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G protein–coupled receptors (GPCRs) exist in multiple dynamic states (e.g., ligand-bound, inactive, G protein–coupled)
that influence G protein activation and ultimately response generation. In quantitative models of GPCR signaling that
incorporate these varied states, parameter values are often uncharacterized or varied over large ranges, making
identification of important parameters and signaling outcomes difficult to intuit. Here we identify the ligand- and cell-
specific parameters that are important determinants of cell-response behavior in a dynamic model of GPCR signaling
using parameter variation and sensitivity analysis. The character of response (i.e., positive/neutral/inverse agonism) is,
not surprisingly, significantly influenced by a ligand’s ability to bias the receptor into an active conformation. We also
find that several cell-specific parameters, including the ratio of active to inactive receptor species, the rate constant for
G protein activation, and expression levels of receptors and G proteins also dramatically influence agonism. Expressing
either receptor or G protein in numbers several fold above or below endogenous levels may result in system behavior
inconsistent with that measured in endogenous systems. Finally, small variations in cell-specific parameters identified
by sensitivity analysis as significant determinants of response behavior are found to change ligand-induced responses
from positive to negative, a phenomenon termed protean agonism. Our findings offer an explanation for protean
agonism reported in b2–adrenergic and a2A-adrenergic receptor systems.
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Introduction

G protein–coupled receptors (GPCRs) are the largest class
of cell membrane receptors with almost 2,000 members
identified [1]. It is estimated that more than 50% of
pharmaceuticals target GPCRs [2]. While the majority of
pharmacologic research has focused on ligand-specific
properties that influence cell behavior, relatively few studies
focus on cell-specific parameters that may also determine cell
responses [3–5]. Studying the effect of changes in both ligand-
and cell-specific parameters on cellular behavior is compli-
cated by the large number of interactions and feedback
mechanisms inherent in cellular signaling. Thus it becomes
necessary to use quantitative models to aid in the analysis of
these systems.

Typical models of GPCR signaling are termed ternary
complex models or TCMs (reviewed in [6–8]). These models
feature ligand (L) binding to receptor (R) to form a ligand–
receptor complex (LR), and LR interaction with G protein (G)
to form the ternary ligand–receptor–G protein (LRG)
complex. Subsequent equilibrium models of GPCR signaling
have remained true to this paradigm while incorporating
additional receptor (e.g., active receptor R* or inactive
receptor R) or G protein states or other effectors to account
for experimental findings [9–15]. A key feature of these
models is that active receptors can associate with G protein in
the absence or presence of ligand to form R*G and LR*G,
respectively, and both these complexes can signal. Kenakin
and colleagues have proposed a thermodynamically complete
representation of ligand, receptor, and G protein interac-

tions termed the cubic ternary complex model (cTCM) and
shown in Figure 1 [11]. In this model, inactive receptor can
both bind ligand (to form LR) and associate with G protein
(to form RG or LRG).
TCMs are typically equilibrium models and while they have

been widely used, it is well known that kinetic models are
better able to replicate the intrinsic dynamics of signal
transduction, as has been discussed previously (see [14,16–
20]). Furthermore, predictions of kinetic and equilibrium
models with similar parameter values can be markedly
different [21,22]. Indeed, a number of groups have discussed
the importance of kinetics in analyzing GPCR systems
[8,20,23–27]. Our group has thus developed a kinetic version
of the cTCM termed the cubic ternary complex activation
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model (cTCAM, Figure 1) [22]. The cTCAM incorporates a G
protein activation feedback loop whereby G proteins (G)
couple to and are activated by active receptors (R* and LR*),
allowing for GTP binding and uncoupling of the G protein
heterotrimer into a and bc subunits. The GTP on active G
proteins (GaGTP) is hydrolyzed by the intrinsic GTPase
activity of the alpha subunit (with or without participation
of regulator of G protein signaling (RGS) proteins) to form
inactive GaGDP subunits. The feedback loop is completed
when the GaGDP and Gbc subunits couple to reform inactive
G protein (G). We found that the predictions of the kinetic
model (cTCAM) can be strikingly different than those of the
equilibrium model (cTCM) in terms of the character of the
response (positive/neutral/inverse agonism), suggesting the
importance of using the more realistic dynamic model [22].

In this work we use the cTCAM as a dynamic model of the
initial events in GPCR signaling to identify both the ligand-
and cell-specific parameters that may be key determinants of
the character of cellular response. One drawback of the
kinetic cTCAM, and indeed for most if not all signal
transduction models, is that many parameter values have
not been measured and others may vary over several orders
of magnitude [10,12,22,25,28]. Additionally, the large number
of parameters and incorporation of the G protein activation
feedback loop make intuition of model behavior difficult.
Thus it becomes necessary to introduce techniques for
efficient sampling of the input parameter space and
quantification of model output. In the risk analysis and
environmental engineering fields, uncertainty and sensitivity
analysis have been routinely used to sample input parameter
space and identify key parameters [29,30]. These techniques
have recently been introduced into the biological sciences. In
particular, Latin hypercube sampling (LHS) with partial rank
correlation coefficients (PRCC) has been used to perform
uncertainty and sensitivity analysis in epidemiological
studies of HIV and tuberculosis [31,32], to understand the
dynamics of tuberculosis infection and immunity in host–

pathogen models [33,34], and to analyze parameter sensitiv-
ity in a T cell receptor activated Erk–MAPK signaling
pathway [35]. Additionally, several studies have used genetic
algorithm-based search methods to perform parameter
fitting and sensitivity analysis for models of T cell receptor
and GPCR activation [12,35,36]. Rundell and colleagues
found that these global analysis methods (LHS/PRCC and
genetic algorithm approaches) and others (Sobol’s method
and Fournier amplitude sensitivity test (FAST)) give very
similar results [35].
LHS has been shown to be a computationally efficient

method for sampling parameter ranges. It is more than one
order of magnitude more efficient than random sampling
methods [29,30,37]. Additionally, statistical techniques can be
used to identify parameters that are most important in
determining output variables. Correlation coefficients can be
readily calculated to identify parameters whose variation is
strongly correlated with variations in an output parameter of
interest. For nonlinear monotonic systems such as the
cTCAM, PRCC is known to be the most appropriate
[29,38,39]. PRCC values can be calculated at each time point
of the simulation, and the relative importance of the
parameters can be tracked over time. Here we use LHS and
PRCC to identify parameters that are important determi-
nants of G protein activation in a general model of GPCR
signaling (cTCAM, Figure 1). In particular, we are interested
in how small variations in parameter values might give rise to
large differences in the character (positive/neutral/inverse
agonism) of ligand-induced responses.
Different ligands, while binding to the same receptors, are

often able to transmit different levels of signal per bound
receptor and thus have different levels of response. Recent
studies have shown that the same ligand may not only induce
varying levels of response but also both positive and negative
responses in some GPCR systems. Here we refer to the ability
of a ligand to act both as a positive agonist and an inverse
agonist as protean agonism (a term previously introduced by
Kenakin [40]). Protean agonists (ligands that are able to
induce protean agonism) have been identified in several
GPCR systems, including b2-adrenergic, a2A-adrenergic,
opioid, and histamine H3 receptors [41–44]. After identifica-
tion of ligand- and cell-specific parameters that play critical
roles in determining the character of a response, we then
focus on two particularly interesting studies of b2-adrenergic
and a2A-adrenergic receptors in which both positive and
inverse agonism are produced by introduction of the same
ligand to the system. Chidiac and colleagues reported that the
b2-adrenergic receptor partial agonist dichloroisoproterenol
(DCI) acted as both a positive and an inverse agonist in Sf9
cells overexpressing b2-adrenergic receptor despite the fact
that the treatment of the cells was similar in both cases [41].
Jansson and colleagues reported that the a2A-adrenergic
ligand levomedetomidine (levomed) had opposite effects on
cAMP production in different cell lines, activating the
receptor in several systems (S115 and PC10 cells) while
inhibiting constitutive activity of the endogenous receptor in
HEL 92.1.7 cells [42,45,46]. We find that changes in cell-
specific parameters identified as key determinants of re-
sponse behavior by sensitivity analysis are consistent with
these seemingly contradictory behaviors in the b2- and a2A-
adrenergic receptor systems.
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Author Summary

G protein–coupled receptors (GPCRs) are transmembrane proteins
involved in physiological functions ranging from vasodilation and
immune response to memory. The binding of both endogenous
ligands (e.g., hormones, neurotransmitters) and exogenous ligands
(e.g., pharmaceuticals) to these receptors initiates intracellular
events that ultimately lead to cell responses. We describe a dynamic
model for G protein activation, an immediate outcome of GPCR
signaling, and use it together with efficient parameter variation and
sensitivity analysis techniques to identify the key cell- and ligand-
specific parameters that influence G protein activation. Our results
show that although ligand-specific parameters do strongly influence
cell response (either causing increases or decreases in G protein
activation), cellular parameters may also dictate the magnitude and
direction of G protein activation. We apply our findings to describe
how protean agonism, a phenomenon in which the same ligand
may induce both positive and negative responses, may result from
changes in cell-specific parameters. These findings may be used to
understand the molecular basis of different responses of cell types
and tissues to pharmacological treatment. In addition, these
methods may be applied generally to models of cellular signaling
and will help guide experimental resources toward further
characterization of the key parameters in these networks.

Cell-Specific Parameters Control Ligand Agonism



Results

Cell-Specific Parameters Are Highly Correlated with

Variation in Response Characteristics
LHS was used to efficiently sample parameter values from

the ranges listed in Table 1. One LHS simulation typically
sampled each of the 16 parameters 1,000 times, producing
1,000 solutions to the model equations (Text S1). The

formation of GaGTP is computed (see Equation S.27 in Text
S1). Eight example solutions of the time course of GaGTP
formation are shown in Figure 2A. As expected, variations in
parameter values caused large variations in response behav-
ior. For example, for the cases shown in Figure 2A, at steady
state prior to ligand addition (time zero), GaGTP values varied
between approximately two and 240 per cell. Once ligand is
added to the system, it binds to receptors which in turn bind
to G protein, changing the distribution of receptors and G
proteins among their various states and causing increases or
decreases in G protein activation (as seen by changes in
GaGTP formation, Figure 2A). In some instances, G protein
activation increases rapidly, and then falls due to GTP
hydrolysis. Ligand-induced responses occur on the order of
5 s to 30 s at this ligand concentration, which is approx-
imately the timescale over which G protein activation is
known to occur [47–49]. Calculating the percent change of
GaGTP upon ligand addition (designated %OverBasal) al-
lowed for easier observation of decreases in G protein activity
upon ligand binding; in Figure 2B these are seen as negative
%OverBasal values. In this way, responses were directly
related to the pharmacological classifications of ligand
efficacy—positive (increase in %OverBasal), neutral (no
change in %OverBasal), and inverse agonism (decrease in
%OverBasal)—and thus can be compared with experimental
data that normalize to control conditions.
To determine the correlation between parameter values

and levels of G protein activation, PRCC values were
calculated at 0.25-s intervals for varying ligand concentra-
tions (0.1 nM to 0.1 mM). Correlations (PRCC values) for each
parameter listed in Table 1 were calculated with respect to
the two different measurements (outputs) of G protein
activation discussed above, the number of GaGTP and
%OverBasal. Table 2 shows the rank order of PRCC values
for the two responses at two time points, 5 s and 2.5 min, and
two ligand concentrations, 1 nM and 10 lM, representing
pre- and post-steady state time points and sub- and supra-
saturating ligand conditions, respectively.

Table 1. The 16 Independent Parameters of the cTCAM

Parameter Ligand- or

Cell-Specific

Description Value/Range Reference

Ka Ligand LR equilibrium association constant 10�8 �10�6 M�1 [8,89]

Kact Cell Ratio of active to inactive receptor species 10�3 � 10�1 [90]

Kg Cell Receptor–G protein binding affinity 10�4 � 10�2 (number/cell) �1 [22,90]

a Ligand Extent to which ligand binding facilitates receptor activation 0.1 � 10 [22,90]

b Cell Extent to which the active receptor conformation facilitates G protein coupling 0.1 � 10 [22,90]

c Ligand Extent to which ligand binding facilitates G protein coupling 0.1 � 10 [22,90]

d Ligand, cell Extent to which the joint affect of any two of receptor activation, G protein cou-

pling, or ligand binding facilitates the third

0.1 � 10 [22,90]

g Cell Receptor–G protein collision efficiency 0 � 1 [91]

k1 Cell Receptor activation rate constant 0.1 � 10 s�1 [22,90]

k3 Ligand LR association rate constant 105 � 107 M�1s�1 [8,26,89]

k11 Cell RG association rate constant 10�5 � 10�3 (number/cell) �1 s�1 [22,91]

kGact Cell G protein activation rate constant 0.1 � 10 s�1 [22,24,25]

kGTP Cell GTP hydrolysis rate constant 0.1 � 10 s�1 [25,58]

kG Cell G protein a and bc subunit association rate constant 10�5 � 10�3 (number/cell) �1 s�1 [91,92]

Gtotal Cell Total concentration of G protein 102 � 105 number/cell [60,93–95]

Rtotal Cell Total concentration of receptor 102 � 105 number/cell [8,89]

The values listed here are order-of-magnitude estimates taken from actual values found in the literature.
doi:10.1371/journal.pcbi.0030006.t001

Figure 1. The Cubic Ternary Complex Model and the Cubic Ternary

Complex Activation Model

The cTCM (black) is a thermodynamically complete equilibrium
representation of ligand (L), receptor (R), and G protein (G) interactions
[11]. Association and dissociation of L and R is represented here from top
to bottom, R and G interactions from front to back, and the
interconversion of inactive and active R states from left to right of the
cube. Based on the cTCM, the cTCAM (black and red) incorporates the
dynamics of activation and recycling of G protein (dashed lines) into a
kinetic model of LRG interactions [22]. A brief summary of model
parameters is found in Table 1. Description of model parameters,
assumptions, and equations are given in Text S1.
doi:10.1371/journal.pcbi.0030006.g001
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Previous analysis of the equilibrium cTCM in our group
found that Kact, Gtotal, a, d, c, and Kg all played a role in
determining the character (positive/neutral/inverse agonism)
of the response [20]. By using the cTCAM to include the
necessary activation events, however, a somewhat different
set of parameters was found to be highly correlated with
response generation as summarized in Table 2. Not surpris-
ingly, the ligand-specific parameter most correlated with both
measures of response generation (instantaneous number of
GaGTP and %OverBasal) was the effectiveness with which the
ligand induces an active receptor conformation (a). Indeed,
this was the only ligand-specific parameter found to be highly
correlated with the GaGTP response. The character of
responses was influenced by several cell-specific parameters
including receptor and G protein expression (Rtotal and
Gtotal), parameters involved in the G protein activation loop
(kGact, kGTP, and kG), the equilibrium ratio of active to inactive

receptor (Kact), and the rate and efficiency of receptor–G
protein coupling (b and k11). Although generally the
parameters that were highly correlated did not differ between
the two response measures (GaGTP and %OverBasal), the rank
order of the PRCC values did vary. Similar results were found
when the microscopic reversibility assumption of the model
(discussed in the Methods section) was relaxed and all forward
and reverse rate constants (shown in Figure S1) were varied
(unpublished data).
The rank order of the parameters that were highly

correlated with GaGTP did not vary significantly with time,
and thus PRCC values for the parameters at 2.5 min but not 5
s are shown in Table 2. Additionally, the PRCC values did not
vary significantly at varying ligand concentrations, with the
exception that kG and a were found to be lower in rank order
at the lower ligand concentrations.
For the %OverBasal response, significant differences were

seen between low and high ligand concentrations. At low
ligand concentration (1 nM in Table 2), the parameters for
reversible ligand binding (k3 and Ka) were highly correlated
with %OverBasal. Additionally, the PRCC values of both k3
and Ka were found to vary with time, and thus the PRCC
values for all parameters at both 5 s and 2.5 min at this ligand
concentration are listed in Table 2. As shown in Figure 3, the
ligand association rate constant k3 was found to be highly
correlated at 5 s, but was not significantly correlated after 2.5
min of ligand binding. In contrast, the PRCC value for Ka

rapidly increased over the first 30 s of the simulation and was
significantly correlated with %OverBasal at longer times
(greater than 1 min). Thus at sub-saturating ligand concen-
trations in the first few seconds of ligand binding when
response characteristics are likely to be determined, changes
in response are highly sensitive to the ligand association rate
constant. At high ligand concentration (10 lM in Table 2), k3
and Ka were not highly correlated with %OverBasal, nor was
there a significant difference between PRCC values at the two
times, and thus only PRCC values at 2.5 min are listed in
Table 2.

Receptor and G Protein Levels Independently Affect
Response Characteristics
The levels of receptor and G protein expression were both

identified as important parameters in response generation
(Table 2). To investigate the impact that variations in these
parameters have on the character of response generation,
simulations varying Rtotal and Gtotal over their physiologic
range were performed. To simulate (but not replicate)
experiments that measure the accumulation of a signal over
time, such as radioligand assays, the integral of GaGTP over
the first 10 s of ligand binding was calculated and normalized
to basal values with no ligand present and is designated
%Accum according to Equation 2. Qualitatively similar
results are obtained using the instantaneous number of
GaGTP at either 5 s or 10 s after ligand binding (unpublished
data). For certain sets of parameters values, particularly when
a, d, and c 6¼ 1, the %Accum upon ligand addition may vary
from positive to negative values. The explanation for this
protean agonist behavior is as follows. In conditions of
constitutive activity (L ¼ 0, Kact 6¼ 0), there exist two
receptor–G protein complexes (RG and R*G) of which only
R*G can activate G protein. Upon ligand addition, the
number of receptor–G protein complexes increases to four

Figure 2. Time Course of Representative Model Outputs

Parameter values are sampled using LHS, and the differential equations
describing the cTCAM are solved according to the equations in Text S1. G
protein activation as quantified by GaGTP is tracked over time (see
Equation S.27 in Text S1).
(A) Values of GaGTP (number/cell) for eight parameter sets from LHS
sampling of the ranges in Table 1 are plotted over the course of the
simulation.
(B) Percent change in the value of GaGTP relative to basal values
(%OverBasal) was calculated and tracked over time according to
Equation 1. [L]¼ 0.1 lM.
doi:10.1371/journal.pcbi.0030006.g002
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(RG, R*G, LRG, and LR*G), two of which (R*G and LR*G) can
activate G protein. At low values of Rtotal and Gtotal, the
addition of ligand to the system can actually reduce G protein
activation because of the redistribution of receptors and G
proteins among their various states. When this occurs, the
ligand behaves as an inverse agonist; a decrease in the
%Accum upon ligand addition is then seen (Figure 4A and
4B). As the total numbers of receptors and G proteins are
increased, the total number of R*G and LR*G generated
upon ligand addition greatly outnumber those of R*G prior
to ligand addition, and the ligand behaves as a positive
agonist [50]. Figure 4A shows the behavior of %Accum when
Rtotal is held constant at 5,000/cell and Gtotal is varied. Note
that as G protein expression is increased, the same ligand is
predicted to change from an inverse to a neutral to a positive
agonist. Similar trends are seen when Gtotal is held constant at
10,000/cell and Rtotal is varied (Figure 4B).

Previous studies have proposed that the ratio of receptors
to G proteins may play an important role in determining the
efficacy of a ligand [40,51]. Furthermore, previous analysis of
the equilibrium cTCM has shown that relatively large changes
(.25-fold) in Kact and Gtotal may change the efficacy of a
ligand, from positive to neutral or neutral to negative
responses [50]. To investigate the role of the R/G ratio in
our more physiological model, %Accum at a saturating ligand
concentration (10 lM) from Figure 4A and 4B was plotted
versus the ratio of Rtotal/Gtotal in Figure 5. As seen in Figure 4,
the level of response increased as either receptor or G
protein levels were increased. However, because increasing
Gtotal decreases the ratio R/G, the response generated in
simulations of constant Rtotal and varying Gtotal (dashed line
in Figure 5) increases as Rtotal/Gtotal decreases. In contrast, as
receptor expression is increased, the level of response and the
ratio Rtotal/Gtotal increase as indicated by a positive slope in
the curve (solid line in Figure 5). Thus, there is not a clear
relationship between the ratio Rtotal/Gtotal, and this measure
cannot be used as a straightforward predictor of response
efficacy. These results indicate that the individual levels of

receptor and G protein expression are important in
determining ligand efficacy.

Our Results Offer New Explanations for Protean Agonism
in the a2A- and b2-Adrenergic Receptor Systems

a2A-Adrenergic receptors couple to Gai proteins, activating
the G proteins, which in turn inhibit adenylyl cyclase
activation. Jansson and colleagues have reported that the
a2A-adrenergic ligand levomed is a positive agonist in PC10
cells, causing an inhibition of cAMP production as shown in
Figure 6A [45]. However, the same group has reported that
levomed also acts as an inverse agonist in HEL 92.1.7 cells,
causing an increase in cAMP production (Figure 6A) [42].
These results suggest that a parameter (or parameters)
different between the two cell types may play a critical role
in determining the character of the response, and cause
protean agonism.
Guided by the results from our uncertainty and sensitivity

analysis (Table 2), we tested whether changes in a single cell–
specific parameter, a parameter that might differ between the
PC10 and HEL 92.1.7 cells, could produce protean agonism.
Small (less than or equal to half an order of magnitude)
changes in any of three parameters, Gtotal, kGact, or Kact, were
all able to produce protean agonism, as shown with
representative simulations in Figure 6B–6D. All three changes
represent physiologically reasonable explanations for the
protean agonism. Differences in G protein expression (Gtotal)
between two cell lines and indeed within a cell line are
common, although actual expression levels are rarely
quantified [52–54]. Differences in the rate constant of G
protein activation (kGact) between cell lines then may be due
to differences in G protein isoform expression profiles [55].
Further, differences in the equilibrium ratio of active to
inactive receptors (Kact) between cells expressing endogenous
receptors and those with transfected receptors, in this case,
between the transfected PC10 and endogenous HEL 92.1.7
cells studied by Jansson and colleagues, would also seem quite
plausible.
Interestingly, although differences in a2A-adrenergic re-

ceptor expression between HEL 92.1.7 cells (2,900–4,100
receptors at the cell membrane; [56]) and PC12 cells (about 5-

Figure 3. Example of the Time Course of PRCC Values

Time course of PRCC values for LR association rate constant (k3) and LR
equilibrium association constant (Ka) correlated to %OverBasal (as given
by Equation 1) when [L]¼ 1 nM.
doi:10.1371/journal.pcbi.0030006.g003

Table 2. Parameters Significantly Correlated with G Protein
Activation

GaGTP %OverBasal

L ¼ 10 lM L ¼ 1 nM L ¼ 10 lM L ¼ 1 nM

2.5 min 2.5 min 2.5 min 5 s 2.5 min

Gtotal 0.74 Gtotal 0.72 a 0.66 a 0.71 0.74

kGTP �0.62 kGTP �0.63 Kact �0.51 K3 0.58 0.15

Rtotal 0.46 Rtotal 0.51 b �0.43 Ka 0.39 0.66

b 0.41 b 0.52 Gtotal 0.44 kGact �0.35 �0.35

Kact 0.36 Kact 0.48 kGact �0.33 Kact �0.29 �0.3

k11 0.32 K11 0.38 kG 0.32 Gtotal 0.25 0.35

a 0.29 kGact 0.35 Rtotal �0.24 b �0.24 �0.22

kG 0.29 kG 0.18 kGTP 0.18 kG 0.19 0.27

kGact 0.26 a 0.13 k11 �0.14 kGTP 0.17 0.17

Rtotal �0.15 �0.19

For both measures of G protein activation (GaGTP and %OverBasal), PRCC values of model
parameters are listed in rank order of correlation. Parameters with PRCC values less than
0.1 are not listed. 95% confidence intervals calculated for each PRCC value were
approximately 610%–20% of the PRCC value.
doi:10.1371/journal.pcbi.0030006.t002
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fold greater; [57]) have been reported, in our simulations
these modest changes in Rtotal did not produce protean
agonism. Similarly, although the GTPase activity of the Ga
protein subunit (kGTP) can vary widely between different cell
types depending on the expression of RGS proteins [3,25,58],
variation of kGTP did not produce protean agonism in our
model. Other cellular parameters identified by uncertainty
and sensitivity analysis (Table 2) also did not produce protean
agonism, at least not for moderate (less than an order of
magnitude) changes in their values and for physiologically
reasonable values of the remaining parameters.

As a second example of protean agonism, Chidiac and
colleagues have reported that the b2-adrenergic ligand DCI
produces both stimulatory and inhibitory responses in Sf9
cells despite similar treatment of the cells (Figure 7A) [41].
The parameter with the most likely variation in this system is

G protein expression (Gtotal). While quantitative measure-
ment of Gas-like proteins in Sf9 cells has not to our
knowledge been reported, several studies have shown that
there may be wide variations in G protein expression in this
system. Seifert et al. [52] and several references therein report
that endogenous Gas-like proteins could not be detected with
immunoblot assays of Sf9 membranes, while Kleymann et al.
[59] and Leopoldt et al. [54] have detected endogenous Gas-
like proteins in immunoblots of membranes. Additionally,
infection of Sf9 cells with baculoviruses has been shown to
downregulate the expression of endogenous G proteins [54].
Simulations at varying Gtotal showed that as little as a 5-fold
change in Gtotal was able to produce protean agonism in our
model, as shown in Figure 7B.
Chidiac and colleagues further report that after treatment

with isoproterenol (a b2-adrenergic agonist) DCI acts as an
inverse agonist only (Figure 7C) [41]. In other words, protean
agonism by DCI is not seen after receptor desensitization. In
another cell type (S49 lymphoma cells), Insel and colleagues
have found that redistribution of Ga protein subunit between
the membrane and cytosolic compartments occurs after
prolonged treatment with isoproterenol [60]. The possibility
that this loss of G proteins contributes to inverse agonism in
Sf9 cells was tested by decreasing the number of available G
proteins (Gtotal). Ligand stimulation of these desensitized cells
(parameters as in Figure 7B but with half the number of G
proteins) produced only inverse agonism in our model
(Figure 7D). Thus our analysis suggests the observation of
positive or inverse agonism in these cells is sensitive to G
protein number and that small changes in G protein number
can account for observations of both protean agonism
(before desensitization) and inverse agonism (after desensiti-
zation).

Discussion

As is common in large signal transduction networks, there
are significant uncertainties in model parameter values, and
it is difficult to intuit model behavior. Using efficient

Figure 4. The Effect of Changing Receptor and G Protein Expression on

the Activation of G Protein

Dose response curves measuring the percent accumulation of GaGTP

(%Accum) were calculated according to Equation 2 as described in
Methods.
(A) Total G protein (Gtotal) is varied from 1,000,000/cell to 3,000 per cell,
and Rtotal ¼ 5,000/cell.
(B) Total receptor (Rtotal) is varied from 30,000 to 1,000 per cell, and Gtotal¼
10,000/cell. Parameter values: k1¼ 1 s�1, k3¼1 3 107 M�1s�1, k11¼1 3 10�4

(number/cell)�1s�1, kGact¼5 s�1, kGTP¼1 s�1, kG¼1310�4 (number/cell)�1s�1,
Ka¼1310�8 M�1, Kg¼1310�4 (number/cell)�1, Kact¼0.01, a¼5, b¼5, d¼
0.5, c¼0.1, g¼0.1.
doi:10.1371/journal.pcbi.0030006.g004

Figure 5. The Effect of the Ratio of Receptor to G Protein on G Protein

Activation

Rtotal was set at 5,000/cell and Gtotal varied (dashed line). As G protein
expression increases, the response changes from negative to positive
agonism. Gtotal was set at 100,000 per cell and Rtotal varied (solid line). As
receptor expression increases, the response changes from negative to
positive agonism.
doi:10.1371/journal.pcbi.0030006.g005
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parameter variation and sensitivity analysis methods, we
identify parameters in a dynamic G protein activation model
that play key roles in determining the level and indeed the
character (positive/neutral/inverse agonism) of the response.
This type of analysis allows for quick and efficient identi-
fication of important parameters. Drug design and develop-
ment typically focus on altering ligand-specific parameters to
produce desired cell response. Significantly, however, we find
that not only ligand-specific parameters, but also cell-specific
parameters, play critical roles in determining response
behavior. To demonstrate how changes in cellular specific
parameters can dramatically change cell response, we apply
our findings towards studies of protean agonism in the a2A-
and b2-adrenergic receptor systems.

Our analysis shows that several cell-specific parameters not
previously identified contribute significantly to the character
of ligand-induced responses. These include the total receptor
concentration (Rtotal), the GTP hydrolysis rate constant
(kGTP), and the G protein activation rate constant (kGact)
(see Table 2 for a full list). Receptor number is known to vary
widely in different cell types, and is regularly manipulated
using transfection technologies. This is one of the few
parameters in our model that is routinely quantified. It is
well known that the GTPase activity of the Ga protein subunit
may vary and is largely dependent on the presence of RGS

proteins in the system [61,62]. Therefore, it is not surprising
that the rate constant for GTP hydrolysis (kGTP) would be
found to be important in response generation; indeed much
attention has been given to RGS proteins as new therapeutic
treatments [3,63,64]. Our findings are also consistent with an
elegant study by Bornheimer and colleagues that analyzed G
protein activation by active receptor and deactivation by
GTPase activation proteins (GAPs) [12]. They found that local
concentrations of receptors and GTPase activation proteins
mediate various regimes of response behavior by kinetically
controlling G protein activity. Following its identification by
sensitivity analysis, we find that small changes in kGact (the
rate constant for G protein activation) may result in protean
agonism such as reported by Jansson and colleagues for the
a2A-adrenergic system [42,45].
G protein concentration and Kact, the ratio of active to

inactive receptor states, are two cell-dependent parameters
identified by our study (using a dynamic model of G protein
activation) and two previous studies (using equilibrium
models) as parameters that are key to determining the
character of response and, when varied, could cause protean
agonism (Table 2 and Figures 6B, 6D, and 7B) [20,40,50].
Overexpression or underexpression of receptor and G
protein or expression of different isoforms of G proteins
may give very different results than those found in

Figure 6. Protean Agonism in the a2A-Adrenergic System

(A) Effect of levomed on cAMP production. Note that the y-axis in this plot is inverted from the usual to show positive agonists to have a positive slope
and inverse agonists to have a negative slope. Levomed acts as an inverse agonist in HEL 92.1.7 cells (�, with curve fit). Data taken from Jansson et al.
(1998), Figure 4. Levomed acts as a positive agonist in PC12 cells (line only). Data reconstructed from EC50 and max percent inhibition reported in
Jansson et al. (1994), Table 1.
(B–D) Simulations of protean agonism of levomed at the a2A-adrenergic receptor. Small changes in parameter values can cause the response to switch
from positive to negative.
(B) 3.3-Fold variation in G protein expression, b¼ 10.
(C) A 4-fold variation in the G protein activation rate constant kGact, Gtotal ¼ 100,000.
(D) The equilibrium ratio of active to inactive receptors is varied 5-fold, Gtotal¼10,000, kGact¼5 s�1. Parameter values are equal to those listed in Figure 5
except when otherwise noted. Rtotal ¼ 3,500 number/cell. Simulated dose response curves (B–D) measuring the percent accumulation of GaGTP

(%Accum) were calculated according to Equation 2 as described in Methods.
doi:10.1371/journal.pcbi.0030006.g006
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endogenous systems. Additionally, G protein expression may
vary largely in cells depending on a variety of factors,
including cell type, state of cell development [65], prior
treatments to the cells [54,60,66,67], and disease state [68–70].
Although Kact has not been rigorously quantified, receptor
mutation and fluorescent imaging studies are lending
valuable insight into how conformational changes in the
receptor confer activity with and without ligand stimulus [71–
75].

Our findings on the sensitivity of G protein activation to
these parameters are corroborated by experimental studies
implicating changes in G protein and receptor expression
and receptor activity in cardiac and Alzheimer disease. For
example, it has been shown that both b1- and b2-adrenergic
receptors are expressed at decreased levels in studies of
cardiac failure, while Gai subunits are increased [76]. As a
second example, although muscarinic receptor density is not
changed in brains of Alzheimer patients, the functionality of
the receptors has been shown to be compromised (suggesting
an inactive receptor state and changes in Kact), and decreases
in the function of Gaq protein have also been reported [77].
Thus, both experimental reports and our modeling results
suggest that small changes in these key parameters may
disrupt normal signaling and lead to disease states.

To account for day-to-day and cell-to-cell variability,
experimental results are almost always presented normalized
to basal levels. However, clearly some information is lost
when normalizing, both in experimental data and in

modeling studies. For example, in experimental systems
normalizing washes out variations in the ‘‘basal state’’ of the
cells that may be an indicator of the current state of the cell
or of future response characteristics. In the context of our
model, un-normalized cell population or single cell data
would allow for a more in-depth study of how parameters
contribute to both basal and post-ligand treatment responses.
Our findings represent what may be only a small sampling

of cellular parameters that influence ligand efficacy. Indeed,
small variations in combinations of parameters could also
lead to observations of protean agonism. For the sake of
conciseness, these are not analyzed here. However, the
methods introduced here provide a computationally efficient
mechanism to begin to explore all possibilities. One
limitation of this type of analysis, particularly PRCC analysis,
is that it can only identify trends in certain directions within
the given parameter space. Other analysis techniques for LHS
sampling, such as subjective, differential sensitivity analysis,
one-at-a-time design, and the adjoint method have been used,
although these also have significant limitations [39]. Another
limitation for using PRCC is that the system must be
monotonic; however, this is easily checked by monitoring
scatterplots, and there exist other global analysis methods by
which to analyze the impact of parameter variation on model
output. Recent work has compared multiple global analysis
methods and found that LHS/PRCC, genetic algorithm
approaches, Sobol’s method, and Fournier amplitude sensi-
tivity test (FAST) give very similar results [35].

Figure 7. Protean Agonism in the b2-Adrenergic Receptor System

(A) Dichloroisoproterenol (DCI) effect on adenylyl cyclase activity in Sf9 cells. DCI was found to be both a partial agonist (�) and an inverse agonist (*) in
this study. Data replotted from Chidiac et al. (1996).
(B) Simulations of DCI activation of GaGTP. Protean agonism properties of DCI caused by 5-fold difference in G protein concentration.
(C) After desensitizing treatment with isopreterenol, DCI was found to inhibit adenylyl cyclase activity in membranes where previously positive agonism
was seen (�). This treatment further decreased activity of adenylyl cyclase in membranes where inverse agonism was observed (*). Data replotted from
Chidiac et al. (1996).
(D) Desensitization treatment by isopreterenol is simulated by decreasing G protein (Gtotal) by 50%. Parameter values are equal to those listed in Figure
4 except when otherwise noted. Rtotal¼ 4,000/cell, a¼ 0.5, d¼ 5. Simulated dose response curves (B,D) measuring the percent accumulation of GaGTP

(%Accum) were calculated according to Equation 2 as described in Methods.
doi:10.1371/journal.pcbi.0030006.g007
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Finally, both kinetic measurements and modeling will be
important to our progress in understanding and manipu-
lation of G protein activation. New technologies, such as
those reported in yeast and HEK 293 cells using fluorescence
resonance energy transfer (FRET) and bioluminescence
resonance energy transfer (BRET) to monitor receptor–G
protein and G protein subunit interactions [48,49] have the
potential to quantify these interactions in real time. Model-
ing studies by our group and others [12,33,78–83] facilitate
our understanding of the complexities involved in cell
signaling and identify pathway interactions that are key to
describing normal and pathological cell functions. The
dynamic model that we present here, a general model of
GPCR and G protein activation, can be easily expanded to
include details of particular GPCR systems and phenomena
such as receptor desensitization and internalization, pro-
cesses that do not operate under steady state conditions.
Further, as the components involved in signal transduction
become better described and incorporated into signaling
databases (e.g., SigPath [84], Alliance for Cell signaling [85],
National Center for Genome Resources’s PathDB [86]) and as
more complex models of signaling pathways become possible,
it will become increasingly important to systematically assess
parameter uncertainty and quantify regimes of model
behavior.

Materials and Methods

The cubic ternary complex activation model. The cubic ternary
complex activation model (cTCAM) (Figure 1) is a kinetic extension
of the (equilibrium) cTCM integrating a feedback loop of G protein
activation and recycling with dynamic LRG interactions [22]. Each
reaction in the model is governed by mass action kinetics. Reaction
rate constants describe the association and dissociation of ligand and
receptor (top to bottom of the cube) and receptor and G protein
(front to back of the cube) as seen in Figure 1. The interconversion of
inactive and active receptor states is described by forward and
backward rate constants as viewed from left to right of the cube.

The cTCAM has a total of 27 kinetic rate constants, 24 describing
the binding and dissociation reactions between ligand, receptor, and
G protein, and three describing the G protein activation cycle.
Additionally, the total concentrations of ligand, receptor, and G
protein are required, bringing the total number of model parameters
to 30. As described in Text S1, the model can be reduced to 16 input
parameters (plus ligand concentration). A description of all the
parameters used in the cTCAM is presented in Table 1. Briefly, four
of these are ligand-specific parameters that control the binding of
ligand to the receptor and the ability of ligand to bias receptor
activation and G protein association (Ka, k3, a, and c, respectively).
The eleven cell-specific parameters in the model determine the
strength of association of the inactive and active receptor states with
G protein (Kg, k11, g, and b), the ratio of active to inactive receptor
(k1, Kact), the kinetics of G protein activation, deactivation, and
recombination (kGact, kGTP, and kG), and the numbers of G proteins
and receptors (Gtotal, Rtotal). The remaining constant, d, is both a
ligand- and cell-specific parameter that governs the synergistic effects
between ligand binding, receptor activation, and G protein associ-
ation [11].

The equations describing the cTCAM are presented in Text S1. To
calculate the initial conditions for each species in the model under
varying parameter values, the total receptor and G protein concen-
trations (Rtotal and Gtotal) were set as the initial values of R and G
while the initial values of all other species were set to zero. The system
was allowed to come to steady state (typically less than 100 s) at which
point a bolus of ligand (L) was added to the system (denoted as time¼
0), and the formation of each species was tracked over time.

Model analysis. The level of GaGTP is the key output of the model.
However, experimental data are routinely normalized to basal values
(i.e., the amount of activated G protein in the absence of ligand).
Therefore, for the model G protein activation was quantified as the
percent change in GaGTP from basal (L ¼ 0) as given by

%OverBasal ¼ GaGTP½t� � GaGTP½0�
GaGTP½0�

3 100: ð1Þ

Quantifying response in this way is directly related to the
pharmacological classifications of ligand efficacy—positive (increase
in %OverBasal), neutral (no change in %OverBasal), and inverse
agonism (decrease in %OverBasal)—and is analogous to that
previously used to analyze response activation in the cTCM and
cTCAM models [20,22,81].

Dose response curves were generated by calculating the integral of
GaGTP (

R
GaGTP[t] dt) over the first 10 s of ligand stimulation at

varying ligand concentrations. These dose-response curves are used
to look at how responses may change upon varying receptor and G
protein totals (Figure 4) and for comparison with experiments that
measure the accumulation of radioligand, for example [3H]cAMP
accumulation in studies of protean agonism in b2-adrenergic and a2A-
adrenergic receptors (Figures 6 and 7). Values of the integral were
normalized to basal values according to

%Accum ¼ 100
Z10

0

GaGTP½t� �GaGTP½0�
GaGTP½0�

dt: ð2Þ

To distinguish this measurement from %OverBasal, this analysis is
termed ‘‘%Accum.’’

Uncertainty and sensitivity analysis using Latin hypercube
sampling and partial rank correlation coefficient. To efficiently
sample the ranges over which input parameters (xi, i ¼ 1,2,..,X) may
vary, LHS was implemented for the cTCAM using methods described
previously [29,30,87,88]. Briefly, each input parameter is assigned a
range according to values found in the literature (Table 1). Each
parameter’s value range was divided into N equal probable segments
according to a specified probability distribution function for that
parameter. For a typical simulation, N¼ 1,000. Distributions for most
of these parameters are not known and therefore uniform distribu-
tions were used for each parameter. A random value was then chosen
from each segment, so that each parameter became a vector of N
values. The N values of the parameter vectors were then randomly
paired to generate an N by X input matrix where X was the number
of parameters to be varied (X¼ 16 for the cTCAM). The differential
equations describing the model (Text S1) were then solved,
generating a vector of N solutions.

PRCCs were calculated to quantify the relative importance of each
parameter in generating a desired output (measures of GaGTP
described above). Partial correlation measures the strength of the
linear relationship between the output and an input variable (xi) after
the effect of all other elements of x have been removed [38], while the
rank transformation is used to linearize the nonlinear monotonic
relationship between the input parameters and the output [29]. PRCC
values vary between �1 (perfect negative correlation) and 1 (perfect
positive correlation). PRCC values were calculated as described
previously [29,30,87,88]. Briefly, solutions of GaGTP at desired time
points were added to the LHS input matrix to generate an N by Xþ 1
matrix. The values for each of the Xþ1 parameters were then ranked
from 1 to N and the resulting matrix was used to calculate a
partialized matrix in which the linearized effects of the other
parameters are taken out of each parameter. Correlation coefficients
were then calculated from the partialized matrix. Scatterplots were
generated to assure that the monotonicity assumption applies [29].
The calculated PRCC values were differentiated based on p-values
derived from a Student’s t test and were then ranked according to
their absolute value.

Supporting Information

Figure S1. The Cubic Ternary Complex Activation Model with Rate
Constants

Found at doi:10.1371/journal.pcbi.0030006.sg001 (77 KB TIF).

Text S1. Cubic Ternary Complex Activation Model

Found at doi:10.1371/journal.pcbi.0030006.sd001 (93 KB DOC).

Accession Numbers

The Swiss-Prot (http://ca.expasy.org) accession numbers for the
proteins mentioned in the text are: a2a-adrenergic receptor
(P08913), b2-adrenergic receptor (Q6GMT4), and Ga protein
(Q6B6N3).
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