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Persistent activity states (attractors), observed in several neocortical areas after the removal of a sensory stimulus, are
believed to be the neuronal basis of working memory. One of the possible mechanisms that can underlie persistent
activity is recurrent excitation mediated by intracortical synaptic connections. A recent experimental study revealed
that connections between pyramidal cells in prefrontal cortex exhibit various degrees of synaptic depression and
facilitation. Here we analyze the effect of synaptic dynamics on the emergence and persistence of attractor states in
interconnected neural networks. We show that different combinations of synaptic depression and facilitation result in
qualitatively different network dynamics with respect to the emergence of the attractor states. This analysis raises the
possibility that the framework of attractor neural networks can be extended to represent time-dependent stimuli.
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Introduction

Working memory enables us to hold the trace of a fleeting
stimulus for a few seconds after it is gone, thus enabling the
manipulation of information over time. Recordings from
neurons in monkeys performing working memory tasks
reveal stimulus-selective spiking activity that persists after
the removal of the stimulus (see, e.g., [1–4]). These persistent
activity states (attractors) are considered to be the neuronal
substrate of working memory [5].

The sustained persistent activity is believed to be achieved
by excitatory interpyramidal connections that are either
prewired or formed during the learning of the task [3] (see
also [6,7] for a possible role of single-cell mechanisms). In
vitro studies of such connections in the cortex revealed
pronounced short-term plasticity effects [8]. In the sensory
areas of the cortex, the dominant effect is synaptic
depression, expressed as a rapid decay of synaptic efficacy
following the presynaptic firing [9]. Several theoretical
studies investigated the effects of synaptic depression on
the existence and stability of attractor states (see, e.g., [10,11]).
Wang et al. [12] recently performed experiments to inves-
tigate short-term synaptic plasticity in the prefrontal cortex,
one of the cortical areas where persistent activity is observed
[4]. They found that interpyramidal connections in this area
exhibit various degrees of synaptic facilitation, with three
different classes of connections identified. While synaptic
facilitation was recently mentioned as a stabilizing factor for
network attractors [13], there is as yet no systematic study of
its effect on the dynamics of recurrent neural networks
undergoing the transition from background to persistent
states after the presentation of a stimulus.

In this contribution, we consider an attractor neural
network with connections that have already been formed by
learning several stimuli [14,15]. We assume that the network
comprises a set of neuronal populations, each responding
primarily to a certain stimulus. This scheme, via Hebbian
learning, can strengthen the synaptic connections within a
population and form a stable activity state. Drawing on
recent experimental results [12], we assume that the neurons
within each population differ in the dynamic properties of

their synapses and thus exhibit different temporal response
profiles to the same stimuli. This firing can then lead to a
further differentiation of synaptic strengths within the
population, whereby neurons with similar synaptic dynamics
are connected more strongly to one another than to ones
with dissimilar synaptic dynamics. We thus consider a
network comprising several attractor populations, each
divided into subpopulations with different synaptic dynamics
(Figure 1). These populations interact via both excitatory
dynamic synapses and inhibition to generate rich dynamics in
response to external stimuli. Since the synaptic dynamics
differ between subpopulations, we expect them to respond
differently to different temporal profiles of the input, which
could result in a greater computational power for the
network.

Results

We consider a neural network with a sparse representation
of external stimuli. This means that a given stimulus targets a
population that is a small fraction of the network, and
therefore there is a very small overlap between the
populations. As described in the Introduction, we assume
that long-term learning processes result in a three-tier
connectivity structure in the network. A subpopulation of
neurons within a given population that share similar short-
term synaptic dynamics develop the strongest connections;
neurons within a population but differing in their synaptic
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parameters have weaker connections, and neurons of differ-
ent populations have the weakest connections. We simplify
the system by assuming homogeneous short-term synaptic
dynamics within each subpopulation. This allows us to derive
a set of rate equations for subpopulations (see Methods), thus
greatly simplifying the analysis.

Dynamics of a Single Subpopulation with Increasing
Facilitation Levels

We begin our analysis with a single homogeneous excita-
tory subpopulation that is amenable to analytical treatment.
The analysis was performed using a firing rate model (see, e.g.,
[16]) with the mean synaptic current, h, and mean firing rate,
R. We combine the current dynamics with the model of
dynamic synapses introduced in [17,18]. The synaptic feed-
back is characterized by the set of four parameters: J (absolute
efficacy), U (initial utilization parameter, analogous to release
probability), and tf and tr (time course of facilitation and
depression, respectively). Briefly, the running value of the
utilization parameter, u, is facilitated every time a spike
arrives, and decays to its baseline level, U, with the time
constant tf. Correspondingly, the running fraction of neuro-
transmitter available, x, is utilized by each spike in proportion
to u and recovers to its baseline value of 1 with the time
constant tr. The system dynamics are therefore described by
the following three differential equations (see Methods):

s
dh
dt
¼ �hþ JuxRþ IðtÞ

du
dt
¼ U � u

tf
þ Uð1� uÞR

dx
dt
¼ 1� x

tr
� uxR

R ¼ ½h�þ:

ð1Þ

Here, I(t) is the external input relative to threshold, and s is
the decay time constant of the synaptic current. R is the
average population firing rate, which is assumed to be a
threshold-linear function of synaptic current:

R ¼ ½h�þ ¼ maxðh; 0Þ:

The term Jux in the first equation for the synaptic current
reflects the effect of synaptic short-term dynamics. The
second equation describes a facilitation process that deter-
mines the running value of u, which in turn enters into the
third equation for the depression process.
The combination of the three kinetic parameters, tf, tr, and

U, can describe widely different synaptic behaviors: from
strong depression (tr � tf and relatively high values of U) to
strong facilitation (tf� tr and small values of U). In fact, three
different groups of synapses were identified in the prefrontal
cortex [12], two corresponding to these extreme cases, and an
intermediate one with tf ’ tr. We therefore simulated the
network equations for three different sets of synaptic
parameters that roughly correspond to these observed
synaptic groups (see Methods). For each network, we chose
the minimal connection strength, J, that enables a persistent
state, and subjected the networks to a transient input of two
different durations. As can be seen in Figure 2, all three
networks could be driven to a persistent state that outlasts the
input, but the dynamics of approaching the persistent state
and the effect of input duration are qualitatively different
between the networks. Most notably, the facilitating network
(Figure 2A) requires a certain minimal input duration and
approaches the persistent state gradually, while the depress-
ing network (Figure 2C) responds quickly with a large
transient increase in the population firing rate. This transient
response, called a ‘‘population spike,’’ reflects a near-
coincident firing of a large number of neurons (as known
from the previous studies [19,20]). The network with the
intermediate set of parameters displays a delayed population
spike and strong transient oscillations (Figure 2B).
In the next sections, we present a more thorough analysis

of the network dynamics, with an emphasis on the full
repertoire of behaviors for different values of synaptic
parameters. These three examples can then be seen as
particular cases of a general scheme.

Steady State: Recurrent Excitation Leads to Bistability
The firing rate of a network without recurrent excitation

will decay once external input is removed. Recurrent
excitation provides a positive feedback that, if powerful
enough, can balance this decay even in the lack of external

Figure 1. Network Structure

The network is divided into several populations, each responding
primarily to a certain stimulus. Each population is further partitioned into
subpopulations, differing in their synaptic properties. Connections are
strongest within subpopulations, weaker between subpopulations, and
weakest across populations.
doi:10.1371/journal.pcbi.0030035.g001
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Author Summary

Imagine driving a car when you hear the sentence, ‘‘Take the next
left.’’ Immediately, auditory ‘‘left’’ neurons begin to fire. But to use
this information a few seconds later when you reach the junction,
these neurons should persist in their firing after the auditory
stimulus has been removed. This persistent activity, believed to be
the basis for working memory, is maintained by a recurrent neural
network in memory-related cortical areas. Previous studies showed
that a network can maintain memories of ‘‘which’’ stimulus was
observed. It has recently been shown that synapses between
excitatory cells in the prefrontal cortex, where persistent activity is
often observed, exhibit activity-dependent dynamics. Different
forms of synaptic dynamics such as depression and facilitation
were observed. In this work, we use a mathematical model of a
recurrent neural network to analyze the effect of introducing
dynamic synapses in the context of persistent activity. We find that
the initiation of persistent firing can depend on the duration of the
input. These results open the possibility that recurrent neural
networks can encode not only ‘‘which’’ stimulus was observed, but
also for ‘‘how long.’’

Persistent Activity in Dynamic Synapses Networks



input and sustain persistent activity. The balancing condition
is given by the steady state equation for the population firing
rate obtained from Equation 1:

R ¼ ½ JuxRþ I �þ; ð2Þ

where the steady state value of ux depends on R as stationary
solutions of the second and third equations of Equation 1 (see
Equation 15 in Methods). Figure 3 illustrates graphically the
solutions of the steady state equation. Figure 3A and 3B shows
the balance between the decay term and the recurrent
excitation term for two input levels. For a small input, the
system has three steady state solutions, the lowest represent-
ing a spontaneous low-activity state, and the highest
representing a persistent state (Figure 3A). The intermediate
solution is always unstable. The presence of the low-activity
state is due to the facilitation that results in the initial
increase in the effective connection strength Jux with R, until
depression takes over for higher R (Figure 4C and 4D, solid
blue lines; see also [17]). This initial facilitation leads to the
corresponding increase in the slope of the effective excitation
as the network activity increases (inset in Figure 3A). The
minimal facilitation time constant tf that is needed for this
regime to be observed can be computed (see Methods, after
Equation 16):

tf
tr

.
tf
tr

� �
0

[
U

1� U
: ð3Þ

For smaller values of tf /tr, the facilitation effect is not
observed, and the effective connection strength monotoni-
cally decreases with the activity rate R (Figure 4D).

Increasing the input beyond a certain level leaves the
network with the persistent state only (Figure 3B). This

analysis is summarized in Figure 3C, showing the steady states
of the network for different values of input. It follows that the
persistent state can be reached by temporarily increasing the
input to the level where the spontaneous state disappears and
then reducing it back to the bistable regime (hysteresis).
Steady states of the network for a small positive input and

different values of J are shown on Figure 3D. As mentioned
above, for the persistent state to exist, the recurrent excitation
has to be powerful enough, J . Jlow. The value of Jlow can be
calculated from the first and last equations of Equation 1 by
observing that R can only be nonzero while I¼ 0 when Jux¼ 1
at the steady state (dashed lines in Figure 4C and 4D). When
facilitation is strong (inequality (3) holds), this requirement
can be met if J(ux)p . 1, where (ux)p is the peak steady state
value of ux as a function of R. This means that Jlow¼1/(ux)p and
can be computed from the model equations (see Table 1 and
Methods, Equation 16). When J is increased beyond Jhigh¼1/U,
the low-activity steady state disappears, and the system is no
longer bistable. Note that for a depressing system, where ux is a
monotonically decreasing function of R, Jlow¼ Jhigh ¼ 1/U. In
this case, the system can only be bistable for I , 0, with one of
the steady states having zero firing rate.
Finally, the persistent state that appears at J ¼ Jlow is not

necessarily stable. The analytical condition for stability is

Figure 2. Network Dynamics in Response to Transient Stimuli for Three

Different Facilitation Levels

The three rows use parameter sets A, B, and C, respectively, with
facilitation strongest in A and weakest in C (see Methods, Table 2). The
red bars mark two stimulus durations of 200 and 700 ms for short and
long bars, respectively. The stimulus magnitude is 4 Hz for A and C, and
0.2 Hz for B.
doi:10.1371/journal.pcbi.0030035.g002 Figure 3. Steady State Analysis

(A,B) Steady state values of the firing rate shown as intersection points
(circle, stable; cross, unstable) between the decay and recurrent
excitation terms in Equation 2, for low, 0.5 Hz (A), and high, 5.5 Hz (B)
external current.
(C) Hysteresis plot showing stable steady states for different values of
input.
(D) Bifurcation diagram for I ¼ 0.5 Hz, illustrating the steady states for
different values of connection strength. The dashed line marks unstable
equilibria. All subplots use parameter set A (see Methods, Table 2).
doi:10.1371/journal.pcbi.0030035.g003
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hard to obtain in the full system, and we therefore address it
below in the framework of a reduced 2-D system.

Dynamics of Transition to the Persistent State
To analyze the temporal dynamics of the network after the

change in the input, we use the fact that the time constant of
the current dynamics in Equation 1, s, is on the order of a few
milliseconds. This is usually much smaller than the depression
and facilitation time constants, thus enabling a separation of
timescales between the slow variables x,u and the fast variable
h. This means that x and u can be regarded as being constant
when considering the fast dynamics of h and R on the
timescale of s. Conversely, R and h can be approximated to be
at the steady state (if one exists) when the slower x,u dynamics
are considered.

Fast dynamics. To explain the differences in the immediate
response of networks with strong facilitation and depression
(Figure 2), we first consider the initial fast dynamics of R after
the sudden increase in the input. The slow variables can be
considered to remain at their rest values (x ffi 1, u ffi U). Once
x,u are fixed at these values, the dynamics of R are governed
by the simple equation:

dR
dt
¼ �Rþ ðJURþ IÞ; ð4Þ

where we set R ¼ h since we are dealing here with positive
inputs.

Figure 4A and 4B depicts the balance between the decay
(red line) and the recurrent excitation terms before and after
the change in the input (solid and dashed blue lines,
respectively), for two different cases: J , 1/U and J . 1/U.
As we showed above, only a facilitating population can
sustain persistent activity under the first condition, while a
depressing one can only do so under the second condition. If
J , 1/U, R will quickly move to a new quasi–steady state as
depicted in Figure 4A. Subsequent slow dynamics will push
the system to the vicinity of the persistent state (solid green
line in Figure 4C and black line in Figure 4E). In the J . 1/U
case, there is no steady state for R immediately after the
change in I (Figure 4B); thus, the activity will increase rapidly,
resulting in a population spike (Figure 4D and 4F).
Slow dynamics. While the initial response depends on the

fast variables, the complete trajectory mainly depends on the
slow u,x dynamics. Since R is much faster than x and u, we
assume that, for each set of x,u values, it quickly reaches a
steady state, determined by the first and last equations of
Equation 1:

R̂ðx; uÞ ¼ I
1� Jux

:

This steady state only exists when Jux , 1 since we are
interested in suprathreshold inputs I . 0. The remaining
equations thus reduce to the following approximate slow
dynamics for u and x.

du
dt
¼ U � u

tf
þ Uð1� uÞR̂ ¼ U � u

tf
þ Uð1� uÞI

1� Jux

dx
dt
¼ 1� x

tr
� uxR̂ ¼ 1� x

tr
� uxI
1� Jux

:

ð5Þ

Figure 4. Fast Dynamics

Left and right columns use parameter sets A and C, respectively (see
Methods, Table 2).
(A,B) Steady state analysis similar to Figure 3, but with x,u frozen at their
resting values (see Equation 4). The dashed line illustrates recurrent
excitation after an external input is increased. Note that only in (A) does a
steady state remain.
(C,D) Steady state value of Jux as a function of R (solid blue line) overlaid
with the condition for persistent activity Jux¼ 1 (dashed blue line) and
the trajectory caused by current increase (green line).
(E,F) Time course of the firing rate for both cases.
doi:10.1371/journal.pcbi.0030035.g004

Table 1. Critical Values of Parameters Separating Regimes of
Different Qualitative Behavior (See Text and Figure 6)

Critical Value Formula

Jlow

1� tr

tf
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð1� UÞ

tf U

s
; if

tf

tr
.

tf

tr

� �
0

1
U
; if

tf

tf
,

tf

tr

� �
0

8>>>>><
>>>>>:

Jstab

Jlow ; if
tf

tr
.

tf

tr

� �
1

tf þ tr � u�ðtf þ 2trÞ
tf U u�ð1þ 1=UÞ � 1½ � ; if

tf

tr
,

tf

tr

� �
1

8>>>><
>>>>:

J* . 1
u� ðactual value only numericallyÞ

Jhigh 1
U

tf

tf

� �
0

U
1�U

tf

tr

� �
1

1�U
U

u�

1�u�

� �2
u*

Uð
ffiffiffiffiffiffiffiffiffiffi
1þ4=U
p

�1Þ
2

doi:10.1371/journal.pcbi.0030035.t001
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Dealing with a 2-D system instead of a 3-D one greatly
simplifies the analysis. Figure 5 shows the phase space for this
system in the case of strong facilitation: the x and u nullclines
are depicted in blue and red, respectively, and the ‘‘for-
bidden’’ line ( Jux ¼ 1) is drawn in black. We consider the
bistable regime ( Jlow , J , Jhigh), such that there are three
fixed points for small values of I (A). When the input
increases, the nullclines change their configuration such that
only one, high-activity fixed point remains (B), and the system
begins to move toward it. If the input falls back to its baseline
in a short time, the system is still in the basin of attraction of
the low-activity steady state and therefore quickly returns to
its original state. If the input stays on for a longer time,
however, the system will cross the border between the two
basins of attraction and continue its ascent to the high-
activity persistent state after the removal of the stimulus.
Thus, the requirement for a minimal input duration for
reaching the persistent state in a facilitating population
observed above (Figure 2A) is explained.

We now address the emergence of a population spike
during the approach to the persistent state (Figure 2B). As
explained above, the population spike occurs when the fast
dynamics of R do not have a fixed point, which happens when
the slow dynamics of u and x reach a ‘‘forbidden line’’ of Jux¼

1. We therefore linearized the slow dynamics of Equation 5
near this line to determine which part of it is attracting, and
which part is repulsive. The result of this analysis (see
Methods) is that the attracting part is always the one that lies
below the u-coordinate of

u, u�[
Uð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=U

p
� 1Þ

2
: ð6Þ

Since the condition x , 1 is always satisfied, this result
implies that if J , 1/u*, the population spike cannot occur
under any circumstances since the ‘‘forbidden line’’ is
unreachable. This condition is, however, too strong, as we
are interested in knowing whether the system’s trajectory will
reach the forbidden line during the transition to persistent
activity. To find the forbidden line’s basin of attraction, we
numerically evaluated the separatrix between the repulsive
and attractive parts by integrating the equations backward in
time from the transition point u¼u*. Figure 5C and 5D shows
the repelling (solid) and attracting (dashed) parts of the
forbidden line, with the basin of attraction shaded, for two
different values of J. We found that when J increased above a
certain numerically computed J*, the basin of attraction
increased sharply and encompassed the spontaneous state,
which means that the system will cross the forbidden line
during its approach to the persistent state, resulting in a
delayed population spike as seen in Figure 2B.
Finally, we briefly present the results of the analysis of the

stability of the persistent state in the approximation of the
slow dynamics. In general, stability requires that the synaptic
strength exceed a certain value Jstab that can be higher than
Jlow (see Methods for derivation and Table 1 for formulas). If,
however, the persistent state’s u-coordinate is larger than u*
(i.e., it lies across the repulsive part of the forbidden line), Jstab
¼ Jlow and the persistent state becomes stable at its inception.
For zero input, I ¼ 0, the persistent state can be computed
analytically, and this condition is satisfied if facilitation is
strong enough (see Methods for derivation):

tf
tr

.
tf
tr

� �
1

[
1� U
U

u�

1� u�

� �2

: ð7Þ

Note that if U is small, this inequality reduces to tf . tr ,
which corresponds to one of the synaptic classes found in the
prefrontal cortex [12]. If

tf
tr

,
tf
tr

� �
1

and Jlow , J , Jstab, the persistent state is unstable, and the
system repeatedly reaches the forbidden line, which results in
a periodic train of population spikes that we term ‘‘bursting’’
(see Figure 6).

Summary of Results for a Single Subpopulation
The results obtained in the previous sections can be compactly

summarizedbydelineating theregions in theparameter spaceof J
and tf /tr, where responses of a recurrent excitatory network to a
transient stimulus are qualitatively different (Figure 6). Themost
significant feature of the phase diagram is the emergence of three
distinct regimes specified by different strengths of facilitation. A
predominantly depressing population

tf
tr

,
tf
tr

� �
0

Figure 5. Slow Dynamics on the x–u Phase Plane

The x nullcline, the u nullcline, and the forbidden line (Jux ¼ 1) are
depicted in blue, red, and black, respectively. Simulated trajectories
(performed in 3-D and projected onto 2-D) are in green. The attractive
part of the forbidden line is shown as a dashed line, and the repulsive
part as a solid line.
(A) For a small input (I¼0.85 Hz), the network has three steady states; circles
indicate the stable steady states, and crosses indicate the unstable ones.
(B) For a high input (I ¼ 8 Hz), the network has only one steady state.
(C,D) Shaded area is the forbidden line’s basin of attraction. Insets show
R(t) for displayed trajectories. J is below and above J* for (C) and (D),
respectively, leading to a smooth transition in (C) and a population spike
in (D).
In all plots, parameter set A is used (see Methods, Table 2), except for J¼
6 in (C) and J ¼ 7 in (D).
doi:10.1371/journal.pcbi.0030035.g005
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can only sustain persistent activity if J . Jhigh, where it emits
an instantaneous population spike after even a very short
stimulus. When tf /tr is above (tf /tr)0, the persistent state can be
reached for lower values of J, with or without emitting a
population spike. The network exhibits an intermediate
bursting activity when J rises above Jlow, and a delayed
population spike for higher J when the persistent state
becomes stable. The slow and reversible development of
persistent activity allows the network to differentiate between
short and long inputs. Finally, for

tf
tr

.
tf
tr

� �
1
;

the persistent state is stable upon inception and can be
reached smoothly without a population spike. We thus see that
the introduction of facilitation opens new parameter regimes
for persistent activity, in which the network behavior is
qualitatively different from that available to a depressing
population. The critical values in Figure 6 are given in Table 1.

Network of Interacting Subpopulations
We now consider a full network comprising P populations

(l, m, . . .), each divided into Q homogeneous subpopulations
(a, b, . . .) (see Figure 1). The synapses within each subpopu-
lation a are described by the parameters tf,a, tr,a, Ua, and Ja. As
described in the Introduction, the connections are strongest
within a subpopulation, weaker between subpopulations of
the same population, and weakest between populations. The
inhibitory connections are structured in a similar manner to
the excitatory ones. The rate equations for the full network
are derived in Methods.

To illustrate the emerging properties of the full attractor
neural network, we present the simulation results with Q¼ 2
subpopulations, one mainly facilitating (as in Figure 2A) and
the other mainly depressing (as in Figure 2C). The inhibition
to the depressing population was assumed to be stronger
than that to the facilitating population, stabilizing the
baseline activity of the former and allowing it to remain at
rest despite suprathreshold external input. We simulated
mean-field equations for a network with P ¼ 10 such
populations (see Methods, Equation 14). The network was
presented with either a short or a long pulse to the first
population. Due to cross-inhibition, only the population that
receives an input exhibits a significant response (Figure 7C
and 7D). Within the responding population, the behavior of
the different subpopulations is qualitatively similar to that
described in the previous sections (cf. Figures 2A, 2C, 7A,
and 7B). The interactions between subpopulations, however,
modify both the attainable steady states and the dynamics of
the network. In particular, a long input drives the depressing
population to its persistent state, but it only remains there
until the facilitating population reaches its persistent state
and inhibits the depressing one. A short input, however, can
trigger the persistent state in the depressing population
without allowing sufficient time for the activity in the
facilitating population to build up. These two profiles of
activity are reminiscent of single-neuron recordings from
the lateral intraparietal area in monkeys performing working
memory tasks [21]. Some neurons displayed a rapid increase
in firing rate upon stimulus presentation, followed by a slow
decrease during the delay period—similar to that of the

Figure 7. Simulation of a Full Network

Two out of ten populations are shown while either a short or a long
input of the same amplitude is delivered to the first population, (A) and
(B), respectively. Each population consists of a facilitating and a
depressing subpopulation, denoted by a ¼ 1,2, respectively (see
Methods). The resulting persistent state depends on the duration of
the stimulus.
(C,D) Response of a representative background population.
doi:10.1371/journal.pcbi.0030035.g007

Figure 6. Summary of Analysis for a Single Subpopulation

Five regions in parameter space with qualitatively different network
behavior are illustrated. The traces shown in blue were obtained with the
following parameter sets (clockwise, beginning from Transient Re-
sponse): A with J¼ 0.8Jlow, A, A with J¼ 1.1J*, A with J¼ 1.1Jhigh, D (see
Methods, Table 2).
doi:10.1371/journal.pcbi.0030035.g006
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depressing subpopulation’s response to a long input in our
simulations. Other neurons exhibited a slow ramping up of
activity during the delay period, like that seen in the
facilitating subpopulation. Although our simulations were
not specifically tailored to reproduce the above experiments,
these similarities raise the possibility that local recurrent
groups of neurons with different synaptic dynamics give rise
to such neural responses.

Discussion

Recurrent excitation can maintain the activity of a cortical
network even after the end of a transient stimulus. Recently,
it was shown that this excitation is conveyed via a variety of
dynamic synapses [12] and hence should lead to a variety of
network behaviors. We showed that the introduction of
strong facilitation lowers the connection strength required
for the network to sustain persistent activity and enables a
slow and reversible transition to persistent firing. On the
other hand, networks with strong depression exhibit a rapid
and transient increase in their population firing rate, termed
a ‘‘population spike,’’ that reflects a near-coincident firing of
a large number of neurons for a short duration [19,20]. Riehle
et al. [22] demonstrated accurate spike synchronization in
relation to events in the motor cortex of monkeys performing
a delayed-pointing task. Our model predicts that multi-
electrode recordings of neurons that are active in the delay
period of working memory tasks can reveal transient
synchronization during the transition to the persistent phase
of firing. It is well-known that neurons in prefrontal cortex
exhibit highly variable dynamic patterns of activity in
response to sensory stimuli, spanning the range from a
transient response to a gradual increase in firing rate [3,23].
Based on the analysis presented in this contribution, we
suggest that this observed variability reflects the presence of
embedded subpopulations of pyramidal neurons with recur-
rent connections of different types.

The addition of dynamic synapses to a recurrent neural
network introduces two novel phenomena: population spikes
and sensitivity to input duration. The first phenomenon
relies on synaptic depression to terminate the increase in
firing rate, while the second one requires the long timescale
of synaptic facilitation. For mathematical simplicity, we chose
a threshold-linear static nonlinearity for the model. We
verified, however, that the qualitative behavior of the
network remains the same for different static nonlinearities.
Specifically, while the actual firing rates and the borders
between different regimes change, neither the presence of
population spikes nor the dependence of the persistent state
on input duration is strongly affected by the specific
nonlinearity chosen.

The analysis in this work was performed in the mean-field
regime, which assumes that the contribution of fluctuations
in the network is small. The cortical activity is, of course,
noisy. The effects of noise can be included in mean-field
models, and the resulting network behavior was shown to be
qualitatively similar (see, e.g., [11]). On the other hand, there
are models that attribute a more dominant role to fluctua-
tions and at the extreme case assume a regime of activity
where excitation and inhibition are balanced, thus eliminat-
ing the mean input [24,25]. It is still not clear in which regime
the cortex is operating in conditions such as working

memory experiments. It will be interesting to examine
whether the balanced regime can be achieved with dynamic
synapses and whether the qualitative results obtained in our
work apply to this case.
We believe that if the different neuronal subpopulations

exist in the cortical areas where persistent activity is
observed, this could have far-reaching implications for the
general attractor neural network theory. According to this
theory, attractors are stable (persistent) states of network
activity that represent long-term memory for items stored in
the network (see, e.g., [5,15]). It is usually assumed that,
depending on which neurons are targeted by the input,
different attractors will be activated, elevating the corre-
sponding item to a working memory state. Our results open
up a possibility that even when the input targets a given fixed
set of neurons, different attractors could be activated,
depending on temporal features of the input, such as its
duration. We illustrated this scenario by the full network
simulation, where two subpopulations receive identical input
(Figure 7). A short input evoked the persistent state in the
depressing subpopulation, with the facilitating subpopulation
remaining at a baseline activity level. A longer input of the
same magnitude, however, caused a transient increase in the
depressing subpopulation’s firing rate followed by the
transition of the facilitating subpopulation to a persistent
state that inhibited the depressing one. Thus, a mutually
exclusive activation of the subpopulations was demonstrated,
where the input duration determines which one of them
converges to a persistent state. This scenario could be
extended to more complex dynamical features of the input
such as its temporal frequency. We propose that this
prediction could be tested experimentally in the monkey
memory experiments, such as delayed saccade tasks, if the
required motor response is made to depend on the temporal
aspects of the cue and not only on its spatial location.

Materials and Methods

Derivation of rate equations. We derive rate equations for the
network of subpopulations in a standard way (see, e.g., [16]), based on
the following simplifying assumptions: (1) sparse representation of
stimuli resulting in nonoverlapping populations, (2) each population
consists of several subpopulations with identical synaptic properties,
and (3) each neuron fires a Poisson train with an instantaneous rate
that is a monotonous function of its synaptic current.

We consider a network of N neurons (labeled i:1 ! N), each
receiving both synaptic and external input. The input current to a
neuron, hi, changes immediately after each spike and decays
exponentially to zero with a time constant s. Effects of short-term
plasticity are described with the model introduced in [17,18]. Each
synapse (ij) is characterized by a set of four parameters: J (absolute
efficacy), U (initial utilization parameter, analogous to release
probability), and tf and tr (time course of facilitation and depression,
respectively). Briefly, the running value of the utilization parameter,
u, is facilitated every time a spike arrives, and decays to its baseline
level, U, with the time constant tf. Correspondingly, the running
fraction of neurotransmitter available, x, is utilized by each spike in
proportion to u and recovers to its baseline value of 1 with the time
constant tr. The neural dynamics of the network are therefore
described by the following set of differential equations:

s
dhi
dt
¼ �hi þ

X
j

Jijxijuijsj

duij
dt
¼

Uij � uij
tf ;ij

þ Uijð1� uijÞsj ;

dxij
dt
¼

1� xij
tr;ij

� xijuijsj ;

ð8Þ
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where sj(t) is a Poisson spike train with a rate Ri that is an
instantaneous monotonic function of hi.

According to the first assumption and the three-tier structuring of
the network, each neuron i belongs to a certain population l and
subpopulation a:

s
dhi
dt
¼ �hi þ

X
mb

X
j2mb

Jijxijuijsj : ð9Þ

We approximate the last sum by the average of the corresponding
variables over a population mb, defining Jla,mb, xla,mb, ula,mb, and Rmb as
corresponding average quantities:

s
dhi
dt
¼ �hi þ

X
mb

Nla;mb Jla;mb; xla;mb; ula;mbRmb; ð10Þ

where Nla,mb is the average number of connections from the entire
subpopulation (mb) to a single neuron in (la). Since the short-term
synaptic dynamics in our model are uniquely determined by the
presynaptic subpopulation, we can replace xla,mb and ula,mb by xmb and
umb, respectively. We absorb the factor Nla,mb into the definition of
Jla,mb and thus have:

s
dhi
dt
¼ �hi þ

X
mb

Jla;mb; xmb; umbRmb: ð11Þ

Note that hi only depends on la and mb, we can thus write

s
dhla

dt
¼ �hla þ

X
mb

Jla;mb; xmb; umbRmb; ð12Þ

where Rmb is taken to be a threshold-linear function of hmb for
simplicity, yielding the following set of mean-field equations:

s
dhla

dt
¼ �hla þ

X
mb

Jla;mb; xmb;umbRmb �
X

m

Jla;mIRmI þ IlðtÞ

dumb

dt
¼ Ub � umb

tf ;b
þ Ubð1� umbÞRmb

dxmb

dt
¼ 1� xmb

tr;b
� xmbumbRmb

s
dhlI

dt
¼ �hlI þ

X
mb

JlI ;mbRmb

Rla ¼ hla
� �

þ
RlI ¼ hlI

� �
þ

Jla;mb ¼
Ja if l ¼ m;a ¼ b
f Ja if l ¼ m;a 6¼ b
g Ja if l 6¼ m

8<
:

JlI ;mb ¼
JIb if l ¼ m

1
P
JIb if l 6¼ m

8<
:

Jla;mI ¼
JbI if l ¼ m

1
P
JbI if l 6¼ m;

8<
: ð13Þ

where [x]þ [ max(x, 0), f and g are numerical factors that define the
relative scaling of synaptic strength in the three-tier structure
described above, and (mI ) is the inhibitory subpopulation associated
with population m.

Steady states of the homogeneous subpopulation. By demanding a
steady state in Equation 1, we get the following equation for R:

R ¼ JuxRþ I½ �þ ¼ J
Rþ tf R2

1=U þ trRþ tf Rþ trtf R2 þ I
	 


þ
; ð14Þ

which for I� 0 givesR¼0 andup to twomore solutions, and for positive
I up to three positive solutions. The value Jlow, for which a positive
solution appears at I¼0, can be found by looking at the maximal value
of Jux in the steady state, and by demanding that it be at least 1:

Jux ¼ J
1þ tf R

1=U þ tf Rþ trRþ tf trR2 ; ð15Þ

JðuxÞpeak ¼
J

"
1� tr

tf
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð1� UÞ

tf U

s #�1
if

tf
tr

.
U

1� U

JU if
tf
tr

,
U

1� U

8>>>>><
>>>>>:

(16)

Jlow ¼
1� tr

tf
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð1� UÞ

tf U

s
if

tf
tr

.
U

1� U
;

1
U

if
tf
tr

,
U

1� U

8>>>>><
>>>>>:

where the condition tf /tr . U/(1�U) is simply the condition for Jux to
have a maximum for positive R. Note that the same condition ensures
that, for small R, Jux is an increasing function of R, and thus JuxR is
convex leading to Equation 3.

Steady states of the 2-D approximation. As mentioned in the text,
we use the separation of timescales to define 2-D dynamics on the
slow variables x and u. Equation 5 allows us to derive formulas for the
nullclines:

du
dt
¼ 0) x ¼ 1

Ju
1þ

tf IUð1� uÞ
U � u

	 


dx
dt
¼ 0) u ¼ 1� x

x Itr þ Jð1� xÞ½ � :
ð17Þ

Stability of the persistent state. This approximation also allows us
to test the stability of the persistent state for small positive inputs. If I
¼ e is the input, then first order we have for x:

x ¼ x 1þ e
tr

Jð1� xÞ þ tf U
Jx� 1
JUx� 1

	 
� �

x ¼

tr
tf
þ J þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr
tf
þ J þ 1

� �2

� 4J
tr

Jtf U
þ 1

� �s

2J

Jux ¼ 1� e
tr

Jð1� xÞ ;

ð18Þ

and for u:

u ¼ u 1� e
tf Uð1� uÞ
U � u

þ tr
J � 1=u

	 
� �

u ¼ U
ðtr þ tf J þ tf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtr þ tf Þ2 þ tf J tf J þ 2ðtr � JÞ

� �q
2ðtr þ tf UJÞ

Jux ¼ 1� e
tf Uð1� uÞ
u� U

:

ð19Þ

This solution is the one corresponding to the persistent state.
There is one unstable solution (obtained by taking the plus solution
of the x quadratic equation) and the spontaneous state solution

x ¼ 1� e
trU

1� JU
; u ¼ U þ e

tf Uð1� UÞ
1� JU

	 

: ð20Þ

We now consider the linearized dynamics:

d
dt

u
x

� �
¼ A

u
x

� �

A ¼ �1=tf 0
0 �1=tr

� �
þ e

ð1� JuxÞ2
Uð Jx� 1Þ UJuð1� uÞ
�x �u

	 

:

ð21Þ

Since 1�Jux’ e, the secondmatrix dominates as e! 0, and we have:

jAj } uUð1� JuxÞ . 0

trðAÞ } JUx� U � u;
ð22Þ

with the condition for stability being tr(A) , 0:
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u . Uð Jx� 1Þ: ð23Þ

For e ! 0, using Jux ’ 1, this condition reduces to

u . u� ¼ Uð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=U

p
� 1Þ

2
: ð24Þ

For J¼ Jlow, there is only one solution to the steady state, and hence
from Equation 19,

u ¼ U tr þ trð1þ JÞ½ �
2ðtr þ tf UJÞ ;

and by combining with Equation 16, we get

tf
tr

.
tf
tr

� �
1

[
1� U
U

u�

1� u�

� �2

: ð25Þ

If tf /tr is smaller than (tf /tr)1, the persistent state is not stable for J¼
Jlow, and solving Equation 24 leads to the stability condition:

J . Jstab ¼
tf þ tr � u�ðtf þ 2trÞ
tf U u�ð1þ 1=UÞ � 1½ � : ð26Þ

Stability of the forbidden line. The 2-D approximation is ill-
defined when Jux¼ 1, which calls for an analysis of the conditions for
this line being attractive. Consider a point �x, ū on this line, and a
point x, u near it:

Jxu ¼ 1
x ¼ �xþ e
u ¼ �uþ d:

ð27Þ

To first order in e,d we have:

1� Jux ¼ �Jð�xdþ �ueÞ
de
dt
¼ aþ b

�xdþ �ue

dd
dt
¼ �c� d

�xdþ �ue

a ¼ 1� �x
tr

.0:

b ¼ I
J2

.0

c ¼ �x� U
tf

.0

d ¼ UIð1� �xÞ
J

.0:

ð28Þ

We are interested in the dynamics for w ¼ �xd þ ūe, which is the
distance from the forbidden line (with negative sign):

dw
dt
¼ ða�u� c�xÞ þ b�u� d�x

w
: ð29Þ

For small w, the condition for the line being attractive is

b�u� d�x.0

�u, u� ¼ Uð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=U

p
� 1Þ

2
:

ð30Þ

Note that this is the same u* from Equation 24. This condition also
defines a minimal J ¼ 1/u* for a population spike to be attainable.
This value is only a lower bound on the actual J* for which population
spikes appear, since these depend on the trajectory actually entering
the forbidden line’s basin of attraction. We were able to calculate J*
numerically by integrating backward in time from (1/Ju*, u*) and
increasing J until the separatrix crossed the spontaneous state.

Simulation parameters. Table 2 shows the four parameter sets that
were used throughout the figures. Any deviation from these values is
described in the text or captions. For the network simulation in
Figure 7, we used Equation 13 with the following parameters: f¼0.1, g
¼ 0.01, JIa¼ (0.5,0.4), and JaI¼ (0.3,0.7). The two subpopulations used
parameter sets A and C (with J ¼ 4.5).
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