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Advances in the computational identification of functional noncoding polymorphisms will aid in cataloging novel
determinants of health and identifying genetic variants that explain human evolution. To date, however, the
development and evaluation of such techniques has been limited by the availability of known regulatory
polymorphisms. We have attempted to address this by assembling, from the literature, a computationally tractable
set of regulatory polymorphisms within the ORegAnno database (http://www.oreganno.org). We have further used 104
regulatory single-nucleotide polymorphisms from this set and 951 polymorphisms of unknown function, from 2-kb and
152-bp noncoding upstream regions of genes, to investigate the discriminatory potential of 23 properties related to
gene regulation and population genetics. Among the most important properties detected in this region are distance to
transcription start site, local repetitive content, sequence conservation, minor and derived allele frequencies, and
presence of a CpG island. We further used the entire set of properties to evaluate their collective performance in
detecting regulatory polymorphisms. Using a 10-fold cross-validation approach, we were able to achieve a sensitivity
and specificity of 0.82 and 0.71, respectively, and we show that this performance is strongly influenced by the distance
to the transcription start site.
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Introduction

Our ability to identify the molecular mechanisms respon-
sible for specific genetic traits within our population will be
enhanced by our imminent ability to decipher each individ-
ual’s genome. This is evident from recent advances in
sequencing and genotyping technologies, which allow an
increasing number of variants to be sampled for association
and linkage (reviewed in [1–3]) and contribute a growing
number of sources of variation and their frequencies to
public databases each year. As new variants are identified,
each becomes a molecular window into our past, present, and
future—each aids in tracing our genetic heritage and in
charting the footsteps of our common evolution, and
possesses the potential to predict disease or drug suscepti-
bilities, ideally acting as an early-warning system in preven-
tative medical practice (reviewed in [4,5]). However, our
ability to catalog genotypes has far outstripped our ability to
implicate them in phenotypes. Currently, more than 6 million
unique single-nucleotide polymorphisms (SNPs) are included
in version 126 of dbSNP [6]; of these SNPs, only a very small
fraction have been associated with a phenotype using genetic
association or linkage analysis. This is because association
studies are costly, time-consuming, and dependent on the
frequency of the genotype in the sampled population.
Furthermore, many SNPs are not necessarily expected to
have a function. To select candidates for functional valida-
tion, computational methods have been developed to identify
SNPs that alter the protein-coding structure of genes [7–16].
These types of computational methods tend to prioritize
putative functional SNPs by identifying those SNPs that alter
a protein’s amino acid sequence, are located within well-
conserved regions or functional protein domains, and alter
the biochemical structure of the protein. However, very few
methods identify regulatory SNPs (rSNPs) that alter the

expression of genes. Such rSNPs have been implicated in the
etiology of several human diseases, including cancer [17,18],
depression [19], systemic lupus erythematosus [20], perinatal
HIV-1 transmission [21], and response to type 1 interferons
[22]. This work aims to extend computer-based techniques to
identify this particular class of functional variants within the
core promoter regions of human genes.
Conventional computational approaches to rSNP classifi-

cation have predominantly relied on allele-specific differ-
ences in the scoring of transcription factor weight matrices as
supplied from databases such as TRANSFAC and Jaspar
[15,16,23]. SNPs located within matrix positions possessing
high information content are assumed more likely to be
functional. Support for this hypothesis to date, however, has
been restricted to single-case examples. Furthermore, a
recent study has failed to detect significant weight matrix
signals in 65% of regulatory polymorphisms (n ¼ 40) [24].
However, the prevailing hypothesis in computational regu-
latory element prediction has been that the majority of
predictions using unrestricted application of matrix-based
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approaches are false positives. By extending this technique
and using phylogenetic footprinting between mouse and
human, it was demonstrated that from ten SNPs that show
significant allele-specific differences in Jaspar predictions,
seven also demonstrated electrophoretic mobility shift differ-
ences [23]. However, only two of the seven had a marked
effect in reporter gene assays. Conservation alone has also
been demonstrated as a poor discriminant of function in a
study of regulatory polymorphisms in Eukaryotic Promoter
Database promoters, where zero of ten experimentally
validated regulatory variants were in conserved binding sites
[25].

A substantial challenge with developing strategies for
identifying functional noncoding variants has been the
shortage of characterized regulatory variants. Few studies
have successfully identified the causative variant(s) after a
susceptibility haplotype is identified. To address this prob-
lem, we have assembled the largest openly available collection
of functional regulatory polymorphisms within the ORegAn-
no database (http://www.oreganno.org) [26]. From this dataset,
we have examined several features of these SNPs as they
relate to polymorphisms of unknown function (ufSNPs)
within the promoter regions of associated genes (up to 2
kb). Our hypothesis is that using a combination of regulatory
and population genetics properties, the discriminative
efficacy of individual properties can be evaluated, and
significant predictors of rSNP function can be chosen. Within
our assayed set, we have found that the best discriminants are
the distance to the transcription start site (TSS), local
repetitive density and content, sequence conservation, minor
allele frequency (MAF) and derived allele frequency, and CpG
island presence. Notably, the unrestricted application of a
matrix-based approach is demonstrated to be one of the least
effective classifiers.

We have used this dataset of rSNPs and their properties to
train a support vector machine (SVM) classifier. Two
approaches were used to train the classifier: one in which
the properties of all rSNPs were compared with that of all the
ufSNPs, and one in which each property value of the positive
SNPs and ufSNPs within an associated gene were compared
with the average values for each property within that gene
(referred to here as the ‘‘All’’ and ‘‘Group’’ approaches,
respectively). The All approach is designed to determine if
there are any properties that are important across the test set,

while the Group approach is designed to determine if there
are important directional shifts in values within a promoter
that may discriminate functional SNPs from ufSNPs. In a 10-
fold cross-validated test, the SVM achieves a receiver
operating characteristic (ROC) value of 0.83 6 0.05 for the
All analysis (sensitivity, 0.82 6 0.08; specificity, 0.71 6 0.13)
and 0.78 6 0.04 for the Group analysis (sensitivity, 0.72 6

0.19; specificity, 0.68 6 0.07).

Methods

Data
Literature describing noncoding polymorphisms respon-

sible for allele-specific differences in gene expression was
surveyed from PubMed [27]. From this literature, 160
regulatory polymorphisms were identified in 103 publica-
tions; each was selected based on experimental evidence that
confirmed its direct role in altering gene expression. This
selection criterion specifically excluded those polymorphisms
in which the experimental evidence could only confirm that
the reported polymorphism was in linkage disequilibrium
with an rSNP. Each identified rSNP was manually curated in
the ORegAnno database. Subsequently, 104 polymorphisms
were selected based on the criteria that they were SNPs
(excluding seven insertion–deletion polymorphisms), and
were within 2 kb of the TSS of their associated gene (as
annotated in version 37 of EnsEMBL [28]; Table 1). A 2-kb
region was chosen to maximize the number of rSNPs
included while minimizing the size of sequence investigated;
at 2 kb, the addition of a single further rSNP would increase
the surveyed region by 43%, whereas the previous addition
resulted in an increase of 9%. At this window size, 39 rSNPs
were excluded from analysis. An additional ten polymor-
phisms were excluded because of deprecated annotation of
the gene or discordant genomic location with the associated
gene. In total, the remaining 104-rSNP set contained poly-
morphisms involved in altering the expression of 78 different
transcripts.
Using each of the 78 transcripts, SNPs within 2 kb of the

TSS were extracted from version 37 of EnsEMBL (dbSNP
version 125), producing exactly 951 ufSNPs. The ufSNP and
rSNP genomic locations have been mapped (see Table S1).

Investigated Properties
A total of 23 different properties of relevance to assessing

regulatory function were calculated for each SNP in both the
104-rSNP and ufSNP sets (Table 1). These properties were
selected to represent a cross-section of well-documented
methodologies for assessing the functional significance of
both allele-specific changes and DNA sequences within
noncoding regions.

Test Data Design (All and Group)
Two types of analyses were conducted using the inves-

tigated properties. One was an all-versus-all approach, where
the 104-rSNP and ufSNP sets were compared en masse. The
other was a group analysis, where the average value of each
property within each upstream noncoding region was first
calculated, and then the individual SNP properties within
that region were recalculated as the difference from this
average. The All test data were designed to identify global
characteristics of rSNPs, while the Group test data were
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Author Summary

Computational techniques are used in biology to prioritize DNA
sequence variants (or polymorphisms) that may be responsible for
population diversity and the manifestation of species-specific traits.
Predominantly, they have been used to predict the class of
polymorphisms that alter protein function through allele-specific
changes to amino acid composition. However, polymorphisms that
alter gene expression have been increasingly implicated in
manifestation of similar traits. Prioritization of these polymorphisms
is challenged, though, by the lack of knowledge regarding the
mechanisms of gene regulation and the paucity of characterized
regulatory polymorphisms. Our work attempts to address this issue
by assembling a collection of regulatory polymorphisms from the
existing literature. Furthermore, we use this collection to investigate
and prioritize various properties that may be important for
identifying novel regulatory polymorphisms.

Computational Discrimination of rSNPs



Table 1. Investigated Properties

Property

Number

Investigated

Property

Type Methodology Description

1 TRANSFAC Allele-specific Database,

matrix similarity

An allele-specific TRANSFAC (version 7.2) analysis was performed by individually

running TRANSFAC (for all transcription factor–binding matrices with a prediction

level cutoff of 80%) for both alleles and calculating the absolute cumulative dif-

ference in predicted binding site scores. Ds ¼ Rp¼i[j
f actor¼n;n2p j(score(r)factor �

score(v)factorj. Here, Ds is the absolute cumulative difference in the predicted bind-

ing site scores between the set of predicted factors, i, from the reference allele

and the set of predicted factors from the variant allele, j. For example, in situa-

tions where a binding site is predicted for both alleles, the calculated score is the

magnitude of the difference between the allele-specific scores; it is the absolute

difference between score(r) and score(v). If a binding site, however, is predicted

for only one allele, the magnitude is the value of the prediction score (either

score(r) or score(v)). This calculation generalizes many similar, previously reported

methods based on allele-specific weight matrix calculations [16,23,38].

2 oPOSSUM Allele-specific Database,

matrix similarity,

coexpression

Coexpression data was extracted from the Tmm coexpression set published by

Pavlidis et al. [39]. This set was chosen because it comprises a large cross-section

of microarray experiments from various human cell lines. For each target gene,

coexpressed genes were broadly selected based on at least one study reporting

coexpression (i.e., Tmm score � 1). oPOSSUM was run to short-list a set of tran-

scription factor–binding matrices for allele-specific analysis (as in the TRANSFAC

test above) [40]. This property was designed to assess whether a subset of tran-

scription factor–binding sites selected based on biological relevance would im-

prove assessing the functional significance, if any, of the allele-specific changes.

3 Weeder

(difference)

Allele-specific Motif discovery,

evolutionary

conservation

For each SNP, a 1-kb, evenly flanking, DNA sequence was retrieved from EnsEMBL

(NCBI35). The EnsEMBL compara database was subsequently used to retrieve pre-

calculated orthologous sequences from completed genomes (using BLASTZ_NET

[41]); specifically, sequences from chimpanzee, rhesus macaque, mouse, dog, rat,

and chicken were used. A Weeder [42] and MotifSampler [43] analysis was per-

formed by separately inputting both canonical and variant human sequences

(the 1-kb sequences with the respective alleles in situ) with the set of associated

orthologues and separately recording the difference in predicted scores (differ-

ence) and the maximum score (maximum) for predicted motifs overlapping the

polymorphism. The difference score was used to measure how an allele-specific

change affects scoring. The maximum score was used to measure whether the

polymorphism was in a high-scoring motif (regardless of allele). To improve the

probability of detecting the desired motif, Weeder was set to detect 500 motifs,

and MotifSampler was seeded with 25 bp around the polymorphism. For Motif-

Sampler, a background file was supplied containing 745 regulatory regions anno-

tated in ORegAnno as of January 2006 (supplied as Text S1).

Weeder and MotifSampler were both selected because of their different ap-

proaches to motif discovery (Weeder is enumerative and MotifSampler is based

on optimizing an objective function) and because they have been previously de-

monstrated to have moderately complementary performance characteristics [44].

A 1-kb region was selected to allow duplicated motifs to contribute to the scor-

ing function and to permit relaxed positional constraint on contributing motif lo-

cation.

4 Weeder

(maximum)

Allele-specific Motif discovery,

evolutionary

conservation

(same as above)

5 MotifSampler

(difference)

Allele-specific Motif discovery,

evolutionary

conservation

(same as above)

6 MotifSampler

(maximum)

Allele-specific Motif discovery,

evolutionary

conservation

(same as above)

7 DNA bendability Allele-specific DNA structure,

sequence

composition

A DNA bendability and curvature analysis was performed on canonical and var-

iant sequences (the 1-kb sequences assembled for Weeder and MotifSampler,

above) using an implementation of the BEND algorithm called ‘‘banana’’ and

packaged in the EMBOSS toolkit [45,46]. ‘‘Banana’’ predicts bending and curva-

ture of a normal B-DNA double helix. The magnitude of the allele-specific differ-

ence between each was reported. The effects of DNA structure on gene regula-

tion in mammalian systems remains largely unascertained; however, previous

characterization in bacterial systems has demonstrated its role in creating condi-

tions suitable for transcription factor binding [47,48].

8 DNA curvature Allele-specific DNA structure,

sequence

composition

(same as above)
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Table 1. Continued.

Property

Number

Investigated

Property

Type Methodology Description

9 GC content Allele-specific DNA structure,

sequence

composition

The effects on local GC content and thermodynamic stability (melting tempera-

ture) of the DNA sequence were assessed using the ‘‘dan’’ application packaged

in the EMBOSS toolkit [44]. For thermodynamic stability calculations, ‘‘dan’’ uses

free energy values calculated from nearest-neighbor thermodynamics [49,50]. The

presence of functional transcription factor–binding sites in GC-rich sequences has

been previously demonstrated [51,52]. Similar to analyzing DNA bending and cur-

vature, we used thermodynamic stability calculations to measure whether allele-

specific changes to the kinetics of the DNA sequence would be functionally con-

strained.

10 DNA thermodynamics Allele-specific DNA structure,

sequence composition

(same as above)

11 Minor allele frequency Allele-specific Population property MAFs were obtained from dbSNP (version 125) directly using the ‘‘eutils’’ service.

Each allele frequency was calculated by averaging frequencies across all available

populations. Derived alleles were obtained by aligning a 1-kb human region cen-

tered on the polymorphism with orthologous chimpanzee sequence in ClustalW.

They were then matched with previously calculated allele frequencies. A total of

79 of 104 rSNPs and 502 of 968 ufSNPs had genotype data.

12 Derived allele

frequency

Allele-specific Population property,

evolutionary conservation

(same as above)

13 Local repetitive base

percentage

Sequence Sequence characteristic Local repetitive content of a 200-bp DNA segment centered on the assayed poly-

morphism was calculated using repetitive annotation curated in EnsEMBL. Four

different metrics were assessed in this region: (1) the percentage of repetitive

bases; (2) whether the polymorphism was in a repeat or not; (3) the number of

repeats of length greater than 1 kb; and (4) length less than 1 kb that overlaps

this region (we made this distinction as an estimate of the disruptive potential of

smaller versus larger repeats). Repetitive content was investigated in this study

because of its known role in altering gene regulation and mirroring selective con-

straint in noncoding regions [53–56]. Each value was normalized to its expectancy

at the calculated distance from the TSS in the associated chromosome (see ‘‘Dis-

tance Normalization’’).

14 In repeat Sequence Sequence characteristic (same as above)

15 Short repeat events Sequence Sequence characteristic (same as above)

16 Long repeat events Sequence Sequence characteristic (same as above)

17 Distance to TSS Sequence Regulatory sequence

characteristic

The distance to the TSS, as annotated by EnsEMBL, was recorded. Distance to

TSS has been previously identified as a significant discriminant of regulatory poly-

morphisms; a study of 674 haplotypes in 247 gene promoters reported that se-

quence variants altering expression by 1.5-fold or more are preferentially located

within the first 100 bp [24]. Both the raw distance and the logarithm of the dis-

tance were used. We hypothesized that the logarithm of the distance to the TSS

might more naturally reflect this properties importance within the promoter re-

gion. The logarithm of the distance was not included in SVM training.

18 Distance to TSS (log) Sequence Regulatory sequence

characteristic

(same as above)

19 In CpG island Sequence Regulatory sequence

characteristic

CpG islands were obtained from annotation in the UCSC Genome Browser [57].

Whether or not a polymorphism was in a CpG island was recorded. This value

was normalized to its expectancy at the calculated distance from the TSS in the

associated chromosome (see ‘‘Distance Normalization’’).

20 DNaseI hypersensitive

site

Sequence Regulatory sequence

characteristic

DNaseI hypersensitive sites were obtained from predicted sites as per Noble et al.

[30]. These sites were mapped from hg15 to hg17 coordinates using blast.

Whether or not a polymorphism was in a DNaseI hypersensitive site was re-

corded. These values were normalized to its expectancy at the calculated dis-

tance from the TSS in the associated chromosome (see ‘‘Distance Normaliza-

tion’’).

21 PhastCons Sequence Regulatory sequence

characteristic,

evolutionary

conservation

Conservation scores from both the PhastCons [58] and Regulatory Potential (RP)

[59] methods were obtained from the UCSC Genome Browser. The local conserva-

tion of the polymorphism, as calculated by these scores, was recorded. PhastCons

and RP scores were selected to mirror what a typical UCSC Genome Browser user

would use to assess genome conservation when prioritizing potential rSNPs.

These values were normalized to their expectancy at the calculated distance from

the TSS in the associated chromosome (see ‘‘Distance Normalization’’).

22 RP (Regulatory

Potential)

Sequence Regulatory sequence

characteristic,

evolutionary

conservation

(same as above)
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designed to look for directional trends within the sampled
region that might be indicative of SNP importance. For
example, the All test is able to ask whether rSNPs have
generic features that would distinguish them from any other
promoter SNP; the Group test is designed to identify whether
there are any features that distinguish rSNPs from other SNPs
within the same upstream noncoding region.

SVM
The All and Group test data were input to the Gist SVM

implementation [29]. We excluded the logarithmic distance
to the TSS to prevent redundant classification with the raw
distance to the TSS. Gist was run using the default parameters
as described previously [30]. Of note, the Gist SVM requires
that every value in the test and training parameter space is
filled. To reflect the null hypothesis, that there are no
differences between the ufSNPs and rSNPs, the All SVM was
filled with promoter-specific average values wherever data
could not be calculated. Likewise, the Group SVM was filled
with zero values wherever data could not be calculated,
indicating no divergence from average within the GROUP
test set.

Performance Measurement
The individual importance of each property in discrim-

inating regulatory polymorphisms was assessed in the All and
Group test sets using a Wilcoxon rank sum test. Each value
was corrected for multiple testing using the BioConductor
MTP package (http://www.bioconductor.org) by controlling
for the family-wise error rate (a¼0.05 and B¼10,000) [31,32].

The performance of the Gist SVM classifier was measured
using a ROC curve. ROC scores of 1 indicate perfect
discrimination, while those at 0.5 indicate random classifica-
tion of the input SNPs. ROC performance measurements
have been previously described in detail elsewhere [30].

A 10-fold cross-validation was performed to assess the
overall performance of the SVM. The input data was
randomly partitioned by transcript into ten sets. Data from
one set were excluded, and the remaining nine sets were
trained on for each fold validation. This analysis was
performed for each set to cover the entire training site and
to calculate an average ROC value for the SVM.

Distance Normalization
We were concerned that several properties may be indirect

measurements of distance from the TSS, and that any

discrimination strategy would be limited to characterizing
this property alone. This concern is a particular challenge
since distance ascertainment bias exists; most SNPs surveyed
were within a few hundred base pairs of the TSS, which is
much smaller when compared with our sampling distance of
2 kb. Furthermore, it has been well established in a previous
study that distance to the TSS is correlated to detection of
rSNPs (it is unknown if this is because they are more likely to
affect essential transcription factor–binding sites, or because
there is a higher density of transcription factor–binding sites
in these regions) [24]. For this reason, the discrimination
potential of distance to the TSS could not be ignored. To
adjust for bias, however, we calculated the expectancy of
observing a feature at a particular distance from the TSS for
each individual chromosome (Figure 1; CpG islands are
shown as an example of this trend). This expectancy value was
used to normalize the observation values for several of the
properties in this study (identified in Table 1). This was
performed by subtracting the expectancy value from the
observed value. The impact of this normalization is negligible
when comparing normalized ROC values against unnormal-
ized ROC values; using a 10-fold cross-validation, the
unnormalized ROC values for the ALL test are 0.82 6 0.05
(unnormalized) and 0.83 6 0.05 (normalized), and values for
the GROUP test are 0.79 6 0.04 (unnormalized) compared
with 0.78 6 0.07 (normalized).

Results

Property Ranking
A total of 104 rSNPs and 951 ufSNPs in the upstream

noncoding regions of 78 genes were compiled to test
properties that discriminate polymorphisms with effects on
gene expression. A multiple testing–corrected Wilcoxon rank
sum test was used to analyze the All test data (Table 2).
Analyzing the All test data identified several properties of
significance in discriminating between rSNPs and ufSNPs (p
, 0.05). The properties of significance in the All test data, in
order of importance, were: 1) distance to the TSS (properties
13 and 14); 2) in a CpG island (property 19); 3) long repeat
events (property 16); 4) local repetitive base percentage
(property 13); 5) derived allele frequency (property 12); 6)
minor allele frequency (MAF; property 11); 7) Regulatory
Potential score (property 22); 8) in a repeat (property 14); and
9) ClustalW alignment distance (property 23).

Table 1. Continued.

Property

Number

Investigated

Property

Type Methodology Description

23 ClustalW alignment

distance

Sequence Evolutionary

conservation

Each orthologous sequence set for an individual polymorphism was aligned using

ClustalW [60], and the total evolutionary distance was calculated from the asso-

ciated phylogenetic tree. Since orthologs were retrieved in a standardized way

from the EnsEMBL compara database, the total evolutionary distance is compar-

able as a measure of sequence mutability. For example, conserved sequences

should have a low evolutionary distance as computed from their ClustalW align-

ment, whereas variable regions should have a high evolutionary distance.

The properties are broken down into two types: allele-specific and sequence. Allele-specific properties are calculated as a difference in property values calculated by allele, and sequence
properties are properties of the genome location in which the SNP is located.
doi:10.1371/journal.pcbi.0030106.t001
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However, a concern with the All analysis was that calculated
property values for SNPs in individual upstream noncoding
regions would not be comparable with those in other
upstream noncoding regions due to differences in back-
ground property values. To address this, a multiple testing–
corrected Wilcoxon rank sum test was also used to analyze the
Group test data (Table 2). The properties of significance (p ,

0.05) in the Group test data, in order of importance, were: 1)
distance to the TSS (properties 13 and 14); 2) long repeat
events (property 16); 3) in a CpG island (property 19); 4) MAF
(property 11); 5) local repetitive base percentage (property
13); 6) ClustalW alignment distance (property 23); 7) derived
allele frequency (property 12); 8) short repeat events
(property 15); and 9) DNaseI hypersensitive site (property 20).

Both lists are highly concordant and demonstrate several
properties that may be of utility when prioritizing SNPs for
functional analysis either across the genome or within an
individual upstream noncoding region. In both tests, distance
to the TSS was found to be the most significant discriminant.
While it is possible that ascertainment bias in the 104-rSNP set
contributes to the strength of this discriminant in our study,
this property has also been independently identified as an
important discriminant in a previous study where, in 500-bp
assayed regions, 50% of rSNPs identified through transfection
experiments were within 100 bp of the TSS (n¼ 40) [24].

Furthermore, several other properties are consistently
identified as being significant after normalization against

distance to TSS. One property, ClustalW alignment distance,
was identified in both the All and Group tests as being
significant. The mean value of ClustalW alignment distance
was slightly higher for the tested rSNPs compared with the
ufSNPs, indicating that 1-kb multiple alignments centered on
the tested rSNPs were more divergent than those centered on
ufSNPs. This result is concordant with previous analyses of
conservation around rSNPs (n ¼ 10) [25]. However, trends in
the other conservation scores used in this study, while
nonsignificant in discriminating between the tested rSNP
and ufSNPs, conversely suggest that the tested rSNPs are
more conserved than ufSNPs. Since these metrics use tighter
window sizes than those used for calculating the ClustalW
alignment distance, this result suggests that increased
mutation around an rSNP may be more informative than
the conservation status of the rSNP itself.
Another property of significance was repetitive element

content. Our results indicate that the tested rSNPs were less
likely to be in or around repetitive elements. This suggests
that regions that are likely to contain a transcription factor–
binding site are less likely to accrue repetitive elements and
be subject to dysregulation. We note, however, that ascertain-
ment bias by which the 104-rSNPs set was surveyed in terms
of repetitive elements is not known, and future collections of
discovered rSNPs should address this issue.
Both MAF and derived allele frequency are also identified

as significant discriminants. Unexpectedly, for genotyped

Figure 1. CpG Island Positional Bias

CpG island expectancy is plotted for each chromosome as a function of the distance from the TSS. This type of data was used to normalize many of the
features in this study for distance from the TSS. In this figure, the expectancy of being in a CpG island at position�1 for any promoter region is ;0.5.
doi:10.1371/journal.pcbi.0030106.g001

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1061005

Computational Discrimination of rSNPs



SNPs, the MAF was higher in the 104-rSNP set than in the
ufSNP set. Previous analyses of MAF have suggested that most
functional SNPs are positioned around 6% [33] or possess no
allele frequency bias [24]. In this study, the average MAF was
approximately 22%. Since a subset of the 104-rSNP set has
been derived from association studies, it is possible that
ascertainment bias may explain part of this result as
researchers may preferentially be choosing higher MAF SNPs
because of their greater statistical power. Of further interest,

the derived allele frequency was higher in the 104-rSNP set
than in the ufSNP set. This could suggest that many of the
derived alleles have been driven to higher frequencies due to
new variants increasing in frequency in our population,
through either population bottlenecks or positive selection.
The former hypothesis is supported by the supplemental
observation that when restricting populations to HapMap
(http://www.hapmap.org) phase I populations only, the Asian
and European populations mirror this result, while the

Table 2. Analysis of rSNP and ufSNP Properties in the 2-kb and 152-bp Upstream Noncoding Regions

Property

Number

Investigated Property Region All Test Group Test

Wilcoxon

Raw

p-Value

Multiple

Testing–Corrected

p-Value

Direction Wilcoxon

Raw

p-Value

Multiple

Testing–Corrected

p-Value

Direction

1 TRANSFAC 2 kb 0.958 0.712 � 0.958 0.800 �
152 bp 0.206 0.603 þ 0.206 0.601 þ

2 oPOSSUM 2 kb 0.161 0.493 � 0.316 0.576 þ
152 bp 0.576 0.816 þ 0.747 0.824 �

3 Weeder (difference) 2 kb 0.862 0.712 þ 0.896 0.800 þ
152 bp 0.267 0.707 þ 0.323 0.695 þ

4 Weeder (maximum) 2 kb 0.296 0.496 � 0.514 0.727 �
152 bp 0.267 0.707 þ 0.241 0.668 þ

5 MotifSampler (difference) 2 kb 0.275 0.496 þ 8.27 3 10�2 0.313 þ
152 bp 0.308 0.714 þ 0.308 0.695 þ

6 MotifSampler (maximum) 2 kb 0.733 0.712 � 0.666 0.741 þ
152 bp 0.047 0.211 þ 0.147 0.529 þ

7 DNA bendability 2 kb 5.59 3 10�2 0.261 � 0.101 0.387 �
152 bp 0.975 0.816 þ 1 0.858 �

8 DNA curvature 2 kb 0.201 0.496 � 0.477 0.727 �
152 bp 0.668 0.816 � 0.915 0.858 �

9 GC content 2 kb 0.811 0.712 þ 0.950 0.800 þ
152 bp 0.403 0.715 þ 0.960 0.858 �

10 DNA thermodynamics 2 kb 0.201 0.496 þ 0.138 0.496 þ
152 bp 0.713 0.816 þ 0.892 0.858 �

11 MAF 2 kb 2.71 3 10�5 ,1 3 10�9 þ 1.09 3 10�7 ,1 3 10�9 þ
152 bp 0.719 0.816 þ 0.0853 0.283 þ

12 Derived allele frequency 2 kb 2.53 3 10�5 ,1 3 10�9 þ 9.52 3 10�5 ,1 3 10�9 þ
152 bp 1 0.828 þ 0.311 0.676 þ

13 Local repetitive base percentage 2 kb 1.23 3 10�7 ,1 3 10�9 � 3.62 3 10�6 ,1 3 10�9 �
152 bp 0.290 0.587 � 0.016 ,1 3 10�9 �

14 In repeat 2 kb 1.73 3 10�3 ,1 3 10�9 þ 0.872 0.800 �
152 bp 0.334 0.714 � 1 0.858 �

15 Short repeat events 2 kb 0.290 0.493 � 1.51 3 10�3 8.70 3 10�3 �
152 bp 0.107 0.421 � 0.150 0.528 �

16 Long repeat events 2 kb ,1 3 10�9 ,1 3 10�9 þ ,1 3 10�9 ,1 3 10�9 þ
152 bp 0.522 0.810 � 0.282 0.695 �

17 Distance to TSS 2 kb ,1 3 10�9 ,1 3 10�9 � ,1 3 10�9 ,1 3 10�9 �
152 bp 0.602 0.810 � 0.187 0.586 �

18 Distance to TSS (log) 2 kb ,1 3 10�9 ,1 3 10�9 � ,1 3 10�9 ,1 3 10�9 �
152 bp 0.602 0.816 � 0.575 0.776 �

19 In CpG island 2 kb ,1 3 10�9 ,1 3 10�9 � ,1 3 10�9 ,1 3 10�9 �
152 bp 0.705 0.816 þ 0.250 0.6786 �

20 DNaseI hypersensitive site 2 kb 1.91 3 10�2 0.118 þ 4.54 3 10�3 2.55 3 10�2 þ
152 bp 0.165 0.587 þ 0.868 0.858 þ

21 PhastCons 2 kb 3.23 3 10�2 0.188 þ 0.192 0.576 þ
152 bp 0.061 0.268 þ 0.150 0.529 þ

22 RP (Regulatory Potential) 2 kb 2.80 3 10�5 ,1 3 10�9 þ 0.114 0.507 �
152 bp 0.100 0.443 þ 0.554 0.777 þ

23 ClustalW alignment distance 2 kb 3.68 3 10�3 1.34 3 10�2 þ 9.64 3 10�6 ,1 3 10�9 þ
152 bp 0.794 0.292 þ 1.3 3 10�4 ,1 3 10�9 þ

Both All and Group test sets were analyzed using a Wilcoxon rank sum test in 2-kb and 152-bp regions. In the 2-kb region, 104 rSNPs and 951 ufSNPs were tested. In the 152-bp region, 16
rSNPs and 21 ufSNPs were tested. The 152-bp region was selected because it contained nearly equivalent mean distances from the TSS for both the rSNPs and ufSNPs under study.
Each value was corrected for multiple testing using the BioConductor MTP package by controlling for the family-wise error rate (a¼ 0.05 and B¼ 10,000).
The direction of difference between the two populations is also recorded and describes the relationship between the rSNPs and ufSNPs;þ indicates that the rSNPs have higher mean
values;� indicates the rSNPs have lower mean values.
doi:10.1371/journal.pcbi.0030106.t002
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African population has lower MAFs on average. The latter
hypothesis, however, supports a model of evolution of genetic
susceptibility to common diseases explained by ancient alleles
recently becoming predisposed to disease due to changes in
human lifestyle and life expectancy [34].

Another interesting result was that SNPs in the 104-rSNP
set were less likely to be in CpG islands than were ufSNPs.
Since CpG expectancy was normalized from average values at
specific distances from the TSS of associated genes across
individual chromosomes, an admixture of CpG and CpG-less
promoters would drive the 104-rSNP set values lower than the
ufSNP set values (Figure 1) [35,36]. However, without normal-
ization, the significance of this value for the All and Group
tests is similar (All, p ¼ 3.78 3 10�5; Group, p ¼ 1.96 3 10�3),
suggesting that the rSNPs are in fact less likely to be in CpG
islands.

Many tested properties fell below our significance threshold
in these tests. Of interest, both weight matrix–based
approaches did not discriminate well. In addition, our
definition of coexpression was significantly broad as to allow
multiple coexpressed partners for any given gene; this may
have reduced the overall effectiveness of reducing tran-
scription factor–binding profiles using this information.

However, the performance of the coexpression-filtered
approach was moderately better than the TRANSFAC
approach alone. This suggests that targeted analysis of specific,
biologically relevant transcription factors may further in-
crease the discriminating ability of this approach. This should
also act as a warning to those who have in the past applied the
TRANSFAC approach to this problem indiscriminately.
Furthermore, none of the DNA structural or stability analyses
used were successfully discriminatory. This analysis could
indicate that not only do these features have nongeneralizable
effects using the data in this study, but since these analyses also
measure local sequence composition, no particularly impor-
tant effect is caused by specific base changes.

SVM Cross-Validation
To evaluate whether the combination of the tested

properties would enhance discrimination of rSNPs from
ufSNPs, we trained a SVM for the ALL and GROUP test data.
We tested the classification performance of SVMs by 10-fold
cross-validation. For each SVM, the mean area under the
ROC curve was 0.83 6 0.05 and 0.78 6 0.04, respectively.
Both suggest good performance. It is significant, however,
that when removing distance from the classification, the

Figure 2. ROC Curves for Discriminating Known rSNPs from ufSNPs

Representative ROC curves were calculated by training an SVM on a 90% subset of the 104-rSNP and ufSNP datasets. Here, 93 rSNPs and 882 ufSNPs
were used for training, followed by testing on the held-out 10%. The ALL SVM approach was used for training. Furthermore, each curve had one tested
property held out to demonstrate the impact of various properties on training. Notably, many curves are the same except for a marked reduction in
performance when the ‘‘Distance to TSS’’ property is held out. The area under the ‘‘all’’ curve is 0.830. The dot on the ‘‘all’’ curve marks the location of
the decision boundary selected by the SVM. At this boundary, the SVM identifies nine of 11 true positives and 56 of 69 true negatives. (Plots for each
tested partition are available at http://www.bcgsc.ca/chum/gistplots.html).
doi:10.1371/journal.pcbi.0030106.g002
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performance of each test drops to 0.52 6 0.09 and 0.48 6

0.07, respectively (Figure 2). This reduction in performance
should not be taken to indicate that other properties
identified in the multiple testing–corrected Wilcoxon rank
sum test are not actually discriminatory since 10-fold cross-
validation of All and Group test SVMs built with only the
properties identified as significant using the multiple testing–
corrected Wilcoxon rank sum test (p , 0.05) and excluding
distance to the TSS achieved ROC values of 0.77 6 0.08 and
0.75 6 0.07, respectively. This result suggests that non-
significant results may act to overparameterize the SVM
model and mask subtle, true discriminatory signals.

Distance Analysis
To address the issue of distance bias further, we fortu-

itously identified that, across our dataset, in the 152 bp
immediately upstream of the TSS, the average distance to the
TSS for the ufSNPs was identical to that of the rSNPs. This
152-bp window therefore represented a region with no
observable distance biases, albeit a greatly reduced subset in
size; at this window size, only 16 rSNPs and 21 ufSNPs were
available for analysis. When analyzed using a multiple testing–
corrected Wilcoxon rank sum test for both All and Group test
sets, only two properties were significant (p , 0.05): repetitive
element density (property 13) and ClustalW alignment
distance (property 23) (Table 2). We further tested window
sizes of 500 bp, 1 kb, and 1.5 kb and noticed only a gradual

reduction in performance of the tested properties for smaller
window sizes (see Table S2).
We also examined the position of identified rSNPs to

characterize possible bias. Our expectation was that well-
established transcription factor–binding sites such as the
TATA and CCAAT boxes may be overrepresented and
contribute to lower distance values. A histogram of rSNPs
for the first 300 bp of sequence from the TSS shows an
expected increase around the 21–31 position where seven
rSNPs are located, twice as many as average. However, it is
apparent that these types of binding sites are only over-
represented slightly when compared with the distribution of
rSNPs at other positions (Figure 3).

Availability
All pipeline software has been programmed in Perl and is

available under the Lesser GNU Public Licence at http://www.
bcgsc.ca/chum under the name CHuM (cis-acting human
mutation modules). All data are available from this site.

Discussion

This study introduces the largest publicly available collec-
tion of rSNPs—160 known rSNPs from literature. Using this
collection, we investigate 104 rSNPs and 951 ufSNPs in
human 2-kb upstream regions to identify properties that may
discriminate functional from nonfunctional polymorphisms.

Figure 3. Histogram of Positional Bias of rSNPs for the First 300 bp of Sequence

The positions of rSNPs are plotted in a histogram for bin sizes of 10 bp for the first 300 bp of sequence from the TSS. A blip is seen at position 21–31,
where it is likely that TATA and CCAAT box–binding sites are located. These types of rSNPs, however, are only slightly overrepresented in this study and
from this graph are not expected to significantly bias the outcome.
doi:10.1371/journal.pcbi.0030106.g003
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We identify several properties that may be useful to
researchers attempting to determine the functional status
of upstream noncoding SNPs. The most important properties
detected suggest that rSNPs are close to the TSS, are not
within CpG islands, are isolated from repetitive elements,
possess higher MAF and higher derived allele frequency, and
are within comparatively more divergent regions. However,
within a 152-bp window, where an equal distribution of
rSNPs and ufSNPs from the TSS is obtained, the significant
results suggest that only repetitive element content and local
divergence remain important (we have included in Table S2
information on how property significance changes with
window size). We further combined each of the properties
identified in the 2-kb region to train an SVM to classify the
functional status of the 104-rSNP set and 951-ufSNP set. We
hypothesized that subtle differences in individual properties
may be more important than any one property in detecting
rSNPs. It is of note, despite mentioned ascertainment biases,
that our sensitivity and specificity for the All test was 0.82 6

0.08 and 0.71 6 0.13, respectively, and for the Group test was
0.72 6 0.19 and 0.68 6 0.07, respectively. Also of note, the
strength of the distance to the TSS as a discriminatory
property was demonstrated in both tests when removal of the
property significantly reduced the effectiveness of the
classifier to near random performance. However, we ob-
served that this reduction in performance was recovered in
part when only the properties identified as significant
through the multiple testing–corrected Wilcoxon rank sum
test (p , 0.05) in the 2-kb All and Group tests were applied,
and the distance to the TSS was excluded.

Through this work, several challenges are apparent with
current predictive approaches to prioritize candidate rSNPs.
Necessary to future analyses is a dataset of core promoter
polymorphisms that are nonfunctional across a broad range
of cell types; since our negative control set was a neutral set, it
is assured that more accurate performance metrics can come
from addition of a reliable negative control set. Furthermore,
recent analysis of allelic expression difference has demon-
strated that the effects of rSNPs may be highly context-
specific such that function in one cell line may not imply
function in others; to address this complication, future
analysis may require expanded collections of cell line–specific
positive and negative rSNPs [37]. Future studies of promoter
polymorphisms will also need to take advantage of known
transcription factor–binding sites. Such information will be
invaluable in dissecting the causal nature of many of the
properties.

In summary, this study introduces a new dataset for the
investigation of rSNPs. We have also introduced one of the
first gene regulation and population genetics–based ap-
proaches to classifying rSNPs in the core promoter regions
of human genes. We identify the utility of different gene
regulation and population genetics properties in discrim-

inating literature-curated rSNPs. Such results are increasingly
essential to researchers seeking criteria for prioritizing SNPs
to test in association, binding, or expression assays. Further-
more, we provided evidence that popular methodological
practices based on identification of allele-specific differences
in position weight matrices through unrestricted application
of the TRANSFAC database are poor criteria for SNP
selection. However, we highlight the fact that because of the
lack of extensive unbiased collections of rSNPs, it still
remains challenging to dissect the existing effects of inves-
tigator or methodological biases in evaluating the importance
of these properties. We hope that this work will stimulate
active discussion and both the development of expanded
collections of rSNPs and an improved class of bioinformatics
tools for rSNP analysis that address these challenges.

Supporting Information

Figure S1. Mapped rSNPs and ufSNPs

The locations of the tested rSNPs and ufSNPs are plotted upstream of
their respective genes.

Found at doi:10.1371/journal.pcbi.0030106.sg001 (6.4 MB PNG).

Table S1. Tested rSNPs

The tested rSNP data is listed with information describing exper-
imental evidence, associated gene, and dbSNP number, if available.

Found at doi:10.1371/journal.pcbi.0030106.st001 (59 KB PDF).

Table S2. Performance of Genomic Properties at 500-bp, 1,000-bp,
and 1,500-bp Window Sizes

Different upstream window sizes were selected for All and Group
analyses. The results of the Wilcoxon rank sum test for these windows
are summarized and displayed as figures.

Found at doi:10.1371/journal.pcbi.0030106.st002 (44 KB XLS).

Text S1. Background File for MotifSampler

Promoters annotated in ORegAnno were assembled into this back-
ground file for MotifSampler analysis.

Found at doi:10.1371/journal.pcbi.0030106.sd001 (5 KB RTF).
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