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Introduction

The number of molecular biology databases continues to
explode. Presently, few problems in genomic molecular
biology can be addressed without analyzing data stored in
them. However, these databases reside in many different
locations and often use nonstandard data formats requiring
specialized data parsers. As a result, integrating and
comparing data from multiple biological databases is difficult
and tedious. Genome databases offer solutions to this
problem by integrating data from multiple databases in a
uniform and standardized manner. However, principally
because of the intrinsic complexity of genome data,
exploiting the full power of these databases also has a
considerable learning curve. This is particularly true if one
wants to query multiple genomic regions in an automated
manner, rather than simply analyze individual genes, one at a
time. Here, using the University of California Santa Cruz
(UCSC) Genome Database for illustration, I describe tools
that have been developed for facilitating automated, genome-
database–querying and present some applications for which
they are well-suited.

The genome browsers at UCSC [1], Ensembl [2], and the
National Center for Biotechnology Information (NCBI) [3], as
well as the model organism databases (e.g., Wormbase [4],
Flybase [5], Saccharomyces Genome Database (SGD) [6], and
Mouse Genome Database (MGD) [7]), have become essential
tools for the analysis of genomic, molecular biology data. By
integrating data from multiple biological databases and
visually displaying the results, these tools enable the
exploration of relationships among genomic data in ways that
were previously not possible. The power of this approach can
be illustrated by a simple example. We can imagine a scenario
in which we have found a polymorphism in a human disease
gene and want to check various properties of this
polymorphism. Is it in the Single Nucleotide Polymorphism
Database (dbSNP), indicating that it has been previously
identified? Does it overlap a known repeat sequence? Does it
overlap a CpG island? Does it occur in any known expressed
sequence tag (EST)? Is the more common variant at the
polymorphism site conserved in other vertebrates? It is of
course possible to answer these questions without a genome
browser. However, this approach requires identifying,
becoming familiar with, and using multiple different
resources—dbSNP, NIH Genetic Sequence Databank

(GenBank), the Expressed Sequence Tag Database (dbEST),
etc. [3]—each with its own idiosyncrasies and learning curves.
In contrast, using one of the genome browsers, all we need to
do is to select the appropriate genome and genomic location,
select the browser annotation tracks for SNPs, ESTs, repeats,
CpG islands, and interspecies conservation, and view the
results.
However, for all its power and convenience, interactive

querying of genome databases does have limitations. For
example, we can imagine a situation where we have identified
one hundred polymorphisms rather than just a single one.
Interactively verifying which ones are already in dbSNP, or
are within CpG islands, or are represented by ESTs, or are at
highly conserved sites would quickly become tedious, time-
consuming, and error prone, even with an integrated genome
browser. Similarly, if one has identified hundreds, or even
thousands, of genome locations of interest from a microarray
experiment, and wants to ask a set of biological questions
about each of them, interactive querying is not feasible.
Moreover, without batch-querying, many important

biological questions cannot practically be addressed at all.
One might want to search for new genes, by looking for
regions where ESTs overlap gene predictions and also are
highly conserved among related species. Or one might want
to study exon evolution, by searching for ALU repeat
sequences found in coding exons [8]. Yet another example
occurs in the identification of candidate target sites for
adenosine deaminase enzymes that convert specific
adenosines in RNA to inosine (ADARs). One effective method
[9] for identifying ADAR sites is by searching for genomic
locations that code for an A while a G has been observed at
the corresponding location in an mRNA or EST (inosine is
generally interpreted as guanosine by both reverse
transcriptase and the ribosome). Such queries can be
addressed in a straightforward manner by batch-querying the
genome databases. In contrast, they are essentially impossible
to answer via interactive genome browsing.
Consequently, both the UCSC and Ensembl Genome
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Browsers include tools for direct and automated ‘‘batch’’-
querying of their underlying databases. Currently the NCBI
MapViewer Browser and the model organism databases do
not offer integrated batch-querying tools, but NCBI is
planning to introduce such tools for the MapViewer Database
in the future (D. Church, personal communication). The aim
of the present work is to introduce the reader to the available,
batch-querying tools, to illustrate some of their features and
capabilities, and to indicate the types of applications for
which they are useful. The reader is assumed to be familiar
with interactive use of at least one of the genome browsers.
No programming experience is required for performing basic
batch-querying procedures. However, for the more complex
tasks described, experience with some computer language
such as C, Perl, or Java, as well as familiarity with database-
querying, i.e., Structured Query Language (SQL) [10], is
necessary. For simplicity, much of the discussion will be
focused on a single database, the UCSC Browser Database.
However, comparable capabilities are available via Ensembl.

Interactive Batch Database–Querying

Batch queries of the Ensembl and UCSC Genome
Databases are possible using the conventional database SQL
[10] or using the Application Programmer Interfaces (APIs),
described below. Moreover, since relatively few biologists are
experienced with SQL or programming, both Ensembl and
UCSC also provide Web-based user interfaces for batch-
querying by the nonprogrammer. These interfaces, which are
suitable for simple queries involving one or two database
tables, are referred to as the ‘‘Table Browser’’ at UCSC [11]
and ‘‘BioMart’’ at Ensembl [12]. A screen shot of the Table
Browser Interface is shown in Figure 1. Using the Table
Browser, one can query any table in the UCSC Browser

database, restrict the retrieved records to ones satisfying
various constraints, perform intersections between tables,
and obtain the output data in multiple useful formats.
BioMart’s capabilities are similar.
So, for example, with the Table Browser, we can answer our

earlier question of identifying which of 100 polymorphisms
were previously known (as evidenced by dbSNP annotations),
in the following manner. First, we would make a custom table
(actually called a ‘‘custom track’’ in UCSC database parlance)
of the genomic coordinates of our polymorphisms, if
necessary obtaining the coordinates from the gene sequences
themselves using the UCSC BLAT tool [13]. Then we would
intersect our custom table with the appropriate UCSC SNP
table (e.g., table ‘‘snp126’’ for the March 2006 build of the
UCSC database). The result of the table intersection would be
a list of those polymorphisms present in dbSNP.
However, our example also indicates some of the

limitations of the Table Browser approach. One problem
becomes apparent if we attempt to identify those
polymorphisms that are in dbSNP, are also in CpG islands,
and also have polymorphism sites that align with ESTs found
in other mammals. To identify these polymorphisms, we
would need to perform multiple table intersections with the
Table Browser. However, performing multiple table
intersections within the Table Browser is awkward. To
address this problem, we could access the ‘‘Galaxy’’ Web site
User Interface [14] (http://g2.bx.psu.edu). Galaxy is a relatively
new Web site that provides a set of built-in post-processing
tools (including tools from EMBOSS [15], PHYLIP [16], PAML
[17], and R [18]) that can act directly on data acquired from
the Table Browser, Biomart, and other sources. In particular,
the Galaxy User Interface includes a ‘‘history’’ mechanism,
which facilitates performing intersections of multiple tables
from the Table Browser.

doi:10.1371/journal.pcbi.0030001.g001

Figure 1. Table Browser Interface

As shown in the screenshot, from the Table Browser Interface, one can select essentially any table in the UCSC Genome Database and obtain
descriptions of the table’s fields as well as download all or part of the table’s records in a variety of formats.
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Although Galaxy alleviates the difficulties of multiple table
intersections, our example also highlights a more
fundamental limitation to the Table Browser approach. This
limitation is that answering biological questions often
requires data post-processing, and this post-processing may
sometimes be more involved than what one can be
accomplished using just the Galaxy toolset. For example, to
determine if our polymorphisms have been observed in an
EST not only requires intersecting our custom table with the
EST table, but also obtaining the actual EST sequences, and,
finally, inspecting those ESTs at the polymorphism locations.
If we have 100 polymorphisms and multiple ESTs overlapping
any single one, manually screening all of the ESTs is not
feasible. Similarly, the example of searching for candidate
ADAR sites by comparing genomic DNA with EST data also
requires writing sequence-comparison software in addition
to batch-downloading of data.

Programmatic Batch-Querying and Post-Processing

For more complex types of genomic data analysis, it may be
necessary to write one’s own computer program or script to
perform the required post-processing of the data. Now, in
such cases, it is of course possible to simply take the data
downloaded from the Table Browser or Biomart and analyze
it with software written ‘‘from scratch’’ in any computer
language of one’s choice. However, this is typically an
inefficient approach. Rather, it is generally preferable to use
the extensive API libraries of data extraction and
manipulation tools that have already been developed by the
Browser Teams for these purposes. In this way one has
immediate access to functions that perform essentially all the
data manipulations that we are accustomed to performing
interactively on the respective browsers.

For the UCSC Databases, the principal API is in C and
contains a comprehensive collection of utility programs and
library routines (http://hgdownload.cse.ucsc.edu/admin/jksrc.
zip). These programs were originally developed by Jim Kent
and are typically referred to as the ‘‘kent source tree.’’ The
included utility programs, which can generally be run either
in stand-alone mode or be incorporated into one’s own code,
include programs for sorting, splitting, or merging fasta
sequences; record parsing and data conversion using
GenBank, fasta, nib, and blast data formats; sequence
alignment; motif searching; hidden Markov model
development; and much more. Library subroutines are
available for everything from managing C data structures
such as linked lists, balanced trees, hashes, and directed
graphs to developing routines for SQL, HTML, or CGI code.
Additional library functions are available for biological
sequence and data manipulation tasks such as reverse
complementation, codon and amino acid lookup and
sequence translation, as well as functions specifically designed
for extracting, loading, and manipulating data in the UCSC
Genome Browser Databases. The code is open-source and,
except for the browser-specific libraries, is completely free to
all. The UCSC-Browser–specific code, while free for
academic, research, and personal use, does require licensing
for commercial use.

The Ensembl code base has comparable capabilities to
UCSC’s with APIs implemented for either Perl or Java. The
Ensembl software is also open-source and is completely free

for all use. See http://www.ensembl.org/info/software/core/
index.html for links to more information on the Ensembl
APIs.
The main cost of using these databases and their associated

software (apart from possible commercial licensing fees) is
the time required to learn how to use them and to obtain
access to a copy of all or part of the database. The steepness
of the learning curve is primarily due to the complexity of the
data, but is also because these databases were designed more
for interactive querying than for programmed use. In
particular, programmed access to the UCSC database can be
challenging to learn, since the appropriate table and code
documentation are sometimes not easy to locate. For UCSC
database table descriptions, often a good place to start is by
selecting the table of interest in the Table Browser (http://
genome.ucsc.edu/cgi-bin/hgTables) and then selecting
‘‘Describe table schema’’ (see also Figure 1). In contrast,
documentation for the source code tends to be embedded in
the code itself. The relevant documentation can usually be
found by applying the Unix ‘‘grep’’ command or some similar
text-finding utility to the library subdirectories of the kent
source code tree.
The requirement for access to a database copy exists

because the genome browsers themselves do not have the
capacity to handle programmatic querying. There are three
ways to create such database access: using a public mirror
database, downloading individual database tables and/or files,
and creating one’s own private mirror. For occasional
programmatic database-querying, probably the easiest
approach is to use direct SQL-querying of the public mySQL
mirrors set up for this purpose, using host ¼ genome-
mysql.cse.ucsc.edu with username ¼ genome for UCSC, or
host ¼ ensembldb.ensembl.org with username ¼ anonymous
for Ensembl. Since genome-mysql.cse.ucsc.edu is an (almost)
exact mirror of the UCSC browser database, data extraction
and manipulation code taken from the kent source tree will
typically run without any modification (one important
exception is code that accesses actual sequence or alignment
data; however, it is not difficult to work around this
limitation by locally installing just the sequence and
alignment data).
An alternative to using a public mirror, when data from

only a small number of database tables is required, is to
simply download the needed tables, using either the Table
Browser, the UCSC http download site (e.g., http://
hgdownload.cse.ucsc.edu/goldenPath/hg18/database), or the
UCSC DAS [14] interface. Once the data have been
downloaded, they can be loaded into and accessed from a
local relational database using programs provided in the kent
source tree or the generic genomic browser utility, GBrowse
[19]. Alternatively, the data can be read directly into the
analysis program, again using code from the kent source tree.
Finally, the third option is to install one’s own local mirror

of all (or, more likely, part) of the genome database. Although
performing such an installation requires a substantial amount
of local disk space, is not trivial, and, at first, may even appear
daunting, the steps involved are generally well-documented
(http://genome.ucsc.edu/admin/mirror.html), and installation
should be reasonably straightforward for someone with Unix
experience. Installation requirements for building an
Ensembl mirror are comparable with those for the UCSC
system and are documented at http://www.ensembl.org/info/
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software/website/index.html. Setting up a private mirror does
entail considerable initial effort. Moreover, if one’s
applications need genome annotations incorporating the
most recent database updates, using a public mirror database
may be advantageous. On the other hand, maintaining one’s
own private mirror database does provide several significant
advantages. In particular, concern about the restrictions and
limitations of using a shared resource are no longer relevant,
and, once created, one has a permanent, customizable
resource that can be used repeatedly for multiple
investigations.

An Example

To illustrate the power of automated genome-database–
querying using the UCSC API, let us consider another simple
example that is illustrative and is not unlike more complex
and realistic ones (see, for example, the analysis of snoRNA
introns in reference [20]). Specifically, let us assume that we
have a list of coordinates of some genomic feature (e.g.,
snoRNAs) located within introns (as noted earlier, if

necessary, these coordinates can easily be obtained from the
sequences of the features by using BLAT). We further assume
that we want to know the median length of these embedding
introns and how this length compares with the lengths of
other introns of the same genes, in order to test the hypothesis
that such intronic features occur in introns with lengths that
are longer (or shorter) than the median intron length.
Datasets S1, S2, and S3 contain, respectively, the install and

usage instructions, Unix tar file, and source code for a simple,
short (less than 250-line) C program solution to this example
using the UCSC database and the kent source code. The
program is actually significantly longer than necessary since it
illustrates all three of the database access methods described
above. The program works by first reading in a list of genomic
regions stored in a ‘‘bed’’ file and then either reading in a list
of gene records from a local file, or else setting up an SQL
connection to obtain gene table data from a local or public
mirror of the UCSC database. The program then reads one
genomic location at a time, obtains the gene exon–intron
annotation data for each gene that overlaps the location, and

doi:10.1371/journal.pcbi.0030001.g002

Figure 2. Subroutine Calculating Intronic Lengths, Illustrating C Structures, and Library Routines from the Kent Source Code Tree

Subroutine is part of the sample program in Dataset S3.
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selects the longest overlapping gene. Next, for each of the
selected gene’s introns, the intron’s length is computed and
stored in one of two lists, depending on whether the current
intron overlaps the region in the bed file or not. Finally, the
program computes the median length of the introns that
overlapped regions in the input list (i.e., that overlap the
feature) and the median length of the introns that did not.

We now look at the code for the principal subroutine of the
program (shown in Figure 2) in a bit more detail. The routine
uses several standard kent C code structures. These include
structures for an SQL connection (conn), for a singly linked
list of ‘‘bed’’ locations (bed), for a list of gene structures (gp),
for a hash (gpHash), and, implicitly as global variables, for
lists of floating point numbers (overlapList and otherList).
Definitions of these structures can be found in the kent
source code ‘‘include’’ files jksql.h, bed.h, genePred.h, hash.h,
and common.h, respectively.

With these definitions, the subroutine first creates a list of
all gene structures for all genes that overlap the input bed
region. If the gene-data access method is via a mirror
database (indicated by gpHash being null), obtaining this list
of gene structures requires only a call to the library routine
genePredReaderLoadRangeQuery (defined in
genePredReader.h). If, instead, gene-table access is via a local
file, one needs to write a short additional access routine
bkToGenePreds (shown in Dataset S3), which is based on a
‘‘binKeeper-hash’’ data structure. This data structure has two
levels. The higher level is a simple hash in which the keys are
chromosome names and the values are pointers to binKeeper
structures (defined in binKeeper.h). The binKeeper
structures are used to store chromosome feature data (in this
case gene structures) in ‘‘bins,’’ such that a feature spanning a
coordinate range is stored in the smallest bin that completely
contains the specified region. This type of implementation
enables very fast data retrieval.

Once the list of overlapping genes is retrieved, the longest
one is found by simply calling the linked-list sort function,
slSort. (One does need to write a short comparison function,
here called genePredLongestCmp, specifying that the gene
sorting is based on transcript length.) Next, the program is
ready to cycle through all of the exons of the longest
overlapping gene and to compute intron lengths by simple
subtraction. Then the code determines whether the intron
overlaps the input bed using the function
positiveRangeIntersection, and, depending on the result of
the intersection test, appends the length to either of the
linked lists, overlapList or otherList, using the library routine
slSafeAddHead. Finally, the memory allocated for the gene
structures is freed.

By examining this code, it should be apparent that, once
the initial learning curve has been overcome, using the UCSC
database and the kent source code can turn what would
otherwise be a rather large programming project into a
relatively straightforward exercise.

Summary

Web-based, interactive querying of the genome databases
has enabled the analysis of genomes in an integrated and
visual manner that previously was difficult or impossible.
However, many important biological questions cannot
practically be answered using simple interactive methods that

query only a single genomic location at a time. Addressing
these questions requires batch- and programmatic database-
querying. Although these approaches involve an initial, one-
time cost of learning how to use the associated API and
establishing an access method for programmed querying, the
important capabilities they provide for addressing significant
and otherwise relatively complex genomic questions often
makes this effort well worthwhile. Moreover, as Web-based
interfaces like Galaxy—which provide batch data acquisition
and post-processing, but do not require programming—
evolve, the powerful tools of genome-wide data analysis
should become accessible to an ever wider range of biologists.

Supporting Information
Dataset S1. Software README File

Installation and usage instructions for the included sample software.

Found at doi:10.1371/journal.pcbi.0030001.sd001 (5 KB TXT).

Dataset S2. gbdExample-0.1.tar.gz—Software Source Code Tar File

Code for the example described in the article text.

Found at doi:10.1371/journal.pcbi.0030001.sd002 (445 KB TAR).

Dataset S3. gbdExample.c—Source Code of the Example Software
Described in the Text

Found at doi:10.1371/journal.pcbi.0030001.sd003 (7 KB TXT).
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