampled Dataset

The dataset consisted of 500 sequences of length 100 generated using FB5–HMM. The ideal (h,s) values of some conformations are indicated: a: a-helix,
b: b-strand, p: p-helix, L: left-handed a-helix, 3: 310-helix, 1 & 2: Poly-Proline helices types I and II. The open circles indicate the mean directions of the 75
FB5 distributions. Angle pairs generated by hidden node values 3, 34, and 44 are plotted in blue, red, and green, respectively. These three hidden node
values are typical representatives of hidden node values that correspond to coil, a-helix, and b-strand geometry, respectively.
DOI: 10.1371/journal.pcbi.0020131.g005
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For each of these proteins, we generated 100,000 compact
decoys using the radius of gyration (Rg) of the target proteins
(see Materials and Methods). Apart from compactness and self-
avoidance, no additional energy terms were used. We consider
decoys with a Ca-based root mean square deviation (RMSD)
with the native structure that is below 6 Å as ‘‘good’’ decoys [28].
We emphasize that the dataset used to train FB5–HMM did not
containanyproteins that arehomologous to the targetproteins,
or any proteins with a fold identical to that of a target protein.

To evaluate the results of the default FB5–HMM method
that generates compact decoys using amino acid sequence
information (Table 1, Method S), we used three baselines. The
S0 baseline does not make use of amino acid sequence
information for sampling the backbone angles. The Markov0
(M0) baseline uses the target sequence but uses a uniform

transition matrix for the hidden nodes, which corresponds to
removing the arrows between the hidden nodes in Figure 2.
Finally, the MS0 baseline uses a uniform transition matrix
and does not make use of sequence information.

Figure 6. Histograms of the (h,s) Angle Pairs

Histograms are shown for the training set (upper) and the decoy set
(lower). The bin size is 18 3 18. The color scale refers to the number of
counts per bin. Bins with a count below 4 are white.
DOI: 10.1371/journal.pcbi.0020131.g006

Figure 7. Histograms of Secondary Structure Element Length

Histograms of the lengths of the secondary structure elements in the
training set (white bars) and the decoy set (black bars).
DOI: 10.1371/journal.pcbi.0020131.g007
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The use of the S0 and M0 baselines is challenging, because
they are expected to generate decoys that are much better
than truly random decoys. The S0 baseline generates random
compact decoys with a protein-like geometry, and is thus
expected to generate protein-like folds by chance [47]. The
M0 baseline generates decoys with realistic (h,s) angles for the
given amino acid sequence, but neglects the dependencies
between consecutive (h,s) pairs. The MS0 baseline simply
generates random compact structures with (h,s) pairs that fall
in the range that is allowed for proteins. The results are
shown in Table 1.

Strikingly, FB5–HMM generates good decoys for all targets
(Table 1, S). The best decoys for targets 1ENH and 2CRO are
shown in Figure 8. The number of good decoys ranges from
almost 10% for the smallest helical target (1FC2) to several
good decoys (37 and 9) for the targets containing a b-sheet
(2GB1 and 1CTF). Given the fact that no energy function was
used to handle the nonlocal interactions during decoy
generation, besides enforcing compactness and absence of
steric clashes, this result is quite remarkable.

Indeed, the (modest) success for the b-sheet containing
targets is noteworthy since our model does not incorporate
the long-range interactions that assemble b-strands into b-

sheets. In general, proteins containing b-sheets are challeng-
ing targets [13,14].
The S0 baseline, which does not take the target sequence

into account, generates significantly fewer good decoys for all
targets (Table 1, S0). In addition, the RMSD between the best
decoy and the native structure is consistently higher for the
S0 baseline than for FB5–HMM. Both FB5–HMM and the S0
baseline generates compact, protein-like decoys. Since FB5–
HMM performs significantly better than the S0 baseline, we
can conclude that the model successfully captures at least a
significant part of the local structural bias encoded in an
amino acid sequence.
The M0 baseline performs much worse than FB5–HMM for

all targets and does not generate a single good decoy for two
of them (Table 1, M0, targets 2GB1 and 4ICB). This points out
that the sequential dependencies between the (h,s) angle pairs
are extremely important for obtaining good decoys. Surpris-
ingly, it is even better to neglect target sequence information
(S0 baseline) than to neglect the dependencies between the
angles (M0 baseline).
In fact, the M0 baseline does not seem to perform

significantly better than the MS0 baseline, which essentially
only depends on the length of the protein (Table 1, MS0).

Table 1. Generation of Compact Decoys Using Sequence Information

Target Protein FB5–HMM Markov0

Name, PDB code L a,b Sequence (S) No Sequence (S0) Sequence (M0) No Sequence (MS0)

Protein A, 1FC2 43 2,0 9593, 2.7 Å 4328, 3.5 Å 1415, 4.4 Å 1112, 4.5 Å

Homeodomain, 1ENH 54 2,0 6595, 2.5 Å 527, 4.0 Å 128, 5.1 Å 92, 5.3 Å

Protein G, 2GB1 56 1,4 37, 4.9 Å 3, 5.8 Å 0, 6.1 Å 1, 5.5 Å

Cro repressor, 2CRO 65 5,0 464, 3.9 Å 40, 5.2 Å 5, 5.8 Å 3, 5.4 Å

Protein L7/L12, 1CTF 68 3,3 9, 5.4 Å 1, 5.7 Å 2, 5.8 Å 0, 6.1 Å

Calbindin, 4ICB 76 4,0 89, 4.3 Å 3, 5.9 Å 0, 6.3 Å 0, 6.7 Å

(Columns 1–3) Name and PDB code, length, and number of a-helices and b-strands of the target proteins.
(Columns 4–7) Number of decoys with RMSD below 6 Å (out of 100,000) and the RMSD of the best decoy (Å) generated by the default FB5–HMM method (column 4, S), the no sequence
baseline (column 5, S0), the Markov0 baseline (column 6, M0), and the Markov0 no sequence baseline (column 7, MS0).
DOI: 10.1371/journal.pcbi.0020131.t001

Figure 8. Best Compact Decoys Generated Using FB5–HMM

The best compact decoys generated using sequence information (Table 1, S) are shown for 1ENH (top) and 2CRO (bottom). From left to right: crystal
structure, FB5–HMM, S0 baseline, M0 baseline, MS0 baseline. The N-terminus is shown in blue. The figure was made with PyMol (DeLano Scientific,
http://www.delanoscientific.com).
DOI: 10.1371/journal.pcbi.0020131.g008
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Both the M0 and MS0 baseline produce decoys that do not
resemble proteins because they lack realistic secondary
structure content (Table 2). Indeed, all ‘‘good’’ M0 and MS0
decoys have a very low helix and strand content (more than
90% of the residues are coil), which corresponds to the low
helix and strand content reported for random compact
polymer conformations [48–50], when the polymers are not
represented as tubes with a certain thickness [42,43] or
confined to a lattice [41]. This is in strong contrast to the
decoys generated by FB5–HMM and the S0 baseline (Figure 8,
Table 2), which again emphasizes the importance of taking
the sequential angle dependencies into account.

Adding Secondary Structure Information
One of the great advantages of incorporating secondary

structure information into the model is that sampling from
the conformational space associated with both an amino acid
sequence and a secondary structure sequence becomes
possible. The latter sequence could come from a prediction
algorithm, but also from experimental data.

To show that our model incorporates secondary structure
information successfully, we sampled compact decoys using
both amino acid sequence and secondary structure informa-
tion derived from the native structure (Table 3, XS). Again,
we make use of two baselines. The XS0 baseline makes use of

secondary structure, but not sequence. The XM0 baseline
includes secondary structure and sequence, but uses a
uniform transition matrix and hence neglects the depend-
encies between consecutive (h,s) pairs.
As expected, and as was previously shown for a fragment

assembly method [19], structure information indeed boosts
the generation of close-to-native decoys dramatically (Table
3, XS). The most impressive improvement occurs for 2GB1,
where including secondary structure information increases
the number of good decoys from 0.037% to 13.5%. In
addition, the RMSD of the best decoy improves considerably
in all but one case. For all targets, more than 90% of the
residues in the good decoys have the correct secondary
structure (Table 2).
Two additional observations deserve to be highlighted.

Even in the presence of secondary structure information,
sequence information matters (Table 3, compare XS and
XS0). Clearly, FB5–HMM does more than simply translating
secondary structure into bond angles. Rather, secondary
structure information narrows the sampling space but leaves
ample room for inference of local structural bias.
A second observation is that even in the presence of

secondary structure information, the Markov0 model (base-
line XM0) still performs much worse than FB5–HMM (XS)
and the XS0 baseline. This implies that the sequential

Table 2. Secondary Structure Content of the Good Decoys

Target Protein Q3 (Percent) FB5–HMM (S) FB5–HMM (M0)

XS XM0 Q3 (Percent) H (Percent) E (Percent) C (Percent) Q3 (Percent) H (Percent) E (Percent) C (Percent)

Protein A 96.3 66.8 56.8 53.1 3.2 43.7 45.5 0.8 3.1 96.1

Homeodomain 97.1 57.6 78.1 66.8 1.8 31.4 28.9 1.3 4.8 93.9

Protein G 92.4 66.6 67.3 24.9 31.0 44.1 – – – –

Cro repressor 95.6 60.3 72.0 62.9 4.0 33.1 35.4 0.0 0.0 100.0

Protein L7/L12 94.5 62.2 64.7 57.0 7.8 35.2 47.1 4.4 0.0 95.6

Calbindin 91.1 63.1 64.2 63.7 2.1 34.2 – – – –

(Column 1) Protein target name.
(Column 2) Percentage correct secondary structure (Q3-value) of good decoys (RMSD , 6 Å) generated using structure-derived secondary structure (Table 3, XS).
(Column 3) Q3-value of good decoys generated using structure-derived secondary structure with the Markov0 baseline (Table 3, XM0).
(Columns 4–7) Q3-value and secondary structure content (H¼ helix, E ¼ strand, C¼ coil) of good decoys generated using sequence information (Table 1, S).
(Columns 8–11): Q3-value and secondary structure content of good decoys generated using sequence information by the Markov0 baseline (Table 1, M0).
DOI: 10.1371/journal.pcbi.0020131.t002

Table 3. Generation of Compact Decoys Using Sequence and Secondary Structure Information

Target Protein Structure-Derived SS and Rg Predicted SS and Rg

FB5–HMM Markov0 FB5–HMM

Name, PDB Code L a,b Sequence (XS) No Sequence (XS0) Sequence (XM0) Sequence (XP)

Protein A, 1FC2 43 2,0 37405, 2.2 Å 31773, 2.5 Å 10904, 3.5 Å 17139, 2.6 Å

Homeodomain, 1ENH 54 2,0 34385, 1.7 Å 22850, 1.6 Å 1721, 3.8 Å 12193, 3.8 Å

Protein G, 2GB1 56 1,4 13531, 2.6 Å 9200, 3.1 Å 193, 4.4 Å 1, 5.9 Å

Cro repressor, 2CRO 65 5,0 8992, 2.3 Å 2667, 2.6 Å 216, 4.2 Å 1092, 4.1 Å

Protein L7/L12, 1 CTF 68 3,3 504, 3.9 Å 429, 3.8 Å 9, 5.0 Å 345, 4.1 Å

Calbindin, 4ICB 76 4,0 204, 4.7 Å 74, 4.7 Å 13, 5.3 Å 384, 4.5 Å

(Columns 1–3) Name and PDB code, length, and number of a-helices and b-strands of the target proteins.
(Columns 4–7) Number of decoys with RMSD below 6 Å (out of 100,000) and the RMSD of the best decoy (Å) generated by the default FB5–HMM method (column 4, XS), the No Sequence
baseline (column 5, XS0), the Markov0 baseline (column 6, XM0), and the default FB5–HMM method using predicted secondary structure and predicted Rg (column 7, XP).
DOI: 10.1371/journal.pcbi.0020131.t003
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dependencies of the (h,s) angles remain important even
within the constraints of a secondary structure assignment. In
fact, generating compact decoys using sequence only (Table 1,
S) generally performs better than using both secondary
structure and sequence information but neglecting the
sequential dependencies of the angles (Table 3, baseline
XM0). This is true in terms of the number of good decoys
generated, the RMSD values of the best decoys, and the
secondary structure similarity to the native structure (Table
2).

The question naturally arises whether noisy secondary
structure and Rg information, for example derived from
predictions, still improves decoy generation. To address this
question, we generated decoys using predicted secondary
structure and predicted Rg.

Using sequence, predicted secondary structure informa-
tion, and predicted Rg (Table 3, XP) generates more good
decoys than using sequence and structure-derived Rg only
(Table 1, S). In most cases, this comes at the expense of a
higher RMSD for the best decoys, presumably due to the
secondary structure prediction errors. The bad performance
in the case of 2GB1 is probably due to the prediction of one
of the b-strands as coil (Figure 9). Hence, FB5–HMM provides
a convenient way to shuttle secondary structure prediction
results into 3-D structure prediction methods.

Comparison with Two Fragment Assembly Methods
We have used the same target proteins as two previous

studies that focus on decoy generation using fragment
assembly methods [13,14]. Both studies also use the same
criteria for good decoys, that is, having a Ca-based RMSD
below 6 Å with the native structure. As a result, we can
directly compare our results with the results reported in these
two studies.

The fragment assembly method in the first study forms the
basis of the ROSETTA de novo protein structure prediction
method [14,51]. Fragments are selected based on multiple
sequence information, and assembled into decoys using a
simulated annealing procedure and a probabilistic nonlocal
energy function. A direct comparison of the two methods is
of course extremely unfair, since FB5–HMM is a local
structure sampling method, while ROSETTA is a complete

structure prediction method incorporating nonlocal inter-
actions. In addition, ROSETTA has a clear advantage because
it uses multiple sequence information in the selection of the
fragments, while FB5–HMM only uses a single sequence.
Nonetheless, the comparison offers some interesting insights.
As expected, the percentage of good decoys is much higher

for ROSETTA than for FB5–HMM for most target proteins
(Table 4). However, in some respects FB5–HMM clearly
performs better. First, ROSETTA does not generate a single
good decoy in the case of Protein G, while FB5–HMM does
produce good decoys. Second, the RMSD values of the best
decoys are in general lower for FB5–HMM than for
ROSETTA. Hence, in this view, generating a large set
(100,000) of compact decoys using FB5–HMM leads to better
results than carefully predicting relatively few (100) candidate
structures using ROSETTA, at least according to the results
given by Simons et al. [14] for these six small target proteins.
This is an important point, as combining a fairly inaccurate,
but computationally cheap method to generate decoys with
an accurate, but computationally expensive method to
identify and refine promising structures has recently led to
considerable success [9].

Figure 9. Secondary Structure of the Target Proteins

(First line) Secondary structure assignment derived from the crystal structure.
(Second line) Predicted secondary structure assignment.
DOI: 10.1371/journal.pcbi.0020131.g009

Table 4. Comparison of FB5–HMM and ROSETTA

Target Protein ROSETTA FB5–HMM (S)

,6 Å

(Percent)

RMSD

(Å)

,6 Å

(Percent)

RMSD

(Å)

Protein A 95 3.3 9.59 2.7

Homeodomain 47 2.7 6.60 2.5

Protein G 0 6.3 0.04 4.9

Cro repressor 18 4.2 0.46 3.9

Protein L7/L12 6 5.3 0.01 5.4

Calbindin 17 4.7 0.09 4.3

(Column 1) Protein target name.
(Columns 2,3) Percentage of good decoys (RMSD , 6 Å) and RMSD of the best decoy (Å)
predicted by ROSETTA (out of 100 predictions).
(Columns 4,5) Percentage of good decoys and RMSD of the best decoy generated by FB5–
HMM (out of 100,000 compact decoys, method S in Table 1).
DOI: 10.1371/journal.pcbi.0020131.t004
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The second study we use for comparison describes a
fragment assembly method that uses secondary structure
information derived from the true structure to produce
compact decoys [13]. This method does not make use of
sequence information, but only secondary structure informa-
tion. The results of this study can thus be directly compared
with those produced by FB5–HMM using secondary structure
information, but not sequence (Table 3, XS0). Table 5
compares both methods for the four common target proteins.
FB5–HMM performs considerably better than the fragment
assembly method, judging by the number of good decoys and
the RMSD values of the best decoys.

Conclusions
We described a probabilistic model that can be used to

sample Ca backbones based on a protein’s amino acid
sequence, incorporating secondary structure information if
available. The method is conceptually elegant, has excellent
computational complexity [38], and handles in principle any
sequence or fragment length. The generated decoys have
protein-like geometry, reflected in realistic angle and
secondary structure length distributions.

The potential applications of FB5–HMM are numerous. In
de novo protein structure prediction, the use of local
structural bias can avoid generating misfolded conformations
that are due to an imperfect energy function [6]. In homology
modelling, FB5–HMM could guide the construction of
variable loops [52,53]. Because of the probabilistic nature of
the model, it can be used to propose local conformational
changes that respect the detailed balance condition [16,21],
making it possible to estimate thermodynamic averages using
MCMC simulations [54]. In experimental methods such as
NMR, X-ray crystallography, or Small Angle X-ray Scattering,
the model could be used to generate conformations that take
the local structural bias and the experimental data into
account [55–57]. By inference of optimal sequences for a
given backbone conformation, for example using Viterbi
decoding [35], FB5–HMM could also be helpful in fold
recognition [58] or protein design [59,60].

The model could in principle be extended in several ways,
including using Dirichlet nodes to incorporate multiple
sequence information [61], explicitly modelling the length

distributions of the secondary structure elements [62] or
adding additional hidden nodes and dependencies. A model
with a very similar architecture would make an excellent
probabilistic model of the full backbone structure of
proteins, provided a tractable distribution to represent the
joint probability distribution of two dihedral angles (that is, a
distribution on the torus) is available. Preliminary results
obtained using a bivariate von Mises distribution [63] confirm
this approach is indeed quite feasible. Many of the extensions
mentioned above pose considerable computational and
statistical challenges, and will be the subject of future studies.
Surprisingly, FB5–HMM readily generated native-like

decoys for several proteins when merely self-avoidance and
compactness were enforced. Our results thus support the
view that the native fold of a protein is at least partly encoded
by the local structural bias associated with its amino acid
sequence [3–6,15]. Recently, it was suggested that only
relatively few compact structures are compatible with the
local structural bias imposed by a protein’s amino acid
sequence [6]. Our results are in accordance with this, and also
point out the importance of the detailed sequential depend-
encies of the backbone angles, even within the constraints of
a given secondary structure assignment.

Materials and Methods

Ca backbone parameterization. The Ca backbone of a protein can
be considered as a string of beads (Figure 1), in which each bead
corresponds to the Ca atom of an amino acid. Since the distance
between two consecutive Ca atoms in a protein can be considered
constant (3.8 Å), the conformation of the Ca backbone can be
described using a sequence of pseudo angles and pseudo dihedral
angles [33,34], called h and s, respectively (Figure 1). The term pseudo
points to the fact that the consecutive Ca atoms are not actually
connected by a single chemical bond. In proteins, the angle h lies in
[80,150], while the dihedral angle s can adopt all values in [�180,180].

The conformation of n Ca atoms is fully described by n� 2 pseudo
angles and n � 3 pseudo dihedral angles. Adding one Ca atom to a
given Ca backbone corresponds to adding one (h,s) pair. Hence, the
geometry of n Ca atoms can be described by n � 2 (h,s) angle pairs,
where each angle pair positions one Ca atom. Note that the first three
Ca positions are fixed by the first h angle, and that the first s angle can
be ignored.

Each (h,s) pair is conveniently represented as a unit vector v¼ (x,y,z)
(that is, a point on the unit sphere), simply by interpreting the (h,s)
pair as a set of polar coordinates:

x ¼ cosðhÞ
y ¼ sinðhÞcosðsÞ
z ¼ sinðhÞsinðsÞ

Hence, the Ca backbone of a protein can also be encoded as a
sequence of unit vectors.

The Fisher-Bingham distribution. We use the FB5 distribution [37]
to create probability distributions over unit vectors. FB5 is the
analogue on the unit sphere of the bivariate normal distribution with
an unconstrained covariance matrix.

The probability density function of the FB5 distribution is given
by:

f ðxÞ ¼ 1
cðj;bÞ expfjc1 � xþ b½ðc2 � xÞ

2 � ðc3 � xÞ
2�g

where x is a unit vector and c(j,b) is a normalizing constant [37]. The
parameter j (with j . 0) determines the concentration or spread of
the distribution, while b (with 0 � 2b , j) determines the ellipticity
of the contours of equal probability. The higher the j and b
parameters, the more concentrated and elliptical the distribution will
be, respectively. Vector c1 is the mean direction, and vectors c2, c3 are
the major and minor axes. The latter two vectors c determine the
orientation of the equal probability contours on the sphere, while the
first vector determines the common center of the contours.

Table 5. Comparison of FB5–HMM and the Kolodny-Levitt
Fragment Assembly Method

Target Protein Kolodny-Levitt FB5–HMM (XS0)

,6 Å

(Percent)

RMSD

(Å)

,6 Å

(Percent)

RMSD

(Å)

Homeodomain 1.21 3.9 22.85 1.6

Cro repressor 0.07 4.9 2.67 2.6

Protein L7/L12 0.01 4.9 0.43 3.8

Calbindin 0.07 4.2 0.07 4.7

In both cases, compact decoys were generated using structure-derived secondary
structure information, but without using target sequence information. The information for
baseline XS0 (columns 4 and 5) is also shown in Table 3.
(Column 1) Protein target name.
(Columns 2–5) Percentage of good decoys (RMSD , 6 Å) and RMSD of the best decoy (Å)
generated by the Kolodny-Levitt method (out of 400,000 compact decoys) and by FB5–
HMM (out of 100,000 compact decoys).
DOI: 10.1371/journal.pcbi.0020131.t005
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Training FB5–HMM using protein data. Parameter learning for
FB5–HMM was done using Stochastic Expectation-Maximization (S-
EM) [64,65]. Briefly, S-EM consists of the following steps. First, the
FB5–HMM is initialised using random parameters and hidden node
values. In the Expectation step, the values of the hidden nodes are
filled in using a single sweep of Gibbs sampling, while the values of
the observed nodes are kept fixed [65]. In the Maximization step, the
filled-in values of the hidden nodes are used to update the FB5–
HMM’s parameters. Advantages of S-EM compared with classic
deterministic learning methods include less dependence on the
starting parameters of the model and a lower chance of getting stuck
in local maxima [64].

Choosing an appropriate hidden node size is vital for the success of
the model. If the size is too low, the model will be too coarse, while if
the size is too high, it will lead to overfitting. We estimated the ideal
hidden node size using the Integrated Completed Likelihood
Criterion (ICL) [66], an entropy penalized version of the Bayesian
Information Criterion [67,68] :

ICLðMÞ ¼ 2LðMÞ � plnðnÞ

where L(M) is the logarithm of the likelihood (LogLik) of the
completed data after convergence, M is the hidden node size, p is the
number of parameters of the model, and n is the number of
observations. The ICL value reaches a maximal value for the best
model.

We trained FB5–HMM using 1,428 protein domains, all belonging
to different superfamilies, from the SABmark dataset, version 1.65
[69]. The list of structures is available in Dataset S2. Secondary
structure was assigned using P-SEA [40]. P-SEA assigns secondary
structure (helix, b-strand, and coil) based on Ca coordinates only,
which allowed us to use the program on the full backbone structures
in the training set and the Ca-only decoys. The training set contained
information for 228,842 residues.

The ICL was calculated for hidden node sizes 15 to 120 (with a step
size of 5), using the LogLik obtained after convergence of the S-EM
algorithm (Figure 10). For each node size, the training was repeated
four times with different starting conditions to lower the chance of
picking a model that got stuck in a local minimum. For a model with a
hidden node size of 75, resulting in an HMM with 7,800 parameters,
the ICL value reached its maximum value. It is this model that is used
in the article. The parameters of the model are available in Dataset
S1.

Sampling a Ca backbone. FB5–HMM (Figure 2) has one discrete
hidden node H, two discrete nodes A,S, and one continuous node F.
The three nodes A,S,F represent the amino acid type, the secondary
structure class, and the unit vector at a given sequence position,
respectively.

FB5–HMM can be used to generate a sequence of unit vectors
given an amino acid sequence A¼ a0,. . .,aL�1 and secondary structure
sequence S, if available. Each unit vector corresponds to one (h,s)

pair, and specifies the position of one Ca atom. For simplicity, we will
assume amino acid information only here.

The problem can be reduced to sampling a sequence H of hidden
node values conditional on the amino acid sequence A. Once the
hidden node sequence is sampled, a sequence of vectors describing
the backbone can be obtained as follows. A hidden node value h at
position l in H specifies a parameter set (j,b,c1,c2,c3)

h for node F at
that position. Hence, a unit vector v at position l can be generated by
sampling from the FB5 distribution [37,70] using the parameters that
are specified by h.

Hidden node sequences H can be sampled from P(HjA) using the
FwBt algorithm [35,38]. Note that this algorithm should not be
confused with the related Forward-Backward algorithm used in
posterior decoding. The FwBt algorithm is, in contrast to the Viterbi
and posterior decoding algorithms [35], not widely used. Therefore,
we describe its application to FB5–HMM here in some detail.

Essentially, the method calculates the forward variables [35] and
performs a stochastic backtrack. The forward variables fh(l), which
represent the probability of hidden node value h at position l given
the amino acid sequence segment a0,. . .,al, are recursively calculated
as follows:

fhð0Þ ¼ ehða0Þth

fhðlÞ0, l,L ¼ ehðalÞ
XM

g¼0
½fgðl� 1Þtgh�

where eh(al) is the emission probability of amino acid type al given
hidden node value h, th is the probability of hidden node value h at
position 0, tgh is the transition probability for hidden node values g
and h, and M is the maximum hidden node value (which is equal to 75
for FB5–HMM).

To start the stochastic backtrack, a hidden node value h is sampled
for the final sequence position L � 1, proportional to fh (L � 1). The
backtrack is then continued recursively for the previous positions by
sampling hidden node value g at position l proportional to fg(l)tgh,
where h is the hidden node value at position lþ 1. From the sampled
hidden node sequence H, a sequence of unit vectors (and
corresponding angle pairs) can then easily be sampled as described
above.

Resampling a segment of the backbone. Given a previously
sampled Ca backbone (and a corresponding sequence of hidden
node values), the FwBt algorithm can be used to resample a segment
of the backbone. This corresponds to ‘‘rebuilding’’ a part of the
structure seamlessly, which has important applications in MCMC
simulations of proteins [16,21].

Starting from the previously sampled hidden node sequence H, a
segment Hs

j:k from position j to k in H is selected and filled in with
new hidden node values using the FwBt algorithm. In particular, the
segment Hs

j:k is resampled conditioned on the amino acid sequence
A, and the hidden node sequence segments from the start of the

Figure 10. Training FB5–HMM

(Left) ICL plotted versus hidden node size. For each hidden node size, four models were trained. The ICL reaches a maximum for one of the models with
a hidden node size of 75 (indicated with a solid dot).
(Right) Evolution of the LogLik of the completed data during training. The LogLik is plotted against the number of EM iterations.
DOI: 10.1371/journal.pcbi.0020131.g010
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sequence to j� 1 and from kþ 1 to the end of the sequence:

H j:k
s ;PðH j:kjH0:j�1;Hkþ1:L�1;AÞ

Let p,q be the hidden node values at positions j�1, kþ 1, respectively.
First, we calculate the forward variables from j to k:

fhðjÞ ¼ ehðajÞtph

fhðlÞj , l, kþ1 ¼ ehðalÞ
XM

g¼0
½ fgðl� 1Þtgh�

Backtracking starts at position k by sampling h proportional to fh(k)thq,
and continues recursively from k� 1 to j, by sampling g at position l
proportional to fg(l)tgh, where h is the hidden node value at position l
þ1. Once the hidden nodes in the segment are filled in, the (h,s) angle
pairs in the segment from j to k are sampled as before, while the angle
pairs outside the segment remain unaltered. How this application of
the FwBt algorithm, which we call FwBt resampling, is used for
compact decoy generation is explained in the next section.

Generating compact decoys. Generating compact decoys without
steric clashes involves three steps: initialization, steric clash removal,
and collapse. First, a sequence of angles is sampled using FwBt
sampling and a corresponding Ca backbone is constructed. In the
next step, any steric clashes (defined as two Ca atoms that are closer
than 4.0 Å from each other) are iteratively removed by FwBt
resampling of random stretches of the sequence and only accepting
structures that diminish the number of steric clashes. Positions and
lengths (from 1 to 15) of the segments to be resampled were chosen at
random.

Once the steric clashes are removed, the structure is collapsed in a
greedy way to produce a compact conformation. Random stretches
are resampled as before, and the corresponding structure is accepted
if the Rg is lower than or equal to that of the previous structure. Ca

backbones that contain steric clashes are rejected. The collapse stage
is stopped when the Rg value falls below a given threshold (predicted
or structure-derived Rg) or after a maximum number of iterations
(set to 1,000). Secondary structure was predicted using JPRED [71].
The predicted Rg was calculated from the length L of the protein [72]:

Rg ¼ 2:2L0:38

Supporting Information

Dataset S1. Emission and Transition Parameters of FB5–HMM

Found at DOI: 10.1371/journal.pcbi.0020131.sd001 (291 KB TXT).

Dataset S2. Structures Used in Training FB5–HMM

Found at DOI: 10.1371/journal.pcbi.0020131.sd002 (11 KB TXT).
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