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Computational prediction of nucleotide binding specificity for transcription factors remains a fundamental and largely
unsolved problem. Determination of binding positions is a prerequisite for research in gene regulation, a major
mechanism controlling phenotypic diversity. Furthermore, an accurate determination of binding specificities from
high-throughput data sources is necessary to realize the full potential of systems biology. Unfortunately, recently
performed independent evaluation showed that more than half the predictions from most widely used algorithms are
false. We introduce a graph-theoretical framework to describe local sequence similarity as the pair-wise distances
between nucleotides in promoter sequences, and hypothesize that densely connected subgraphs are indicative of
transcription factor binding sites. Using a well-established sampling algorithm coupled with simple clustering and
scoring schemes, we identify sets of closely related nucleotides and test those for known TF binding activity. Using an
independent benchmark, we find our algorithm predicts yeast binding motifs considerably better than currently
available techniques and without manual curation. Importantly, we reduce the number of false positive predictions in
yeast to less than 30%. We also develop a framework to evaluate the statistical significance of our motif predictions.
We show that our approach is robust to the choice of input promoters, and thus can be used in the context of
predicting binding positions from noisy experimental data. We apply our method to identify binding sites using data
from genome scale ChIP–chip experiments. Results from these experiments are publicly available at http://cagt10.bu.
edu/BSG. The graphical framework developed here may be useful when combining predictions from numerous
computational and experimental measures. Finally, we discuss how our algorithm can be used to improve the
sensitivity of computational predictions of transcription factor binding specificities.
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Introduction

Transcription factors (TFs) bind short stretches (usually 6–
18 bp) of DNA near the gene’s transcription start site. This
event is thought to facilitate regulation of expression of the
downstream gene through TF interaction with the RNA
polymerase and other factors in the pre-initiation complex
[1]. Computational identification of transcription factor
binding sites (TFBS) remains one of the most challenging
and important problems at the interface of computational
and experimental research. In general, research in a diverse
array of fields from biophysics to systems biology often
depends on the ability to accurately identify TF binding
propensities and positions. For example, several models of
promoter architecture require knowledge of binding loca-
tions to identify transcriptional logic gates [2] defined, in part
by the relative binding positions of TFs [3,4].

The main in vivo approaches to TF binding site determi-
nation are variants of ChIP–chip assays, and DNA foot-
printing. The former, which is essentially a high-throughput
version of the latter, can identify approximate location of
binding, usually accurate enough to within the length of a
promoter [5,6]. Footprinting can provide exact binding
positions, but it is not easily generalized to high-throughput
studies [7]. Thus, to identify binding positions at the genomic
scale, researchers often combine high-throughput ChIP–chip

experiments with computational algorithms to predict TF
binding sites and nucleotide affinities. Developing TF:DNA
binding models from first principles, however, is complicated
by limited understanding of mechanisms governing tran-
scription factor binding and subsequent transduction of the
polymerase assembly. Instead, several empirically derived
models have been proposed to identify biologically relevant
stretches of promoter regions [8–12]. Most computational
algorithms depend on experimental assays to identify sets of
co-regulated genes and work by recognizing over-repre-
sented, short stretches of DNA.
A recent evaluation of some of these algorithms shows that
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computational treatment of TFBSs is a largely unsolved
problem, with the majority of tested algorithms predicting
less than 50% of binding sites correctly [13]. Several well-
known pitfalls intrinsic to both the biological and computa-
tional sides of this problem plague algorithmic identification
of binding positions. First, the possible space of solutions is
very large, while heuristic approaches often identify local
optima [14]. Even if the algorithms could reliably identify
global optima, empirically derived scoring functions do not
reliably select biologically significant binding sites. Further-
more, the number of bound sites is close to that which could
occur by random chance given the length of most eukaryotic
promoters [15], making identification by statistical over-
representation challenging. The variability in DNA sequence
that retains TF function and allows regulation of the
expression of the downstream gene is unknown. While
distance relative to the transcription start site was recently
shown to be important [16], this observation is not specific
enough to apply in an algorithmic sense to TFBS identi-
fication. Finally, while the range of widths that TFs bind is
largely accepted to be between 6 and 18 bp, an unbiased
estimation for the width of the sequence specific to individual
TFs has proven especially difficult [17,18].

Recent innovations in computational TF motif prediction
have attempted to incorporate orthogonal information to
improve predictions. Position-specific mutation models
[19,20], co-occurrence of binding sites for multiple TFs [21],
and phylogenetic conservation [20,22,23], among other
approaches [11,24], have been proposed as additional
measures. While all these measures can be shown to improve
either accuracy or coverage of computational predictions,
most introduce biases that may narrow their applicability.
For example, requiring strict phylogenetic conservation
automatically excludes identification of evolutionary changes
of transcriptional regulation [16], and those that rely on co-
occurrence of different sites do not help with identifying
binding of a single TF of interest. Several researchers have

also outlined a strategy utilizing the consensus from a variety
of programs to improve accuracy [5]. However, the improve-
ment in accuracy of predictions from adopting this approach
has not been rigorously quantified and consequently not well
understood.
Here, we build on existing computational approaches to

improve prediction of TF binding positions without adding
additional biases that may narrow the scope of application.
We recently showed [25] that extensive repetition of Gibbs
sampling on the same set of upstream promoters, termed
ensemble Gibbs sampling (see Methods), yields a power-law
distribution of hits per nucleotide in each promoter: few
nucleotides are selected very frequently, while the majority of
nucleotides (also representing the majority of the Gibbs
sampling results) are identified infrequently and do not
correspond to biologically relevant results. Simple positional
clustering to select the most frequently recurring nucleotides
improves accuracy of TFBS identification [25]. Here we show
positional clustering can be substantially improved by
considering joint occurrences of nucleotides in the same
motif. These joint probabilities can be represented as a
binding site graph (BSG).
Using a well-established benchmark, we compare the

predictive power of BSGs to 13 other TFBS prediction
algorithms [13]. On yeast datasets, BSGs significantly outper-
form all previously evaluated algorithms in nearly every
measure. In particular, the high percentage of correct
predictions (PPV, positive predictive value) indicates that
the approach is useful for directing downstream experimen-
tal research. Performance on non-yeast benchmarks, how-
ever, is dramatically worse, signifying that more research is
required to reliably predict fly and mammalian regulatory
motifs. We also find that BSG predictions are robust to the
choice and length of input promoters, and thus more likely to
succeed with limited or noisy experimental data. Encouraged
by performance on yeast benchmarks, we use BSGs to predict
the condition-specific nucleotide specificity for most known
TFs in the Saccharomyces cerevisiae genome. Predictions for
previously characterized TFs closely agree with previous
experimental and computational studies. In addition, we
predict 53 novel binding specificities, 16 at high statistical
significance.

Results

A BSG is a graphical model representing the pair-wise
nucleotide co-occurrences in the same motif. Vertices in a
BSG represent nucleotides in the input promoters, and edges
are weighted by an estimated probability of nucleotide co-
occurrence in the same TF binding motif. Edges can be
estimated using a variety of techniques: here, we use ensemble
Gibbs sampling [25] to construct a BSG (Figure 1). Doing so,
we weight the edges by the fraction of the Gibbs sampling
predictions in which two nucleotides co-occur (Figure 1C).
Once a BSG is constructed, it remains to identify the
subgraph of densely connected nucleotides corresponding
to TF binding sites [26]. Various graph properties and
clustering techniques may be useful to identify such clusters.
We focus on the frequency with which pairs of nucleotides in
the cluster co-occur (represented in edge weights), and the
extent to which the cluster is interconnected (measured by
the clustering coefficient, or cliquishness, of the cluster).
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Author Summary

A historically difficult problem in computational biology is the
identification of transcription factor binding sites (TFBS) in the
promoters of co-regulated genes. With increasing emphasis on
research in transcriptional regulation, this problem is also uniquely
relevant to emerging results from recent experiments in high-
throughput and systems biology. Despite extensive research in the
area, recent evaluations of previously published techniques show
much room for improvement. In this paper, we introduce a
fundamentally new approach to the identification of TFBS. First,
we start by representing nucleotides in promoters as an undirected,
weighted graph. Given this representation of a binding site graph
(BSG), we employ relatively simple graph clustering techniques to
identify functional TFBS. We show that BSG predictions significantly
outperform all previously evaluated methods in nearly every
performance measure using a standardized assessment benchmark.
We also find that this approach is more robust than traditional Gibbs
sampling to selection of input promoters, and thus more likely to
perform well under noisy experimental conditions. Finally, BSGs are
very good at predicting specificity determining nucleotides. Using
BSG predictions, we were able to confirm recent experimental
results on binding specificity of E-box TFs CBF1 and PHO4 and
predict novel specificity determining nucleotides for TYE7.
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However, sets of nucleotides that are always identified
together in Gibbs sampling, but do so in very few Gibbs
sampling results, are more likely the result of noise in Gibbs
sampling results than of correct predictions [25]. Therefore,
we employ a generalization of the clustering coefficient to
weighted graphs that evaluates both the number and the
weight of edges in a cluster of nucleotides [27]: thus, such a
low-weight clique of nucleotides will receive a very small
weighted clustering coefficient (Figure 2). To evaluate the
quality of a prediction, we develop a binding site graph score
(BSGscore) that takes into account both the weighted
clustering coefficient and the size of the subgraph. Compar-
ing to a background distribution of sets of randomly selected
promoters, we go on to evaluate the statistical significance of
a BSGscore.

BSG Construction and Prediction of TFBS
Given an input set of promoters, we construct a BSG from

ensemble Gibbs sampling, as shown in Figure 1. Briefly, for
each dataset, we run the sampler until stability 512 times for
each motif width 6–18 bp, producing a total of 6,656
predictions per dataset. We consider the sampler to reach
stability when results do not change over 1,250 updates. For
each prediction, we add an edge between all pairs of
nucleotide positions in the same column of the returned
multiple sequence alignment (Figure 1B). Edges recurring in

multiple Gibbs sampling results are represented by a single
edge with weight w equal to the number of times the edge
occurs normalized by the total number of Gibbs sampling
predictions. Thus, w 2 (0,P], where the maximum edge weight,
P � 1, is the number of times the most frequently recurring
edge is observed divided by the total number of edges in the
graph.
Once the BSG is built, it still remains to predict positions

corresponding to functional TFBS. First, analogous to the
frequency with which Gibbs sampling identifies a given
nucleotide [25], edge weights are power law distributed
(unpublished data), and nucleotides connected with high
edge weights are predictive of TFBS (Figure S1). Second, we
hypothesize that transitively connected nucleotides are
closely related in sequence space. For example, if Gibbs
sampling identified sites 1 and 2 in one run and sites 2 and 3
in another, those sites will have related, but not identical,
sequences. We are interested in differentiating the case where
the Gibbs sampler identifies random sets of k-mers from the
case where the sampler repeatedly predicts the same set of
sites. We hypothesize that the latter case corresponds to
functional TFBS. This information is represented in BSG by
dense clusters of nucleotides connected by high edge weights.
The clustering coefficient of a nucleotide k in a BSG

measures connectivity within the local neighborhood of k
[28]. As the neighborhood of k approaches a clique, where all
neighbors are connected, the clustering coefficient ap-
proaches 1. As the neighborhood of k becomes sparse, where
no neighbors of k co-occur in Gibbs sampling predictions, the
clustering coefficient approaches 0. The standard definition
of the clustering coefficient is limited to unweighted graphs.
However, because edge weights are predictive of functional
TFBS, we use a modified version of the clustering coefficient
that rewards higher edge weights [27] (Figure 2).
To predict TFBS from a BSG, we can use the weighted

clustering coefficient to find sets of nucleotides that are
densely connected with high-weight edges. We will use a
threshold 0 , q � P to filter out all edges with incon-
sequential edge weight (Figure 3). Since dense clusters are

Figure 1. BSG Construction

(A) Vertices of the BSG represent nucleotides in input promoters. Here,
the input nucleotides are represented as points along the perimeter of a
circle. Each disconnected bar along the perimeter of the circle represents
a single promoter, with the transcription start site indicated.
(B) Edges (arcs across the circle) are added to each pair of aligned
nucleotides in a motif resulting from a single Gibbs sampling prediction.
(C) Edges are compiled across ensemble Gibbs sampling results.
Recurring edges are weighted by the number of times they recur, as
indicated by different colored arcs in the BSG. Once all edges are
collected from ensemble Gibbs sampling results, edge weights are
normalized by the most frequently recurring edge.
doi:10.1371/journal.pcbi.0030090.g001

Figure 2. An Illustration of the Weighted Clustering Coefficient: Behavior

of the Weighted Clustering Coefficient of Vertex n Is Shown across Four

Increasingly Sparse Graphs

(A) In the most dense case, each pair of vertices adjacent to n is also
adjacent, and all edge weights are maximal. Thus, n participates in a
maximally weighted clique, and the weighted clustering coefficient is 1.
(B) As edges are removed from the clique, the neighborhood of n
becomes less well-connected, and the clustering coefficient decreases.
(C) Unlike the original definition of clustering coefficient, the weighted
clustering coefficient responds to the decreased intensity of the cluster
resulting from intermediately weighted edges.
(D) Finally, when no edges exist between neighbors of n, the clustering
coefficient goes to 0.
doi:10.1371/journal.pcbi.0030090.g002
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more likely to occur at random in graphs with fewer vertices,
simply maximizing on the weighted clustering coefficient is
biased toward graphs with the fewest nodes (Figure S3). To
account for this, we include a (1� q/ P) term in our BSGscore
to reward larger but perhaps less densely connected sub-
graphs. Thus, for a BSG G and frequency threshold q, we
define the BSGscore:

BSGscoreðq;GÞ :¼ ð1� q=PÞ3 �CwðGqÞ

where �CwðGqÞ is mean weighted clustering coefficient over all
nucleotides in graph G at threshold q. We want to select the
edge weight threshold q̂ that maximizes the BSGscore. To
turn the resulting graph into predicted binding positions in

the promoters, we extract all nucleotides in the BSG
connected by an edge with w.q̂ (Figure 3B). Nucleotides
adjacent in the original input promoters are grouped
together into seed sequences (see Methods, Figure 3C). Often,
we find the seed sequences contain only the most conserved
core of the TFBS. To capture important nucleotides at the
edges, we extend the seed sequences to include neighboring
nucleotides that are also frequently identified by Gibbs
sampling, but perhaps do not pass the stringent cutoff of
the core positions (see Methods). The extended sequences are
then aligned to create a position weight matrix (PWM)
representing the binding motif.
It should be noted that, at this point in the process, the

remaining sequences are generally of similar length, and well-
conserved. Hence, the primary motivation for using a
sampling procedure here is not to define the end points of
the alignment. Instead, we use sampling to solve the problem
that we do not know the strand orientation of each binding
site. The space of all possible permutations of strand
orientations is exponential, and it is unfeasible to explore
exhaustively for even a moderate number of predictions.
Thus, we use sampling to heuristically predict the relative
strand orientation of the predictions. Indeed, other proce-
dures such as expectation maximization would also be
appropriate here, and Gibbs sampling was chosen as a matter
of convenience.
To evaluate the statistical significance of a BSG prediction,

it is important to understand the behavior of BSGscores
under the null hypothesis that no motifs are present in the
input set. We estimated the null distribution of BSGscores in
yeast by calculating the maximal BSGscore from 429 sets of 7–
30 randomly chosen (without replacement) yeast promoters.
The resulting scores follow a generalized extreme value
distribution (Figure 4; p ¼ 0.997, KS test). We found no
significant correlation between the size of the random input
set and the BSGscore. Using this distribution, we can evaluate
the p-value of a BSGscore from a dataset enriched in a TF
binding motif (see Methods). However, dramatic differences
in promoter architecture between species may mean that an
empirically derived background distribution is needed on a
per-species basis. Additionally, we leave for future study a
statistical evaluation of input sets with multiple motifs.

Figure 3. Predicting TFBS within the BSG Framework

(A) First, a BSG is constructed from ensemble Gibbs Sampling. Here, the perimeter of the circle represents promoters, and lines between nucleotides in
the promoters correspond to edges in the BSG. Edges are heat-mapped according to edge weight.
(B) The filtered BSG, obtained by selecting an edge-weight threshold q to maximize the BSGscore, followed by all edges with weight less than q from
the graph.
(C) Final TFBS predictions are made from the filtered BSG by collecting nucleotides contiguous in the original promoters into prediction sequences,
which are returned in fasta format. The promoter region depicted contains two predicted TFBS.
doi:10.1371/journal.pcbi.0030090.g003

Figure 4. Frequency (y-Axis) of BSGscores (x-Axis) for Set of 7–30

Randomly Selected Yeast Promoters (Blue Bars) Compared with the

Probability Distribution of the Estimated Generalized Extreme Value

Distribution (Orange Line)

Empirical and estimated cumulative probability distribution (black
triangles and orange line, respectively) are shown in the inset. The
empirical and estimated distributions are the same with p ¼ 0.997
according to a KS test.
doi:10.1371/journal.pcbi.0030090.g004

PLoS Computational Biology | www.ploscompbiol.org May 2007 | Volume 3 | Issue 5 | e900847

Binding Site Graphs



Whole Genome TFBS Predictions from ChIP–chip in S.
cerevisiae

We used BSGs to predict binding sites for the majority of
TFs in the S. cerevisiae genome using the latest data from
ChIP–chip experiments [5] in a number of experimental
conditions. In total, BSGs predict significant binding motifs
for 118 TF–condition pairs, representing 93 different TFs.
These results compare favorably with the compendium of 124
TF motif predictions presented in MacIsaac et al. [29]: of the
77 TFs with predictions in each set, 59 (77%) are similar (see
Methods). In addition, we predict a different motif for 25 of
our significant TF–condition motifs, representing 22 TFs
(Figure S5). It should be noted that the number of similar and
different motifs combine to be more than the total number of
TFs with predictions in both sets. This discrepancy is
explained by four TFs (MOT3, SFP1, MSN2, and MSN4) for
which we predict condition-dependent motifs. These results
are summarized in Table 1.

Several possible reasons for differences in motif predic-
tions include co-regulation of the same set of genes by
different TFs, identification of statistically significant, but
biologically inert, motifs, as well as false positive predictions.
At the same time, the comparison numbers depend on
arbitrary motif similarity thresholds (see Methods). Since
allowed degeneracy may be TF-specific, using a single cutoff
may not be the optimal approach. However, the agreement
provides a rough estimate of the consistency between BSG
and previously reported experimental and computational
results. Finally, BSGs predict motifs for 18 TFs with
previously unknown affinities (Figure S6) and fail to make a
significant prediction for 47 TFs. Combining BSG predictions
with those in MacIsaac et al. [29] gives a total of 142 TFs with
significant motif predictions. However, experimental valida-
tion may be needed to confirm novel and revised predictions.

To better understand the reasons behind improved
performance of BSGs over traditional Gibbs sampling, we
manually examine select significant (p , 0.1) BSG predictions
that do not agree with the best scoring Gibbs sampling
prediction (Figure 5). For Gibbs sampling predictions, we
chose the motif width that gave the largest MAP score [17].

Here, we only consider predictions that agree with those
previously published. We observed two distinct mechanisms
by which BSGs improve on Gibbs sampling. In some cases,
such as the HSF1 and LEU3 predictions, the best-scoring
result obtained from Gibbs sampling represents only a
fraction of the final motif. These represent cases where,
through integration of several motif widths, the BSGscore
correctly identifies the motif width better than the Gibbs
sampling MAP score [17]. Indeed, when we disregard the MAP
score and manually choose a motif width according to
previous predictions [29], Gibbs sampling identifies the
correct motif for HSF1 and LEU3. In other cases, such as
SIP4, we find manually choosing the correct motif width does
not result in prediction of the correct motif by traditional
Gibbs sampling. Similarly, the Gibbs sampling width for the
prediction of the RDS1 binding motif matches the width of
the previously reported prediction, yet the binding motif
does not match. Thus, we conclude that the BSGscore
contains additional information about correct binding sites
not necessarily present in the MAP score used by Gibbs
sampling. In particular, the BSGscore considers both the
positional information for each motif and the uniqueness of
the nucleotides with respect to the rest of the similarly
scoring predictions from the same set of upstream regions. By
carefully studying the dynamics of BSG building, it may be
possible to incorporate these characteristics into an im-
proved Gibbs sampling procedure and score.
In cases where multiple TFs act together to coordinately

regulate a set of genes, numerous motifs may be enriched in a
set of promoters. Preliminary evidence suggests these motifs
arise as independent connected components in the filtered
BSG. For example, BSGs predict two connected components
for STE12 in YPD: the first component corresponds to the
known STE12 binding motif; the second component is the
binding motif for TEC1. STE12 and TEC1 are known to act
cooperatively to regulate haploid invasive and diploid
pseudohyphal growth. Thus, clustering results into disjoint
connected components allowed identification of two differ-
ent TFs in the same input set. This procedure can be used as a
predictor of sets of collaborating TFs in cis-regulatory
modules. That, in turn, can be used to elucidate major
regulatory switches and sets of genes functional in common
pathways [30–32].

Comparison to Other Algorithms
We benchmarked performance of BSGs against numerous

other motif detection algorithms. We used the same datasets
described in Tompa et al. and evaluated BSG predictions
according to the statistical framework detailed therein [13].
On yeast-specific benchmark sets, high-confidence (p , 0.1)
BSG predictions significantly outperform all tested methods
according to nearly every statistical measure (Figure 6). In
terms of nucleotide correlation coefficient (nCC), an overall
measure of correctness, BSG predictions with p , 0.1
improve upon the second-best predictions by 19%. The only
exception where BSG predictions do not outperform existing
techniques is site-level sensitivity (sSn) [11], where Weeder
outperforms by 13%. Weeder’s sensitivity, however, comes at
the expense of many false positive results, as shown by BSGs’
significant improvement in sPPV over Weeder (72% versus
55%, a 31% improvement). Moreover, BSG seems to be the
only method that predicts many more true positives than

Table 1. Summary of Genome-Wide Predictions of TF Specifi-
cities

Predictions Number

(Transcription Factors)

Binding site graph predictions 118 (93)

Number of previously predicted TFs [29] 124

Predictions in common 101 (77)

Similar predictions 76 (59)

Differing predictions 25 (22)

Novel predictions 18 (18)

TFs not predicted by BSGs with high confidence (47)

Total TFs with a predicted motif (142)

All numbers represent TF–condition pairs, unless otherwise noted. BSGs were used to
predict binding motifs for most TFs in the yeast genomes across a number of
experimental conditions. Comparisons were made to motifs published previously by
MacIsaac et al. [29], as described in Methods. Overall, BSGs compare favorably with the
previously published motifs, while providing alternative and novel motif predictions for a
number of TFs.
doi:10.1371/journal.pcbi.0030090.t001
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false positives, corresponding to a site and nucleotide PPV�
0.50. Unlike other methods evaluated, BSG performance does
not require any manual curation or custom post processing.

Benchmarking with the mouse and human datasets, we
found that the BSG performed among the best six algorithms
in every category except nucleotide specificity, for which
BSGs performed poorly; while performance was good, we did
not observe the broad improvements obtained in yeast

(Figure S4). We believe the performance drop in non-yeast
sets indicates the need to develop species-specific binding site
detection strategies. For example, in the human and mouse
tests, the TF binding sites have a positional bias toward the
transcription start site; the fly examples, however, tend to
contain closely spaced clusters of binding sites. Better
understanding of these differences in promoter architecture
and usage between species will be critical in developing
species-specific BSGscores.

Robustness to Noise in Input Sequences
Another mechanism to assess the efficacy of a TFBS

algorithm is to evaluate the effect of added decoy promoters
on the stability and accuracy of TFBS predictions [33]. Decoy
promoters are intergenic nucleotide sequences that contain
no instances of the TFBS of interest, and may arise through
false positives in prediction of the input set. The effect of
decoy promoters is reduction in the concentration of TF
binding sequences in the input set. For example, 20 instances
of a 10-bp binding site in 20 upstream regions, each 1,000 bp
long, results in about 1/100 signal:noise. If we add 20 more
upstream regions without instances of the same TFBS,
signal:noise would be closer to 1/200. Decreasing the signal-
to-noise ratio confounds identification of binding sites.
Robustness to decoy sequences is necessary to make binding

site predictions from noisy datasets such as high-throughput
microarray experiments. Addition of decoy promoters also
effectively simulates longer upstream regions encountered in
higher eukaryotes. To evaluate BSG robustness to increasing
noise, we first predict TFBS in a core set of promoters that
ChIP–chip experiments predict are coregulated by a common
TF. We then predict binding sites in versions of the core set
augmented by increasing numbers of randomly selected
intergenic sequences from the S. cerevisiae genome. We then
plot PPV with respect to the relative amount of added noise.

Figure 5. Differences between BSG Predictions and Gibbs Sampling

The motif predicted by BSGs is compared with the best-scoring motif from an equivalent amount of Gibbs sampling. In some cases, such as HSF1 and
LEU3, BSGs perform better through better estimation of the width of the motif. In such cases, manually choosing the correct motif width based on a
priori knowledge allows Gibbs sampling to predict the correct motif. In other cases, however, such as SIP4 and RDS1, choosing the best Gibbs sampling
width does not produce the correct prediction. For RDS1, N/A indicates that the motif width reported previously [29] matches the width of the best
Gibbs sampling motif, and thus manually selecting the motif width does not alter the Gibbs sampling prediction.
doi:10.1371/journal.pcbi.0030090.g005

Figure 6. Benchmarked Evaluation of BSG Binding Site Predictions for

Yeast Datasets from Tompa et al. [13]

Performance of BSG predictions are compared with the three best-
performing algorithms according to a previously published evaluation.
Performance measures (x-axis) are nSn (nucleotide sensitivity), nPPV
(nucleotide positive predictive value), nPC (nucleotide performance
coefficient), nCC (nucleotide correlation coefficient), sSn (site sensitivity),
sPPV (site positive predictive value), and sASP (average site perform-
ance). For formulas used to calculate these measures, see Materials and
Methods. BSGs significantly outperform all previous evaluated algo-
rithms in nearly every measure. Most notable are improvements in
nucleotide and site positive predictive value, where predictions from
BSGs achieve values of 0.71 and 0.77, respectively.
doi:10.1371/journal.pcbi.0030090.g006
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We evaluated robustness of BSG predictions to addition of
decoy promoters for four input sets (HAP4, STE12, YDR026C,
and YAP1). We then compare our results with those that
could be expected given an equal amount of independent
Gibbs sampling runs without BSG identification of TFBS. We
find, for all TFs evaluated, the PPV of using BSG predictions
is uniformly superior to Gibbs sampling alone, even for some
predictions with p . 0.1. Moreover, the difference between
the PPV of BSG and Gibbs sampling alone increases with
addition of decoy sequences (Figure 7). We also use the same
framework to compare BSGs with positional clustering of
frequently recurring Gibbs sampling results [25]. As shown in
Figure 7, while positional clustering is useful in improving
binding predictions using ensemble Gibbs sampling, BSGs
allow further improvement. These results indicate BSGs
perform better with noisy input sets that could result from
long eukaryotic upstream regions or inaccurate predictions
of co-regulation.

Specificity Determining Positions for E-Box TFs
We found that BSG predictions for the PHO4, CBF1, and

TYE7 TFs are particularly interesting. Despite regulating

biologically different processes, all three are Helix–loop–
helix proteins that bind the hexameric E-box motif CACGTG.
In the case of PHO4 and CBF1, a high-throughput micro-
fluidics platform able to precisely measure low-affinity
TF:DNA interactions [34] revealed differences in the specific-
ity for E-box flanking nucleotides for PHO4 and CBF1.
Previous computational studies [5,29], however, have
struggled to identify significant differences in binding
affinities. In agreement with the experimentally derived
specificities, the BSG is the first high-throughput computa-
tional approach able to correctly resolve the differences in
specificity of flanking nucleotides for both PHO4 and CBF1
(gCACGTGG and gTCACGTG, respectively, Table S1). Addi-
tionally, BSGs predict an extended TYE7 binding 10mer
(cATCACGTGa, Table S1) that differs from both the PHO4
and CBF1 binding motifs in the flanking nucleotides. We
searched all yeast promoters for exact matches to the
expanded binding motifs. As expected, promoters containing
the PHO4 motif were significantly enriched in phosphate
transport processes. Exact matches to the revised CBF1 and
TYE7 motifs were both significantly enriched in amino acid
metabolism; CBF1 motifs, however, were limited to metabo-

Figure 7. Comparison of Robustness to Noisy Decoy Promoters between BSG Predictions, Positional Clustering [25], and an Equivalent Amount of Gibbs

Sampling Runs (6,656 Gibbs Sampling Predictions)

For each of the signal sets, varying numbers of random S. cerevisiae promoters were added to the original ChIP–chip derived set (x-axis). TFBS
predictions were made using BSGs (circles), positional clustering (triangles), and the best predictions from an equivalent number of iterations of Gibbs
sampling alone (squares). For each set of predictions, the PPV (y-axis) was calculated by comparing the prediction with published motifs as described in
Methods. For BSG predictions, filled, half-filled, and open circles represent p , 0.01, p , 0.1, and p . 0.1, respectively. BSGs attain dramatically higher
PPV than Gibbs sampling alone, especially in the noisiest input sets. In some cases, the PPV does not decrease monotonically with the addition of noise.
This effect is the result of spurious instances of the binding site occurring in the decoy promoters. Although STE12 predictions are not significant, the
well-known motif is almost always discovered. In all STE12 predictions, multiple components were identified in the BSG, highlighting the need to
generalize the p-value to graphs with multiple motifs.
doi:10.1371/journal.pcbi.0030090.g007
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lism of nitrogen R-groups, whereas TYE7 motifs were limited
to metabolism of cysteine. We take this as preliminary
evidence that the newly discovered flanking nucleotides
may play a major role in allowing each E-box binding TF to
regulate a subset of functionally specific proteins.

Discussion

Here, we present a novel approach for determining the
positions and binding affinities to TFs using putatively bound
upstream promoter sequences. BSGs are a departure from
traditional sequence alignment techniques such as Gibbs
sampling primarily because BSGs capture global properties
of promoter input sets that seem to be unique only to sets
that share TFBS. This results in several important advantages
in predicting TFBS using BSGs. First, according to most
independent validation criteria, BSGs are more accurate than
existing techniques. Additionally, we find BSGs are more
robust to noisy decoy sequences than Gibbs sampling with
and without positional clustering. Importantly, positional
clustering provides an intermediate level of improvement
over Gibbs sampling alone. This result suggests the improved
performance of BSG is due to a combination of ensemble
sampling and analysis of graph-theoretical properties of BSGs
[25]. Robustness to decoy sequences may allow BSGs to better
predict binding sites from co-expression data, which is more
prone to false positive predictions than ChIP–chip, and does
not necessarily result in gene sets co-regulated by a single TF.
Second, BSG construction and cluster extraction algorithms
provide an unbiased estimation of motif width that is better
than those based on currently available scoring functions.
This can be seen from examples with HSF1 and LEU3 (Figure
5). Finally, comparing BSGscores to a background distribu-
tion from graphs constructed for random sets of promoters
enables calculations of statistical significance and identifica-
tion of promoter sets lacking significant motif enrichment or
alternatively those that have a high level of noise.

In agreement with earlier observations in synthetic data
[35], our results suggest that unlike random promoter
sequence sets, input promoter sets enriched in binding by a
common TF have densely connected clusters in sequence
space. While we chose to use a simple formulation of the
weighted clustering coefficient to identify these clusters,
other graph clustering approaches can be used to improve
binding specificity predictions from BSGs. In their previous
work, Pevzner and coworkers suggested using graphical
models to predict TFBS [35]. In that work, the authors
dissected a simple formulation limited to exactly one binding
site per promoter, a fixed-motif width, and a maximum
number of mutations per binding site. The authors proposed
using graphs that form cliques to identify TFBS. While useful
formulations from a theoretical perspective, constraints
presented in that paper are limiting from a practical point
of view. Our BSG approach does not make any of the above
assumptions on motif structure or occurrence. Thus, we were
able to apply BSGs to real datasets and successfully identify
binding positions with superior accuracy.

The graph-construction technique described here uses
ensemble Gibbs sampling across a range of motif widths.
We observed that sampling at widths close to the biologically
relevant motif width will contribute higher-edge weights to
the final graph than sampling far from the biological motif

width, which mostly contributes nucleotides at the edges.
Combining predictions for each motif width, we can predict
the width of the biological motif. According to case studies of
LEU3 and HSF1, this strategy results in more accurate
identification of motif widths as compared with existing
scores. Alternatively, we could evaluate a graph for each
possible motif width, and select predictions from the best-
scoring graph. Constructing a graph for each motif width,
however, would require the ensemble sampling procedure to
be repeated many times (once for each width of interest).
Doing so is computationally infeasible with available tech-
nology; we leave a comprehensive analysis of this strategy for
a future study.
Ultimately, using ensemble Gibbs sampling to build BSGs is

limited by the sensitivity of Gibbs sampling; thus, construct-
ing BSGs using sampling from more sensitive, faster, or a
combination of algorithms [25] may improve performance.
BSGs can also aid in integrating ensemble sampling with
diverse biological data such as distance from transcription
start site; histone localization; free radical cleavage; DNA
bending; and phylogenetic conservation into a coherent,
unified framework for identifying TFBS [36].
Finally, we used BSGs to predict nucleotide specificity for

the majority of TFs in the S. cerevisiae genome using input sets
generated from the recently performed whole-genome ChIP–
chip experiments. We found some interesting patterns that
may be used to control the quality of the data or further our
understanding of the interactions between coordinately
acting TFs. For example, numerous sets of TFs, based both
on our predictions and those of other independent studies,
have very similar nucleotide specificity (for example: STE12
and DIG1; PHO4, CBF1, and TYE7). In the case of STE12 and
DIG1, protein domain analysis indicates the lack of a known
DNA binding domain in one of the proteins (DIG1), and
experimental evidence shows that STE12 and DIG1 physically
interact [37]. As such, it is likely that DIG1 does not directly
bind DNA, but instead co-precipitates with STE12 through
formaldehyde crosslinking of protein–protein interactions in
ChIP–chip experiments [38,39]. Motif similarity may also
stem from cooperative or competitive binding between the
factors. Importantly, the increased accuracy of BSG predic-
tions allowed us to predict specificity-determining nucleo-
tides for the E-box TFs PHO4, CBF1, and TYE7 [34]. Two out
of the three extended predictions were independently
confirmed by recently published experimental results. The
third is awaiting further validation.

Materials and Methods

Ensemble Gibbs sampling. We use a threshold Gibbs sampling
strategy similar to BioProspector [17]. Briefly, the threshold sampling
strategy uses a high threshold to allow inclusion of multiple
sequences per promoter, and a low threshold to allow reporting of
no sequences in a promoter. The high threshold is set proportional to
the product of the average promoter length and the window width,
while the low threshold is initialized to 0, and increased linearly to an
upper bound. For a complete description of threshold sampling, see
Liu et al. [17]. Additionally, we include a third-order background
model from genomic promoters, and a modified motif score (p2i;j
instead of pi,j), which we found better emphasized conservation within
motif predictions:

Motif Score ¼ N 3 exp
X

positions i

X
nucleotides j

p2i; jlog
pi; j
qi; j

� �

where N is the number of aligned segments in the motif, pi,j is the
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probability of nucleotide j at position i in the motif, and qj is the
probability of nucleotide j in the third-order background [17]. We
sample until stability (predictions do not change over 1,250 updates)
60 iterations and select the single best-scoring motif observed as a
single prediction. We found running the sampler for more stable
updates did not significantly alter results.

To evaluate the ensemble Gibbs sampling predictions for a set of
input promoters, we mask low-complexity sequences, and proceed to
collect 512 Gibbs sampling predictions at each motif width from 6–18
bp. In total, 6,656 binding site predictions are collected from 60 3
6656¼ 399,360 Gibbs sampling iterations. The number of predictions
used was selected to ensure stability in graph construction, and we
found performance deteriorated significantly when constructing
graphs from fewer sampling predictions. High-performance comput-
ing was utilized to perform the ensemble sampling, requiring between
30 min and 5 h of running time on 1024 3 700 Mhz PowerPC 440
processors. While BSG construction currently requires access to high-
performance computing, advancements in the algorithm, Gibbs
sampling, and computer technology may all help to make the
approach more accessible.

Binding site graph. A BSG is a weighted, undirected graph G: ¼
(V,E) where each vertex v 2 V corresponds to a nucleotide in the
input set of promoters, and each edge e 2 E indicates the alignment of
a pair of nucleotides in a binding site for the same TF. Each edge e has
weight we that measures the similarity between nucleotides as
estimated using Gibbs sampling.

We also introduce a threshold BSG, constructed by removing all
edges with weight less than threshold q 2 [0,1] from graph G.
Formally, Gq:¼ (Vq,Eq) where Eq � E and e 2 Eq$ we � q; and Vq � V
and v 2 Vq $ fv has at least one edge in Eqg.

Binding site graph construction. For a set of input promoters, we
initialize the BSG with one vertex for each nucleotide in the input set,
and with no edges (Figure 1A). We evaluate the ensemble behavior of
Gibbs sampling over the input. For each pair of aligned nucleotides
in each sampling result, we add a unit weight edge between the
corresponding vertices in the BSG (Figure 1B). Therefore, if a binding
site prediction aligns N segments, each w nucleotides long, we add w �
n(n � 1) / 2 edges to the BSG. If an edge already exists, we instead
increase the edge weight by 1. Thus, we weigh each edge by the
number of times ensemble Gibbs sampling predictions align the
corresponding nucleotides (Figure 1C). After collecting edges from
all predictions, we normalize edge weights to [0,1] through division by
the maximal possible edge weight (i.e., the number of Gibbs sampling
results collected).

Weighted clustering coefficient. For a vertex k, let v be the number
of vertices adjacent to k, and let t be the number of triangles
containing k. The clustering coefficient [28], is defined as:

CðkÞ :¼ 2
t

vðv� 1Þ

Intuitively, the clustering coefficient is the probability that any two
vertices adjacent to k have an edge between them. In the dense
extreme, when k resides in a clique, all vertices adjacent to k have an
edge between them and the clustering coefficient is 1. In the sparse
extreme, when k resides in a tree, no edge exists between any two
neighbors of k and the clustering coefficient is 0. The clustering
coefficient is undefined when k has less than two adjacent vertices; in
such cases, we let C(k) ¼ 0.

Numerous generalizations of the clustering coefficient to weighted
graphs have been proposed [40,41]. We use a definition that weights
each triangle by its intensity [27]:

CwðkÞ :¼ 2
P

i; jðwikwkjwijÞ
1
3

vðv� 1Þ

where wij is the weight of the edge connecting vertices i and j. The
weighted clustering coefficient of a graph G is the average weighted
clustering coefficient over the vertices in G [28]:

�CwðGÞ :¼ 1
jV j

X
v2V CwðvÞ

Binding site graph TFBS prediction. We predict binding sites from a
BSG G using a two-step process. First, we select a threshold q̂ that
maximizes the BSGscore,

q̂ ¼ arg max
q¼½0;1�

fBSGscoreðq;GÞg

where BSGscoreðq;GÞ :¼ ð1� q=PÞ3 �CwðGqÞ, P is the maximal edge

weighted observed in G, and �CwðGqÞ is the mean weighted clustering
coefficient of the BSG filtered at q (see above). A final BSG
Gq̂ :¼ ðV q̂;Eq̂Þ is then created by discarding all edges with weight
,q̂, and the remaining nucleotides (V q̂) are collected. To convert the
collected nucleotides into binding sites, nucleotides adjacent in the
original input promoters are joined together into contiguous
segments. The segments then serve as seeds for TF binding site
predictions. We dust-filter single nucleotide segments from the seeds,
and expand the remaining seeds according to a seed extension
threshold s. To do so, we evaluate the strength of each nucleotide n in
the unfiltered BSG,

sn ¼
XN
i¼1

wn;ian;i

where wn,i is the edge weight between nucleotides n and i, and an,i is a
delta function equal to 1 when an edge exists between n and i, and
equal to 0 otherwise [41]. The strength of each nucleotide is
normalized to si 2 [0,1].

Nucleotides adjacent in the original input promoters are grouped
together into seed sequences. Initial seeds are then extended to
include adjacent 59 and 39 nucleotides with s . s. At the most
sensitive extreme (s ¼ 0), initial seeds are maximally extended by
including all neighboring nucleotides identified by Gibbs sampling.
At the most specific extreme (s ¼ 1) the initial seeds are returned,
without extension, as predictions. Between these extremes, a tradeoff
between sensitivity and PPV is made (Figure S2). For the purposes of
this study, we used a seed extension threshold of s ¼ 0.7, but other
values may be more appropriate for different research needs. Lastly,
the extended seeds are dust-filtered to remove predictions 6 bp or
shorter.

Performance evaluation. We evaluate BSG performance using the
datasets and statistical measures described in Tompa et al. [13].
Briefly, Tompa et al. create a number of synthetic and real input
promoter sets with known binding sites. While the study evaluates
input sets from four species (Homo sapiens, Mus musculus, Drosophila
melanogaster, and S. cerevisiae), performance of each tool on non-yeast
datasets was dramatically worse and for poorly understood reasons.
Thus we limit our evaluation to the better understood S. cerevisiae
input sets. We predict binding sites for each input set, and evaluate
results according to a number of statistical measures. We compare
performance in each measure with the published evaluations of 13
existing methods.

We calculate statistical measures as follows. At the nucleotide level,
true and false positives and negatives (nTP,nTN,nFP,nFN) are
counted through comparison with nucleotides in the known binding
sites in each input set. At the site level, true positives, false positives,
and false negatives (sTP, sFP, sFN) are counted. A true positive (sTP)
is defined as a predicted site that overlaps a known site for at least
25% of the known site.

Based on these counts, we calculate the following nucleotide (x¼n)
and/or site (x¼ s) level measures:

Sensitivity: xSN: ¼ xTP/fxTPþ xFNg
Positive Predictive Value: xPPV: ¼ xTP/fxTPþ xFPg
Specificity: nSP: ¼ nTN/fnTN þ nFPg
Correlation coefficient [42]:

nCC ¼ nTP � nTN � nFN � nFPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTP þ nFNÞðnTN þ nFPÞðnTP þ nFPÞðnTN þ nFNÞ

p
Performance coefficient [35]: nPC: ¼ nTP/fnTPþ nFN þ nFPg
Average Site Performance: sASP: ¼ fsSnþ sPPVg/2
For a more detailed discussion of statistical measures used, see [13].
Motif–motif alignment. We use a PWM to represent TF binding

motif predictions [43,44]. To align PWMs, we use a dynamic
programming implementation of a modified ungapped local
sequence alignment [45] similar to that of Pietrokovski [46]. Similarity
between positions in two motifs was measured using Pearson’s
correlation coefficient:

rðXi;YjÞ ¼
covðXi;YjÞ

rXirYj

;

Where Xi is the distribution of nucleotides at position i in motif X;
rXi is the variance at position i in motif X; and cov(Xi,Yj) is the
covariance of nucleotides at position i in motif X with nucleotides at
position j in motif Y. Alignment scores range from 0, representing no
positions aligned, to the length of the shorter of the two motifs,
representing a perfect match between the two PWMs.

PLoS Computational Biology | www.ploscompbiol.org May 2007 | Volume 3 | Issue 5 | e900852

Binding Site Graphs



A BSG PWM was considered to match to a previously published
PWM if the ratio of the above alignment score (i.e., the optimal local
Pearson’s correlation coefficient) to the information content of the
previously published PWM [47] is greater than 0.375. It is important
to note that the correlation coefficient is at most w, with width of the
alignment, whereas the mutual information is at most 2w.

Robustness to noisy sequences. We use ChIP–chip assays [38] to
identify sets of S. cerevisiae promoters bound with high confidence (p
, 0.001) by the TFs STE12, HAP4, and YDR026C in YPD growth
media; and YAP1 in low hydrogen-peroxide conditions [5]. For each
set, we collect promoter sequences (up to 1 kb upstream) to serve as a
seed input for binding site predictions.

We construct noisy input sets by supplementing each seed set with
increasing numbers of randomly chosen S. cerevisiae promoters. We
predict TF binding sites in the seed and noisy sets using both BSGs
and Gibbs sampling. We label results as true or false positive (TP,FP)
according to motif–motif alignment scores between the predicted
and the known TF binding motif [25], and calculate the PPV:

PPV :¼ fTPg=fTP þ FPg

i.e., the percentage of predictions similar to the known binding motif.
Genomic S. cerevisiae TF binding motif prediction. We use ChIP–

chip data [5,6] to create input sets for all TFs under every condition
studied, as described previously. We use BSGs to predict TF binding
motifs for each set containing more than four bound probes. The
results of the genomic study are available online at http://cagt10.bu.
edu/BSG.

Supporting Information

Figure S1. ROC Curve of Binding Site Predictions Made by Selecting
Nucleotides Connected by Highly Weighted Edges

BSGs were constructed for all yeast input sets from Tompa et al. For
each data point, an edge weight threshold was selected, and all edges
with lower weight were removed from the BSGs. Isolated nucleotides
were discarded, and the remaining nucleotides used as TFBS
predictions. Sensitivity and specificity were evaluated as described
in Tompa et al. (see Methods), and averaged over all BSGs. Increasing
the edge weight threshold results in nearly uniform increase in PPV
(inset), and a corresponding improvement in specificity at the
expense of decreased sensitivity.

Found at doi:10.1371/journal.pcbi.0030090.sg001 (267 KB TIF).

Figure S2. Effect of Seed Extension Threshold on Nucleotide
Sensitivity and on Nucleotide Positive Predictive Value

BSGs at varying seed extension thresholds (x-axis) were used to
predict TFBS in a series of real and synthetic datasets constructed by
Tompa et al. [13]. Increasing the seed extension threshold exchanges
nucleotide sensitivity (open triangles) for nucleotide PPV (closed
triangles). Variations in the threshold had little or no effect on site
sensitivity or site PPV (unpublished data).

Found at doi:10.1371/journal.pcbi.0030090.sg002 (218 KB TIF).

Figure S3. Behavior of the Mean Weighted Clustering Coefficient in
BSGs for Signal Sets (Colored Lines with Symbols) and Control Sets
(Black Lines)

At each edge weight threshold (x-axis), edges with subthreshold
weight are removed from the graph, and isolated nucleotides
discarded. The weighted clustering coefficient is averaged over the
remaining nucleotides (y-axis). Two trends are evident. First, signal
sets uniformly attain a higher maximal weighed clustering coefficient
(inset). Second, there is generally a positive correlation between mean
clustering coefficient and edge weight thresholds in signal sets.

Found at doi:10.1371/journal.pcbi.0030090.sg003 (106 KB TIF).

Figure S4. Receiver Operating Characteristic of BSG Performance in
Yeast, Mouse, and Human Benchmarks

Points were collected at each level of statistical significance. While
BSGs are predictive for each organism, performance on Yeast
promoter sets is superior to that on mammalian systems.

Found at doi:10.1371/journal.pcbi.0030090.sg004 (115 KB TIF).

Figure S5. BSG Prediction of 11 Significant (p , 0.1) Motifs That
Differ from Previously Published Predictions [29]

Differences in prediction may be due to erroneous prediction,
coordinated regulation by multiple (possibly physically interacting)
TFs, or condition-dependent TF specificities.

Found at doi:10.1371/journal.pcbi.0030090.sg005 (645 KB TIF).

Figure S6. Novel TF Binding Specificities Predicted Using the BSG
Framework Detailed Herein

In total, BSGs predicted 53 TF specificities for which no previous
predictions exits. Displayed are 17 such predictions with p , 0.1.

Found at doi:10.1371/journal.pcbi.0030090.sg006 (645 KB TIF).

Table S1. Resolving the Nucleotide Specificity of E-Box Binding TFs

The yeast TFs PHO4, CBF1, and TYE7 are all known to bind E-box
motifs but regulate distinct functions. For each factor, the BSG
predicts distinct nucleotides flanking the core E-box hexamer
CACGTG that may be useful to confer E-box motif specificity to
these TFs.

Found at doi:10.1371/journal.pcbi.0030090.st001 (27 KB DOC).
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