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Cell polarity is a general cellular process that can be seen in various cell types such as migrating neutrophils and
Dictyostelium cells. The Rho small GTP(guanosine 59-tri phosphate)ases have been shown to regulate cell polarity;
however, its mechanism of emergence has yet to be clarified. We first developed a reaction–diffusion model of the Rho
GTPases, which exhibits switch-like reversible response to a gradient of extracellular signals, exclusive accumulation of
Cdc42 and Rac, or RhoA at the maximal or minimal intensity of the signal, respectively, and tracking of changes of a
signal gradient by the polarized peak. The previous cell polarity models proposed by Subramanian and Narang show
similar behaviors to our Rho GTPase model, despite the difference in molecular networks. This led us to compare these
models, and we found that these models commonly share instability and a mass conservation of components. Based on
these common properties, we developed conceptual models of a mass conserved reaction–diffusion system with
diffusion–driven instability. These conceptual models retained similar behaviors of cell polarity in the Rho GTPase
model. Using these models, we numerically and analytically found that multiple polarized peaks are unstable, resulting
in a single stable peak (uniqueness of axis), and that sensitivity toward changes of a signal gradient is specifically
restricted at the polarized peak (localized sensitivity). Although molecular networks may differ from one cell type to
another, the behaviors of cell polarity in migrating cells seem similar, suggesting that there should be a fundamental
principle. Thus, we propose that a mass conserved reaction–diffusion system with diffusion-driven instability is one of
such principles of cell polarity.
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Introduction

Eukaryotic cells such as neutrophils and Dictyostelium cells
respond to temporal and spatial gradients of extracellular
signals with directional movements [1–6]. This process,
known as chemotaxis, is a fundamental cellular process [5,7–
9]. In a migrating cell, specific molecular events take place at
the front and back edges [1,2,5,10]. The spatially distinctive
molecular accumulation inside cells is known as cell polarity.
The front–back polarity usually has one axis, and this
uniqueness is an important property because a migrating
cell with two fronts could not move effectively [11]. Another
behavior of the front–back polarity is higher sensitivity of the
front to a gradient of extracellular signals [10,12]. This would
also be important because the direction of movement should
be controlled at the front edge.

Many molecules that are involved in chemotaxis in
mammalian cells have been identified [4,5]. Some molecules,
including phosphoinositide 3-kinase (PI3K), phosphatidyli-
nositol 3,4,5-triphosphate (PIP3), Cdc42, Rac, and F-actin, are
specifically localized at the front, whereas others, including
phosphatase and tensin homologue deleted on Chromosome
10 (PTEN) and RhoA, are at the back of migrating cells
[1,4,10,13–15]. The Rho family of small GTP(guanosine 59-tri
phosphate)ases in particular play a central role in chemotaxis
and in establishing cell polarity [15–17]. However, the
mechanism of generating spatial accumulation of the Rho
GTPases in cell polarity has yet to be clarified.

Many mathematical models that account for gradient

sensing and signal amplification in cell polarity have been
proposed [12]. The local excitation and global inhibition
model has been proposed to explain spatial gradient sensing
[6,18]. Some models involve positive feedback loops for
amplified accumulation of signaling molecules [19–23]. A
reaction–diffusion model that includes local self-enhance-
ment and long-range antagonistic effects has been proposed
for directional sensitivity [24]. Most of the reported models of
cell polarity, which involve the detailed parameters such as
concentrations or rate constants, have been constructed with
many parameters and equations. Although these detailed
models are at least partially successful in reproducing
experimental observations in cell polarity, the theoretical
essence underlying cell polarity has not been explicitly
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demonstrated; thus, a simple conceptual model that can be
used for analytical study is needed to extract common
principles in cell polarity. Although the reported models
consist of distinct molecular species or networks, it should be
especially emphasized that many of them are able to exhibit
similar behaviors of cell polarity regardless of their different
frameworks. This fact indicates that a common principle
should underlie the models, and a conceptual model is
suitable for extracting common principles in cell polarity.

Because the Rho small GTPases are key regulators for cell
polarity [16,17], we first developed a reaction–diffusion
model of the Rho GTPases on the basis of an earlier model
[25] to examine the spatial properties of the Rho GTPases. We
found that the interaction of the Rho GTPases per se can
generate specific spatial accumulation of the Rho GTPases,
and that our model shows important behaviors of cell
polarity. We also found that our model exhibits behaviors
similar to the model by Narang and Subramanian [22,23],
which is based on the molecular networks that are different
from ours. This suggests that common principles should
underlie both models. We found that a mass conservation of
components and diffusion-driven instability are commonly
conserved in the Narang and Subramanian models and in our
model. Based on these common properties, we established
conceptual models of a mass conserved reaction–diffusion
system, and found that such properties can account for the
critical behaviors of cell polarity. These results strongly
suggest that a mass conservation of components with
diffusion-driven instability is one of the fundamental
principles of cell polarity.

Results

The Rho GTPases Model
We developed a reaction–diffusion model of the Rho

GTPases (Rac, Cdc42, RhoA) on the basis of the earlier model
of the Rho GTPase [25], which explains the temporal
behaviors, to examine whether the interaction of the Rho
GTPases can generate the spatial behaviors in the cell polarity
of migrating cells. The Rho GTPases exhibit guanine

nucleotide–binding activity and function as molecular
switches, cycling between an inactive GDP(guanosine 59-bis
phosphate)-bound form and an active GTP-bound form. The
Rho GTPases in active forms are located in the plasma
membrane, and those in inactive forms are in the cytosol
(Figure 1A) [26]. It is likely that molecules in the cytosol have
larger diffusivity than those in the plasma membrane.
According to some studies, Cdc42 activates Rac [27–29], and
RhoA has mutual inhibitory interactions with Cdc42 and Rac
[29–33]. In addition, Rac plays a dominant role in a positive
feedback loop, which involves PI3K, PIP3, and F-actin [13,34–
36]. Based on these experimental findings, we developed a
diagram of the Rho GTPases interaction (Figure 1B). We
assume that molecules of Rac, Cdc42, and RhoA are activated
by guanine nucleotide exchange factors (GEFs; kai) and are
inactivated by GTPase-activating proteins (GAPs; kii), and
that interactions between molecules (kij) are additive to GEFs
or GAPs. Some molecule–molecule interactions are stimula-
tion dependent. Activations of molecules by the stimulation
(ksi) are also assumed to be additive to GEFs. As in many
previous models [18–23], we describe the spatial kinetics of
molecules by simple diffusion equations. A recent study in
which the diffusion coefficients of the Rho GTPases in the
plasma membrane are determined [37] may support this
assumption. The model of the interaction of the Rho GTPases
is as follows (see also Materials and Methods):

@Racm
@t

¼ Dm1
@2Racm
@x2

� ðk13Rhom þ ki1ÞRacm

þ ðk11RacmSþ k12Cdcm þ ks1Sþ ka1ÞRacc;

@Racc
@t
¼ Dc1

@2Racc
@x2

þ ðk13Rhom þ ki1ÞRacm

� ðk11RacmSþ k12Cdcm þ ks1Sþ ka1ÞRacc;

Figure 1. A Reaction–Diffusion Model of the Rho GTPases

(A) The Rho family of GTPases, which are localized in the membrane
(GTP-bound active forms) or cytosol (GDP-bound inactive forms), has
conserved mass and shows slower diffusion in the membrane than in the
cytosol.
(B) Diagram of the model with the Rho GTPases. Arrows and bars
indicate the stimulatory and inhibitory interactions, respectively.
doi:10.1371/journal.pcbi.0030108.g001
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Author Summary

Eukaryotic cells such as neutrophils and Dictyostelium cells respond
to temporal and spatial gradients of extracellular signals with
directional movements. In a migrating cell, specific molecular events
take place at the front and back edges. The spatially distinctive
molecular accumulation inside cells is known as cell polarity. Despite
numerous experimental and theoretical studies, its mechanism of
emergence has yet to be clarified. We first developed a mathemat-
ical model of the Rho small GTP(guanosine 59-tri phosphate)ases
that cooperatively regulate cell polarity, and showed that the model
generates specific spatial accumulation of the molecules. Based on
our Rho GTPases model and other models, we further established a
conceptual model, a mass conserved reaction–diffusion system, and
showed that diffusion-driven instability and a mass conservation of
molecules that have active and inactive states are sufficient for
polarity formation. We numerically and analytically found that
molecular accumulations at multiple sites are unstable, resulting in a
single stable front–back axis, and that sensitivity toward changes of
a signal gradient is specifically restricted at the front of a polarized
cell. We propose that a mass conserved reaction–diffusion system is
one of the fundamental principles of cell polarity.

Mass Conserved Reaction–Diffusion System



@Cdcm
@t

¼ Dm2
@2Cdcm
@x2

� ðk23Rhom þ ki2ÞCdcm þ ðks2Sþ ka2ÞCdcc;

@Cdcc
@t
¼ Dc2

@2Cdcc
@x2

þ ðk23Rhom þ ki2ÞCdcm � ðks2Sþ ka2ÞCdcc;

@Rhom
@t

¼ Dm3
@2Rhom
@x2

� ðk31Racm þ k32Cdcm þ ki3ÞRhom þ ðks3Sþ ka3ÞRhoc;

@Rhoc
@t
¼ Dc3

@2Rhoc
@x2

þ ðk31Racm þ k32Cdcm þ ki3ÞRhom � ðks3Sþ ka3ÞRhoc ;

where Rac, Cdc, and Rho with suffixes m and c denote the
concentrations of Rac, Cdc42, and RhoA in the active state
(membrane) and inactive state (cytosol), respectively. The
numerical suffixes represent the following: 1, Rac; 2, Cdc42;
and 3, RhoA. Dmi and Dci denote the diffusion coefficients of
molecules in the active state and inactive state, respectively
(Dmi , Dci). The position-dependent parameter, S, denotes
the intensity of stimulation. Because the parameters have not
been fully obtained experimentally, we set parameters to
reproduce the behaviors of cell polarity (Figure 2), and
further analyzed the generality of such behaviors in detail
with conceptual models (see below).

Reversible accumulation of the Rho GTPases. Cell polarity
accompanies exclusive reversible accumulation of Cdc42 and
Rac, or RhoA, at the fronts or backs of migrating cells,
respectively [4,10,13–15]. We examined the accumulation of
the Rho GTPases in response to a shallow gradient of
stimulation (Figure 2A–2C). The basal level of stimulation (S
¼ 0.1) did not induce exclusive accumulation of the Rho
GTPases (Figure 2A); however, the larger stimulation (aver-
aged S¼ 0.4, with a slight gradient) induced accumulation of
Cdc42 and Rac toward the stimulation point with the
maximal intensity (x/L ¼�0.2), and exclusion of RhoA from
the point (Figure 2B). The responses of accumulation and
exclusion were switch-like against the intensity of stimulation
(unpublished data). The accumulation and exclusion were
reversed when the intensity of stimulation reduced to the
basal level (S ¼ 0.1) (Figure 2C).

Multiple transient peaks and a single stable peak. We next
gave two points simultaneous stimulation. Cdc42 and Rac
accumulated toward the stimulation points with the maximal
intensity (x/L¼�0.25 and 0.25) at t¼ 60 (Figure 2E). However,
one of the accumulation peaks eventually disappeared, and
only a single peak remained (Figure 2F). This result indicates
that the model shows specific behaviors in cell polarity;
‘‘uniqueness of axis’’ (see below). The selection of the
remaining peak differed between simulation tests (unpub-
lished data).

Sensing of the stimulation gradient by the polarized peak.
We next examined the behavior of the accumulation peak
(polarized peak). The polarized peak moved toward the new
stimulation point of the maximal intensity, rather than

generating a new peak (Figure 2G–2I). This result indicates
that the polarized peak can sense a gradient of stimulation
(see below).

Conceptual Model for Cell Polarity
The behaviors in the Rho GTPases model, such as switch-

like reversible accumulation, uniqueness of axis, and sensing
of the stimulation gradient by the polarized peak, were
similar to those observed in the models of Subramanian and
Narang [22,23]. Despite the differences of the molecular
species and networks among the models, the similarity in
behaviors among them raises the possibility that a common
principle could underlie them. Therefore, we examined
whether common properties can be seen.These models
belong to reaction–diffusion systems with a periodic boun-
dary condition and exhibit switch-like response, implying
that instability is important for accumulation of the
components. In addition, these models involve components
whose masses are conserved. The total amount of phosphoi-
nositides between the plasma membrane and the endoplas-
mic reticulum is conserved in Narang and Subramanian’s
model [22,23], and the total amounts of the Rho GTPase
between the membrane (e.g., Rhom) and cytosol (e.g., Rhoc) are
conserved in our Rho GTPases model. Based on these
common properties, we derived a new concept (i.e., mass
conserved reaction–diffusion system with diffusion-driven
instability) and hypothesized that this system is a fundamental
principle of cell polarity. We therefore developed a simple
conceptual model with two components (u and v), which
belong to a mass conserved reaction–diffusion system with
instability, and examined whether the model can cause the
behaviors of cell polarity to emerge sufficiently.
Mass conserved reaction–diffusion system. We investigated

the following class of reaction–diffusion system, which is
composed of two components, u and v:

@u
@t
¼ Du

@2u
@x2
� f ðu; vÞ; ð1aÞ

@v
@t
¼ Dv

@2v
@x2
þ f ðu; vÞ; ð1bÞ

Du ,Dv ð1cÞ

where u and v denote the concentrations of u and v,
respectively, at time t and at position x, and Du and Dv

denote the diffusion coefficients of u and v, respectively. The
reaction term f is given by a function of u and v. Because the
total quantity of u and v is conserved in this case, we refer to
this system as the mass conserved reaction–diffusion system.
We developed several models that belong to the mass

conserved reaction–diffusion system and show similar results
(unpublished data), and here focused on the following model
because of its simplicity for computation.

Model I

f ðu; vÞ ¼ a1
ðuþ vÞ

½a2Sðuþ vÞ þ 1�2
� v

( )
; ð2Þ

where a1 and a2 are parameters of the model. The position-
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Figure 2. Behaviors of the Rho GTPases Model

Spatial profiles of Rac (solid lines), Cdc42 (dotted lines), and RhoA (dashed lines) are shown in (A–G) and (I). The thin lines in (B) and (E–I) indicate the
spatial profile of the stimulation.
(A–C) Reversible accumulation of the Rho GTPases. We set S¼ 0.1 at t¼�100, and ran the simulation until t¼ 0 to reach the stationary state (A). Then,
the stimulation S¼ 0.4f1þ 0.01cos[2p(x/Lþ 0.2)]g was given and the simulation was run until t¼ 150 to reach the stationary state (B). The stimulation
point with the maximal intensity was at x/L¼�0.2. The stimulation was reduced to the basal level (S¼ 0.1) again, and the simulation was run until t¼
300 to reach the stationary state (C).
(D–F) Multiple transient, and a single stable, accumulation peaks. Starting with the conditions in (A), we gave random perturbation (60.01)) to obtain
the homogenous initial conditions (D). Then, at t¼0, the stimulation S¼ 0.4f1þ 0.01 cos[2p(x/Lþ 0.25) 3 2]g was given, and the simulation was run for
the indicated time (E,F). The stimulation points with the maximal intensity were at x/L ¼�0.25 and 0.25.
(G–I) Sensing of the stimulation gradient by the polarized peak. We set S¼ 0.4f1þ 0.01 cos[2p(x/Lþ 0.2)]g at t¼�200, and the simulation was run to
reach the stationary state where the polarized peak was seen at x/L¼�0.2 (G). The new stimulation S¼ 0.4f1þ 0.01 cos[2p(x/L)]g was given, and the
maximal intensity point was shifted to x/L¼0. The simulation was run for the indicated time (H,I). The arrow indicates the direction of movement of the
polarized peak (H).
doi:10.1371/journal.pcbi.0030108.g002
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dependent parameter, S, is intensity of stimulation (see
Materials and Methods). The stability of the homogenous
solution in this model depends on the value of S (see
Materials and Methods).

We found that the conceptual model exhibits behaviors
similar to the Rho GTPases model, such as switch-like
reversible accumulation (Figure 3A–3C), uniqueness of axis
(Figure 3D–3F), and sensing of the stimulation gradient by the

Figure 3. Behaviors of the Conceptual Model I

Spatial profiles of u (solid lines) and v (dashed lines) are shown in (A–G) and (I). The thin line in (B) and (E–I) indicates the spatial profile of the
stimulation.
(A–C) Reversible accumulation of the components. We set S¼ 0.2 at t¼�100, and ran the simulation until t¼ 0 to reach the stationary state (A). Then,
the stimulation S¼ 1f1þ 0.01 cos[2p(x/Lþ 0.2)]g was given, and the simulation was run until t¼ 1,000 to reach the stationary state (B). The stimulation
was reduced to the basal level (S ¼ 0.2) again, and the simulation was run until t ¼ 1,200 to reach the stationary state (C).
(D–F) Multiple transient and a single stable accumulation peaks. Starting with the conditions in (A), we gave random perturbation (60.02) to obtain the
homogenous initial conditions (D). Then, at t¼ 0, the stimulation S¼ 1f1þ 0.01 cos[2p(x/Lþ 0.25) 3 2]g was given, and the simulation was run for the
indicated time (E,F). The stimulation points with the maximal intensity were at x/L ¼�0.25 and 0.25.
(G–I) Sensing of the stimulation gradient by the polarized peak. We set S¼ 1f1þ 0.01 cos[2p(x/Lþ 0.2)]g at t¼�1,000, and the simulation was run to
reach the stationary state where the polarized peak was seen at x/L¼�0.2 (G). The new stimulation S¼ 1f1þ 0.01 cos[2p(x/L)]g was given, and the
maximal intensity point was shifted to x/L¼0. The simulation was run for the indicated time (H,I). The arrow indicates the direction of movement of the
polarized peak (H).
doi:10.1371/journal.pcbi.0030108.g003
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polarized peak (Figure 3G–3I). This finding indicates that the
conceptual model retains the essential behaviors in the Rho
GTPases model. We further used this conceptual model to
examine in detail two behaviors of cell polarity: uniqueness of
axis and sensitivity of the polarized peak.

Numerical evaluation of uniqueness of axis. We analyzed
unstable homogenous solutions to examine the characteristic
behaviors of this system by setting large homogenous S (S¼ 1)
(Figure 4A and 4B). The small perturbation was given to the
homogenous stationary state. This perturbation transiently
induced two peaks in Model I with L ¼ 10. However, one of
the peaks eventually disappeared, and only a single peak
remained (Figure 4A). When we doubled the system size (L¼
20), four peaks appeared; however, as in the case with L¼ 10,
only a single peak remained and others disappeared (Figure
4B). No peak arose after the first transient peaks appeared.
This result suggests that the number of transient peaks
depends on the system size, and that multiple transient peaks

are unstable, which results in a single peak at the final steady
state.
We analyzed the relationship between the number of

transient peaks and the system size by linearization analyses
around the homogenous states (see Materials and Methods).
For Model I (Equation 2), the wave number that grows most
rapidly from homogenous state k�h is obtained as k�h¼ 1.32; the
most growable wavelength is 2p/k�h ¼ 4.78. Therefore, the
system with L ¼ 10 most likely generates two peaks and the
system with L ¼ 20 four peaks from the homogenous states.
We further confirmed that multiple peaks are unstable. We

set a two-peak profile as the initial condition, and examined
its stability by giving a small perturbation. As shown in Figure
4C, the two peaks were not stable; one disappeared, and only
a single peak remained. This result strongly suggests that
multiple peaks are unstable, resulting in a single stable peak.
Numerical evaluation of localization of sensitivity. We

examined whether the sensitivity is localized at the polarized

Figure 4. Numerical Evaluation of Uniqueness of Axis and Localization of Sensitivity in Model I

(A–C) Numerical evaluation of uniqueness of axis. We set u¼ 1.65, v¼ 0.35, and S¼ 1. These values of (u, v) were derived from f(u, v)¼ 0 and uþ v¼ 2.
The system size was taken as L¼ 10 (A) or L¼ 20 (B). We gave random perturbation (60.01), and the simulation was run for the indicated time (A,B). (C)
Next, we obtained a stable single peak in Model I by setting L¼ 5 and taking the initial state as u¼ 1.65 and v¼ 0.35. Because we applied the periodic
boundary condition to this system, we could set the center of the concentration peak at x¼ 0 by translation. By duplicating and coupling this profile (L
¼ 5), we obtained a new profile (L¼ 10) with two peaks. We gave small perturbation (60.01) to this profile (L¼ 10), and the simulation was run for the
indicated time (C).
(D,E) Numerical evaluation of localization of sensitivity. We obtained a stable single peak in Model I by setting L¼ 10 and S¼ 1, and taking the initial
state as u¼1.65 and v¼0.35. We set the center of the concentration peak at x¼ 1.0 (D) or x¼�1.6 (E) by translation. Then we gave a new stimulation S
¼ 1 (x , 0) and S¼ 1f1þ 0.04cos[2p(x/L� 0.25)]g (x � 0). The stimulation gradient is given only at the area of x . 0. The simulation was run for the
indicated time (D,E).
doi:10.1371/journal.pcbi.0030108.g004
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peak. We first induced the stable polarized peak as indicated
(t¼0), and gave the indicated position-dependent stimulation
(Figure 4D and 4E). When the polarized peak (peak at x¼ 1.0)
overlapped with the gradient of the stimulation, the polarized
peak moved along the gradient of S (Figure 4D); a new peak
did not appear. In contrast, when the polarized peak (peak at
x¼�1.6) did not overlap with the gradient of the stimulation,
the polarized peak did not move (Figure 4E); a new peak did
not arise. These results indicate that the polarized peak shows
sensitivity to a gradient of S, whereas the rest of the position
does not show such sensitivity, and suggest that the sensitivity
is restricted only at the polarized peak.

Analytical Examination of Unique Axis and Localized
Sensitivity

To better understand the results of the numerical
simulations, we investigated the following model (see Equa-
tions 1a–1c), by analytical approximations:

Model II

f ðu; vÞ ¼ �a1ðuþ vÞ½ðauþ vÞðuþ vÞ � a2�; ð3Þ

where Du ¼ aDv. Here, a1, a2, and a are parameters of the
models. This model belongs to the mass conserved reaction–
diffusion system, and is more advantageous for analytical
examination. The homogenous solution was unstable regard-
less of the values of parameters in this model (see Materials
and Methods), so this model did not show reversible
accumulation. However, the model still retained the impor-
tant properties such as uniqueness of axis and localization of
sensitivity, so we can use this model to analytically examine
whether these behaviors can emerge from a mass conserved
reaction–diffusion system with instability.

In the following sections, we show that: (1) the model has
one-peak stationary states, regardless of the system size (if not
too small); (2) multiple-peak stationary states are unstable;
and (3) the polarized peak moves depending on the gradient
of the parameter value and the sensitivity is localized. Finally,
(4), we verified our analyses by comparing analytical results
with the values obtained by numerical simulations.

Analysis (1): Existence of a one-peak stationary sol-
ution. We define the following variables and function:

N ¼ uþ v ð4aÞ

P ¼ Duuþ Dvv ð4bÞ

f �ðN ;PÞ ¼ f
DvN � P
Dv � Du

;
P � DuN
Dv � Du

� �
: ð4cÞ

Equations 1a and 1b are rewritten as the following set of
partial differential equations for N and P:

@N
@t
¼ @

2P
@x2

; ð5aÞ

@P
@t
¼ ðDu þ DvÞ

@N
@t
� DuDv

@2N
@x2
þ ðDv � DuÞf �ðN ;PÞ: ð5bÞ

Under the periodic boundary conditions, the stationary
solutions of Equations 5a and 5b, Ne(x) and Pe(x), satisfy the
following equations:

PeðxÞ ¼ Pe ðunif ormÞ ð6aÞ

d2

dx2
NeðxÞ ¼

Dv � Du

DuDv
f �ðNeðxÞ;PeÞ: ð6bÞ

Consider the case of Model II given by Equation 3. For any Pe

(.0), Equation 6b with the substitution of Equation 3 has a
family of periodic solutions with periods between kmin , k ,

‘ (see Materials and Methods). Here kmin is given by kmin ¼
2pf[DuDv/(Dv � Du)](1/a1a2)g1/2. Thus, for an arbitrary large
system with L . kmin, one can choose a one-peak solution that
satisfies the boundary conditions at x¼6L/2 by taking k¼ L.
Note that Pe is related to k and the average mass of Ne(x), N ¼
1/L

R L=2
�L=2 Ne(x) dx. For a sufficiently long period (k! ‘), this is

expressed as

Pe !
6Dva2
kN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DuDv

Dv � Du

1
a1a2

s
: ð7Þ

Thus, for a sufficiently large system, Ne(x) and Pe(x) are
approximated as:

NeðxÞ ¼ N0sech2½bðx� xpÞ�; ð8aÞ

PeðxÞ ¼ Pe; ð8bÞ

where xp denotes the center of the peak and b, N0, and Pe are
constants given by:

b ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dv � Du

DuDv
a1a2

r
; ð9aÞ

N0 ¼
LNb
2

; ð9bÞ

Pe ¼
3Dva2
LNb

: ð9cÞ

Here we obtain the one-peak solution for Model II (Equation
3) by setting an arbitrary L and N .
Analysis (2): Stability of periodic solutions. We examined

the stability of periodic solutions by linearization analysis for
a single-peak solution (Analysis (2.1)) and multiple-peak
solutions (Analysis (2.2)), whose periods are equal to the
system size and the 1/n of the system size, respectively.
Analysis (2.1): Stability of a one-peak solution. First, we consider

the stability of a one-peak solution given by Equations 8a and
8b. Without loss of generality, we set xp¼ 0 here. We set N(x,t)
¼ Ne(x) þ DN(x,t) and P(x,t) ¼ Pe þ DP(x,t), and the stability is
estimated by the linearized equations of Equations 5a and 5b
around Equations 8a and 8b, given as follows:

@DN
@t
¼ @

2DP
@x2

; ð10aÞ

@DP
@t
¼ ðDu þ DvÞ

@DN
@t
� DuDv

@2DN
@x2

þ ðDv � DuÞðhNDN þ hPDPÞ;

ð10bÞ

where hN(x) and hP(x) are partial derivatives of f*(N, P) by N
and P, respectively, at the solution Equations 8a and 8b, that
is, hN(x) ¼ @f*(Ne(x), Pe)/@N and hP(x) ¼ @f*(Ne(x), Pe)/@P. Let us
represent (DN, DP) as (eltnl(x), e

ltpl(x)) and consider the case
of Model II. Equations 10a and 10b lead to the following:
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d2pl

dx2
¼ lnl; ð11aÞ

d2nl

dx2
¼ Du þ Dv

DuDv
lþ 4b2½1� 3sech2ðbxÞ�

� �
nl

� l
DuDv

þ 6b2N0

Pe
sech4ðbxÞ

� �
pl:

ð11bÞ

We illustrate nl and pl in Figure 5A and 5B, respectively, for

the case with l . 0 (see Materials and Methods). In the region

where jxj is larger than 1/b, pl can be approximated as

follows:

pl ’

� Pe

N0
þ l
�bþ C1

b2
x ðx, 0Þ

� Pe

N0
þ l

bþ C1

b2
x ðx.0Þ;

8><
>: ð12Þ

where C1 is a constant originated from the integral constant.
This approximation is verified numerically, as shown by the
dashed line with an arrow in Figure 5B. Considering periodic
boundary conditions, pl(�L/2) and pl(L/2) should connect
smoothly; thus, Equation 12 never satisfies Equations 11a and
11b except for l ¼ 0.
Analysis (2.2): Instability of multiple-peak solutions. Here we

consider the case of multiple-peak solutions. As long as L/n is
larger than 1/b, an identical n-peak periodic solution is
approximated by:

Nj
eðxÞ ¼

1
n
N0sech2ðx� xjpÞ; ð13aÞ

Pj
eðxÞ ¼ nPe; ð13bÞ

on each jth domain defined as xjp�L/2n � x � xjpþL/2n, where
xjp is the position of each peakj (j¼1, 2, ..., n) given by xjp¼�L/2
þ (j�1/2)L/n. We set DP¼P(x, t)�Pj

e(x)¼ eltpjl. As in the case of
the one-peak solution, we can obtain

pl ’

nj0 �
n2Pe

N0
þ l
�bþ Cj

1

b2
ðx� xjpÞ

" #
ðx, xjpÞ

nj0 �
n2Pe

N0
þ l

bþ Cj
1

b2
ðx� xjpÞ

" #
ðx.xjpÞ:

8>>>><
>>>>:

ð14Þ

for each jth domain. For multiple-peak solutions, nj0 and Cj
1

are determined by the boundary conditions such that pjl
connect smoothly between adjacent domains. This piecewise
linear function takes the value pj¼�nj0n

2Pe/N0 at x¼ xjp, and at
the point the slope changes by �l(2N0/n

2Peb)pj. A smooth
connection between them means the slope is given as (pjþ1 –
pj)/(L/n) for xjp , x , xjþ1p . Thus, pj satisfies the following
relationship:

pjþ1 � pj
L=n

�
pj � pj�1
L=n

¼ �l
2N0

n2Peb
pj: ð15Þ

Considering periodic boundary conditions, we obtain the
following solutions:

pðkÞj ¼ cos
2kp
n

j þ h0

� �
; ð16aÞ

lðkÞ ¼ 2n3Peb
N0L

sin2 kp
n

� �
¼ 12n3Dva2

L3N2b
sin2 kp

n

� �
; ð16bÞ

where k is an integer (1 � k � n/2), corresponding to a mode,
and h0 is an arbitrary constant. All modes have positive l, and
therefore can grow. Figure 5C–5F shows the most growable
mode for the n-peak solution (n ¼ 2, 3, 4, 5), that gives the
largest value to l.
Based on this analysis, the one-peak solution is stable,

whereas the multiple-peak solutions are unstable, regardless
of the parameter values.
Analysis (3): Response of the polarized peak to a position-

dependent parameter. Here we study the case in which the
system has a position-dependent parameter by substituting
a�2(x) ¼ a2 þ eae(x) for a2 in Equation 3, where jeae(x)j is
sufficiently smaller than a2. It is useful to represent the
explicit dependence of f* on the parameter, as f*(N, P, a�2). In
this case, an existing peak moves, as is the case with Model I
(Figure 3G–3I). To derive the velocity of the peak (vp), we
define the following variable and functions:

Figure 5. Stability Analysis of Multiple-Peak Solution

We seek growable perturbations (nl, pl) for the periodic solutions as
discussed in the text. First, we show the perturbations for the one-peak
solution, which are derived from Equations 11a and 11b, without
consideration of boundary conditions: (A) nl(x); and (B) pl(x).
(A,B) We used the following values: a1¼0.5, a2¼2.2, Du¼0.1, Dv¼1, N¼2.
Because we cannot determine the values of l and C1 without boundary
conditions, we arbitrarily set l¼ 0.06 and C1¼ 0.3 here. The dashed line
with an arrow in (B) indicates the approximation to a piecewise linear
function. Next, we show the perturbations for multiple-peak solutions. We
can describe a perturbation by a set of pj, where pj is the value of pl at the
center of the jth peak. As shown in the text, we obtain pj as p

ðkÞ
j ¼

cos[(2kp/n)jþ h0], where k is an integer (1 � k � n/2), corresponding to a
mode, and h0 is an arbitrary constant.
(C–F) Show the most growable perturbations for two-, three-, four-, and
five-peak solutions, respectively. For each n, the mode, k, that gives the
largest value to l, is determined by l(k)¼ [(12n3Dva2)/(L3N2b)]sin2(kp/n).
doi:10.1371/journal.pcbi.0030108.g005
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z ¼ x� vpt; ð17aÞ

N�ðz; tÞ ¼ Nðzþ vpt; tÞ; ð17bÞ

P�ðz; tÞ ¼ Pðzþ vpt; tÞ: ð17cÞ

Equations 5a and 5b are rewritten as the following set of
partial differential equations for N* and P*:

@N�

@t
� vp

@N�

@z
¼ @

2P�

@z2
; ð18aÞ

@P�

@t
� vp

@P�

@z
¼ ðDv þ DuÞ

@N�

@t
� vp

@N�

@z

� �

� DuDv
@2N�

@z2
þ ðDv � DuÞf �ðN�;P�; a�2Þ:

ð18bÞ

Under the periodic boundary conditions, the stationary
solutions of Equations 18a and 18b, N�e (z) and P�e (z), satisfy
the following equations:

�vp
@N�e
@z
¼ @

2P�e
@z2

; ð19aÞ

�vp
@P�e
@z
¼ ðDv þ DuÞ �vp

@N�e
@z

� �

� DuDv
@2N�e
@z2

þ ðDv � DuÞf �ðN�e ;P�e ; a�2Þ:

ð19bÞ

Considering that e¼ 0 and vp¼ 0 lead to N�e (z)¼ N0 sech
2(bz)

and P�e (z)¼Pe, we can set N�e (z)¼N0 sech
2(bz)þne(z) and P�e (z)¼

Peþ pe(z) for small value of e. The linearized approximations
of Equations 19a and 19b around (N�e ;P

�
e ; a
�
2) ¼ (N0 sech2(bz),

Pe, a2) give us the velocity of the peak at t ¼ 0 (see Materials
and Methods):

vp ¼
�
Z L=2

�L=2
W1ðxÞeGaðxÞ dx

" #

bN0Z
; ð20Þ

where W1(x)¼�2tanh(bx)sech2(bx), and Z is a constant. Ga(x) is
defined by Ga(x) ¼ (4b2N0/a2)sech

2(bx)ae(x), which reflects the
position dependence of a�2(x).
Equation 20 indicates that the velocity of the peak is

determined by the integral of W1(x)eGa(x) with respect to x.
Taking into consideration that eGa(x) represents the position
dependence of a�2(x) and that the position dependence at the
site where the value of W1(x)is trivial has little influence on
the velocity, we can regard W1(x), which is a kind of weight
function, as a ‘‘sensing window.’’ As shown in Figure 6, this
window has significant value only at the site of the
concentration peak. Indeed, as for the mass conserved
reaction–diffusion system, W1(x) is proportional to dN�e /dx,
and thus the sensing window is locally open at the preexisting
peak, especially at the peripheries of the peak. Note that the
integral of W1(x)eGa(x) is zero when ae(x) is an even function;
therefore, the sensing window can detect a gradient (or slope)
of a�2(x).
Based on this analysis, the polarized peak can detect the

position dependence of a parameter and move depending on
the gradient at the site of the peak. This property can be
called ‘‘localized sensitivity.’’
Analysis (4): Verification of analysis by computations.

Finally, in Analyses (4.1)–(4.3), we verified our Analyses (1)–
(3), respectively, by comparing analytical results with the
values obtained by numerical simulations.
Analysis (4.1): Approximation of the one-peak solution. First, we

verify the results of Analysis (1): Existence of a one-peak
stationary solution. We obtain analytical approximations of
the one-peak solution as Equations 8a and 8b, and we
compare this approximation with the final profile of the
numerical simulation of Model II. The left panel of Figure 7A
is the final profile of numerical simulation (see Materials and
Methods). The solid line indicates the profile of N, and the
dashed line indicates P. The right panel of Figure 7A shows
the approximations given by Equations 8a and 8b, taking the
center of the peak as xp ¼ �2.15. The results of the
computations show good agreement with our analytical
results. The approximations were also sufficient when we
set L ¼ 20, 40, and 80 (unpublished data).
Analysis (4.2): Instability of a two-peak solution. Next, we verify

the results of Analysis (2.2): Instability of multiple-peak solutions.
According to our analysis, a two-peak solution is unstable,
and perturbations will grow exponentially with a growth rate
lanl given by Equation 16b with n¼ 2 and k¼ 1, that is, lanl¼

Figure 6. Sensing Window of the Polarized Peak That Detects the

Position Dependence of a Parameter

The velocity of the polarized peak responding to a parameter gradient is
determined by

R L=2
�L=2 W1(x)eGa(x) dx, where eGa(x) represents the position

dependence of the parameter. Here we can regard W1(x) as a sensing
window. The upper panel shows the profile of the polarized peak, N�e (x);
the lower panel indicates W1(x).
doi:10.1371/journal.pcbi.0030108.g006
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(96Dva2)/(L
3N2b). We numerically examined the growth rate of

the perturbation given to two-peak solutions with Dv ¼ 1, 2,
and L ¼ 20, 30, 40 (see Materials and Methods). We
logarithmically plotted the growth rates estimated by
analytical results (lanl; Figure 7B, solid and dashed lines)
and those obtained by numerical simulations (lsml; Figure 7B,
filled circles and squares) against the system size L. The results
of the analyses and computations were nearly identical.

Analysis (4.3): Movement of a polarized peak in response to the
parameter gradient. Finally, we verify the results of Analysis (3):
Response of the polarized peak to a position-dependent
parameter.

According to our analysis, the polarized peak will move

when a parameter gains position dependence. A concen-
tration peak formed in Model II (Equation 3) with uniform a2
will move when a2 is replaced by a�2(x) ¼ a2f1 þ (e/2)sin[2p(x/
L)]g with a velocity vanl obtained by Equation 20 as:

vanl ¼ �

Z L=2

�L=2
½tanhðbxÞsech4ðbxÞsinð2px=LÞ� dx

16
15

Dv þ Du

Dv � Du

1
a1a2

þ L2N2

6Dva2

3
7
� 1
bL

� �" # e: ð21Þ

We numerically examined the velocity of movement of the
polarized peak in response to a parameter gradient with Dv¼
1, 2, and e¼ 0.02, 0.04, 0.06 (see Materials and Methods). We

Figure 7. Verification of Analysis by Computations

(A) Approximation of one-peak solution. The left panel indicates the result of numerical simulation (Model II); the right panel indicates the analytical
approximation.
(B) Instability of the two-peak solution. A two-peak state is unstable in Model II and some perturbation grows. We compare the growth rates estimated
by analysis with those obtained by simulations. For simulations, we varied Dv (¼ 1 or 2) and L (¼ 20, 30, or 40); thus, six trials were performed. The axes
indicate l and L in double logarithmic scales.
(C) Movement of polarized peak is dependent on the parameter gradient. An existent peak moves when a gradient is given to the parameter. We
compare the velocity estimated by analysis with those obtained by simulations. For simulations, we varied Dv (¼1 or 2) and e (¼0.02, 0.04, or 0.06); thus,
six trials were performed.
doi:10.1371/journal.pcbi.0030108.g007
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plotted the velocities estimated by analytical results (vanl;
Figure 7C, solid and dashed lines) and those obtained by
numerical simulations (vsml; Figure 7C, filled circles and
squares) against the parameter gradients e. The results of the
analyses and computations were nearly identical.

Discussion

Rho GTPases and Conceptual Model
In this study, we used a mathematical model to clarify the

role of the interaction between the Rho GTPases in cell
polarity and developed a conceptual model of cell polarity to
glean a theoretical understanding of the unique behaviors of
cell polarity.

The Rho GTPases regulate the remodeling of the actin
cytoskeleton via actin polymerization, depolymerization, and
myosin activity [15,17,26], which ultimately establishes cell
polarity. Then, what regulates the spatial activity of the Rho
GTPases? The model proposed by Sakumura et al. indicates
that the interaction of the Rho GTPases can regulate their
own temporal activities [25]. We demonstrated that the
interaction of the Rho GTPases can regulate their own spatial
activities. In reality, the interaction of the Rho GTPases can
provide more complicated temporal and spatial regulation of
their activities. Further study, including the determination of
kinetic parameters of the interaction, is necessary to develop
a more realistic model of the Rho GTPases.

The activator–inhibitor model for pattern formation [38]
and the local excitation and global inhibition model for
directional sensing in chemotaxis [6] belong to conceptual
models, rather than to detailed biological models. Such
conceptual models with reduction of equations and param-
eters make analysis simpler and clearer. We identified a mass
conserved reaction–diffusion system with instability as
common properties between the cell polarity models. The
model belonging to this system can sufficiently reproduce the
important behaviors of cell polarity, such as uniqueness of
axis and localization of sensitivity, and enabled us to
theoretically understand such behaviors, which are difficult
to examine without the models.

Uniqueness of Axis and Localization of Sensitivity
When interleukin-8, a chemoattractant, is applied simulta-

neously from two directions at a 458 angle, normal neutro-
phils choose one direction for migration instead of
responding to both sources [11]. Neutrophils with multiple
leading edges are rarely observed under normal conditions
[39]. When HL60 cells are transfected with a dominant-
negative Rho construct or treated with Rho-kinase inhibitors,
many cells exhibit the multiple pseudopods, where, in some
cells, protrusions gradually withdraw, leaving a single,
prominent pseudopod [10]. In addition, inhibitions of PI3Ks
cause HL-60 cells to form multiple pseudopods, which are
weak and transient [39]. These results suggest the instability
of multiple leading edges, which may make the front of a
migrating cell single and stable. Chemotactic cells must have
only one front–back axis because multiple fronts would
prevent fine migration. Subramanian and Narang investi-
gated the response of their model to two almost identical
stimulations [23] and showed that only one of the two peaks
that arise persists, which agrees with our results. Here we
show that uniqueness of axis emerges from instability of

multiple peak solutions in a mass conserved reaction–
diffusion system (Figures 4C and 5).
In neutrophils [40], HL-60 cells [10], and Dictyostelium cells

[41], the polarized cells respond to changes in direction of a
gradient by performing U-turns rather than by simply
reversing polarity. In addition, polarized migrating cells
move forward without responding to the chemoattractant
source near their rears [12]. These experimental findings
indicate that the sensitivity to chemoattractants is localized at
the leading edge of polarized cells. The localized sensitivity
focuses the activity of the actin cytoskeleton at the leading
edge, resulting in faster movement toward a chemoattractant
source [12]. Few mathematical theories, however, have been
proposed to explain the localization of sensitivity. Here we
show that localization of sensitivity depends on the specific
localization of a sensing window at the polarized peak in a
mass conserved reaction–diffusion system (Figure 4D and 4E
and Figure 6). It should be added that many other systems can
also exhibit a localized sensing window.

Biological Interpretation of Mass Conservation
Consider a molecule that satisfies the following conditions:

(1) the molecule (X) has two states (Xm and Xc); (2) the total
amount of X is conserved; and (3) the diffusion coefficient of
Xc is larger than that of Xm. Two states of this molecule can
be treated as components of a mass conserved system. Some
kinds of small GTPases, such as those of the Rho family, have
two forms, active and inactive forms; the Rho GTPases in the
active forms are located in the membrane, and those in the
inactive forms are in the cytosol [26]. Some enzymes involved
in the cell polarity of chemotactic cells, such as PI3K and
PTEN, are also reported to show a relationship between their
activity and membrane binding [42–46]. Molecules in the
cytosol may well diffuse faster than those in the plasma
membrane. Thus, these molecules can be considered as
components of mass conserved systems.
Chemotactic cells, such as Dictyostelium cells and neutro-

phils, polarize within a few minutes (30 s to 3 min) after they
are exposed to chemoattractants [6,10,47]. Because the time
scale of cell polarity is likely to be much shorter than that of
gene expression and protein synthesis, we can assume that the
masses of molecules are constant during the polarization of
chemotaxis.

Instability of Multiple-Peak Solutions
We numerically and analytically show that multiple-peak

solutions are unstable. To facilitate an understanding of the
physics of this instability, we attempt to give an intuitive
physical explanation of the behavior of molecules in the case
where there exist two peaks (Figure 8), just as in Figure 4C.
We simplify the situation as follows. (1) There are two spaces
(each space has one peak). (2) The molecules have two forms,
u and v, which have small and large diffusivities, respectively.
(3) No molecule is generated or degraded in the spaces. (4)
The molecules move between spaces, mainly in v-form,
depending on the concentration gradient of v-form mole-
cules. (5) The u-form molecules convert v-form molecules
into u-form, and this positive feedback is so strong that
infusion of molecules into the space causes a decrease in v-
form molecules. Here, consider that a few molecules move
from one space (S1) to the other (S2). According to (5),
because of the nature of the positive feedback, the number of
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v-form molecules in S2 declines as the total number of
molecules in S2 increases. In turn, according to (4), the
declining of the number of v-form molecules in S2
successively facilitates further transfer of v-form molecules
from S1 to S2, resulting in the further increase of the total
number of molecules in S2. This flux is never disrupted by the
generation or degradation of molecules because of the mass
conservation. Therefore, two peaks in such a system are
unstable. The condition (5) seems critical for instability, and
we analyzed such conditions mathematically elsewhere [48].

Specific Feature of the Mass Conserved Reaction–
Diffusion System

One of the most extensively studied reaction–diffusion
models is the Turing model, in which robust spatial patterns,
such as stripes or spots, emerge via a diffusion-driven

instability [38,49]. An ordinary Turing pattern in 1-D space
is stripes with an intrinsic scale length [50]. Mass conserved
models also generate multiple peaks from the homogenous
state during the early phase, which is explained by diffusion-
driven instability. However, they exhibit characteristic
transitions after the initial peaks arise: most peaks become
smaller and eventually disappear, and only one peak persists
(Figure 4A and 4B). Why is the behavior of the mass
conserved system so different from that of ordinary Turing
models? Consider a reaction–diffusion system with vast size (L
! ‘) and interval I [x1, x2] within the system, where x1 and x2
are arbitrary but far apart. Can we predict what will happen
to interval I? For an ordinary Turing model, the linearization
analysis around the homogenous solution gives us sufficient
information [50]. The mass conserved system is more
complex, however, because the behavior differs between the
case where the components flow into interval I versus the case
where they flow out, and we cannot predict which will occur.
This difference in predictability seems to be fundamentally
linked to the different behavior and the specificity of the
mass conserved system. Mass conserved models have multiple
stationary states that are spatially homogenous or periodic,
including a one-peak state and multiple-peak states. We show
that the multiple-peak stationary states are unstable, resulting
in a single stable peak.
In some reaction–diffusion systems, such as the activator–

inhibitor model (or substrate–depleted model), high diffu-
sivity of inhibitor (or substrate) make multiple peaks
unstable, resulting in a single stable peak [51]. An intuitive
explanation for this instability is that an inhibitor, which is
generated at the peak, rapidly diffuses throughout the cell. In
the cell where the inhibitor can be generated and degraded,
the spread of the inhibitor requires the large diffusivity to
overwhelm the inhibitor degradation. On the other hand, in a
mass conserved reaction–diffusion system, where no molecule
is generated or degraded, a peak takes up molecules from its
surroundings to grow. That is, the growing peak inhibits the
system not by spread of inhibitor but by deprivation of
molecules. In this case, large diffusivity is not required
because there is no competitor to overcome, such as
generation of molecules, and the inhibition can eventually
spread throughout the cell. Indeed, Equation 16b clearly
indicates that any Dv can make multiple peaks unstable (l .

0), at least in Model II.
It may be counterintuitive that any mass conserved system

finally exhibits a one-peak pattern. For Model II, the final
steady state was a one-peak solution regardless of the system
size, even when L was infinitely large. But for Model I, the
final steady state had two peaks when we set L ¼ 80
(unpublished data). Some mass conserved models probably
have a maximum size to have a unique peak. However, this
maximum size is independent of the linearization analysis.
The conditions for the uniqueness of concentration peak will
be elucidated in future analyses.

Future Perspective and Conclusion
Because properties observed in simple models are expected

to be conserved in more detailed models, we assume that
movement of molecules follows a simple diffusion equation in
our conceptual model. Active transport systems, such as
actomyosin- and microtubule-based active transports, regu-
late cell polarity in various cellular processes [52]. Such active

Figure 8. Schematic of Unstable Multiple-Peak Solution in a Mass

Conserved Reaction–Diffusion System

We set the two-peak solution (S1 and S2, top panel), which is similar to
Figure 4C. We consider the following conditions. There are two spaces
(each space has one peak). The molecules have two forms, u and v,
which have small and large diffusivities, respectively. No molecule is
generated or degraded in the spaces. The molecules move between
spaces, mainly in v-form, depending on the concentration gradient of v-
form molecules. The u-form molecules convert v-form molecules into u-
form, and this positive feedback is so strong under the condition where
@Pe/@N , 0 [48] that infusion of molecules into the space causes a
decrease in v-form molecules. Infusion of molecules to S2 accompanies
the removal of the same number of molecules from S1 because of the
mass conservation (bottom panel).
doi:10.1371/journal.pcbi.0030108.g008
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transports are likely to follow the formation of intracellular
asymmetry, which takes place under the resting condition
where the cell polarity is yet to be generated. Under such
conditions, the diffusion of the Rho small GTPases has been
measured and shown to be approximated by an apparent
simple diffusion, if viewed on the order of seconds or tens of
seconds [37]. Because our concern in this study is the earlier
asymmetry formation rather than the completion of the
polarity, which includes active transport, we here assumed
the simple diffusion of the Rho GTPases. However, we will
readily incorporate the detailed mechanism of the transport
system of the Rho–GTPases in a future model.

In this study, we focused on the stationary state, but not on
the transient state, which involves adaptation in response to a
transient signal [44,53–55]. Such properties, as well as high
dimensionality and multiple components, should be incorpo-
rated into a future model.

Although our model is rather simple, it shows the
important properties of cell polarity such as switch-like
reversible response, uniqueness of axis, and localization of
sensitivity. We further demonstrated that the instability of
multiple-peak solutions and the specific localization of a
sensing window at the polarized peak in a mass conserved
reaction–diffusion system are responsible for uniqueness of
axis and localization of sensitivity, respectively. One remark-
able feature of a mass conserved reaction–diffusion system
compared with other models is that a mass conserved
reaction–diffusion system does not require strict assumptions
for diffusion coefficients, such as smaller and much larger
diffusivities of excitatory and inhibitory molecules, respec-
tively, in the local excitation and global inhibition models
[6,18], or an extraordinary large diffusivity of the inhibitor in
the Gierer–Meinhardt model [51]. Since the Rho GTPases,
PI3K, or PTEN have thus far not been demonstrated to
involve such ad hoc assumptions of diffusivity, a mass
conserved reaction–diffusion system is more likely to explain
cell polarity where these molecules are involved, and to be
adapted to a wide range of cell polarity. Taking into
consideration that the Rho GTPases system satisfies con-
ditions of a mass conserved reaction–diffusion system, it is
likely that this system is one of the fundamental principles of
cell polarity.

Materials and Methods

Simulation. We considered a one-dimensional circular system with
circumference L. The position is represented by x (�L/2 � x � L/2).
We applied the periodic boundary condition, which is used in some
models that explain cell polarity [23,24]. We used explicit difference
methods to perform simulations. The difference intervals for
calculations are shown in the following text.

Simulation of the Rho GTPases model. The parameter values were
set as follows: L¼10, Dmi¼0.04, Dci¼3 (i¼1, 2, 3), ks1¼1, ks2¼1, ks3¼
1, ka1¼0.2, ka2¼0.2, ka3¼0.2, ki1¼0.4, ki2¼0.2, ki3¼0.2, k11¼4, k12¼
3, k13 ¼ 5, k23 ¼ 6, k31 ¼ 4, and k32 ¼ 2. The difference intervals for
calculations were taken to be Dt¼ 0.01 and Dx¼ 0.33. We set Xm(x)¼
0.3, Xc(x) ¼ 0.7 (X¼ Rac, Cdc, Rho), unless specified.

Simulation of Model I. The parameter values were set as follows: a1
¼ 2.5, a2¼ 0.7, Du¼ 0.01, Dv¼ 1, and L¼ 10. The difference intervals
for calculations were taken to be Dt¼ 0.01 and Dx¼ 0.2. We set u¼ 1
and v¼ 1, unless specified.

Simulation of Model II for Analysis (4). The parameter values were
set as follows: a1 ¼ 0.5, a2 ¼ 2.2, Du ¼ 0.1, Dv ¼ 1 or 2, N ¼ 2. The
difference intervals for calculations were taken to be Dt ¼ 0.005 and
Dx ¼ 0.2.

Approximation of a one-peak solution. The computation was performed
by setting L¼10 and Dv¼1 and taking the initial state as u¼1 and v¼

1 with small perturbation (60.01). The final profile (t¼ 200) is shown
in the left panel of Figure 7A. The solid line indicates the profile of N,
and the dashed line indicates P.

Instability of a two-peak solution. We examined the instability of two-
peak solutions. First, we obtained a stable one-peak pattern in Model
II (Equation 3) by taking the size to be L/2, where L¼ 20, 30, 40, and
taking the initial state as u ¼ 1 and v ¼ 1 with small perturbation
(60.01). Because we applied the periodic boundary condition to this
system, we could set the center of the concentration peak at x¼ 0 by
translation. Next, by duplicating and coupling this profile (L/2), we
obtained a new profile (L) with two peaks. We used this profile (L)
with small perturbations (60.01) as the initial state of the following
simulation. All trials (Dv¼ 1, 2 and L¼ 20, 30, 40) showed instabilities
of two-peak profiles, and we obtained the growth rate, lsml, from the
change in peak height.

Movement of a polarized peak in response to the parameter gradient. We
examined the response to the parameter gradient. First, we obtained
a stable one-peak pattern in Model II (Equation 3) by setting L ¼ 10
and taking the initial state as u¼1 and v¼ 1. We set the center of the
concentration peak at x¼0 by translation. Next, we substituted a�2(x)¼
a2f1þ (e/2)sin[2p(x/L)]g for a2 in Equation 3. All trials (Dv¼1, 2 and e¼
0.02, 0.04, 0.06) showed movement of the polarized peaks, and we
obtained the velocities, vsml, from the results.

Linearization analysis around the homogenous state. In the
homogenous stationary state, the Jacobian matrix for the reaction
terms is given by

J ¼ �fu �fv
fu fv

� �
; ð22Þ

where fu and fv denotes the partial derivatives of f by u and v,
respectively, at a homogenous stationary state of Equations 1a and 1b.
We obtained a condition for instability of the homogenous solution:
(Dufv � Dvfu)/(DuDv) . 0. For example, the homogenous solution is
stable with S¼ 0.2 in Model I, whereas unstable with S¼ 1, under the
following conditions: a1¼ 2.5, a2¼ 0.7, Du¼ 0.01, Dv¼ 1, uþ v¼ 2. The
homogenous solution in Model II is always unstable.

Through the stability analysis using J, the range of wave numbers
(kh) that have positive eigenvalues is obtained as 0 , kh , [(Dufv�Dvfu)/
(DuDv)]

1/2, and the wave number that has the largest eigenvalue and
grows most rapidly from the homogenous state, k�h , is obtained as
follows:

k�h ¼
1

Dv � Du
ðfu þ fvÞ þ

ffiffiffiffiffiffi
Du

Dv

r
þ

ffiffiffiffiffiffi
Dv

Du

r� � ffiffiffiffiffiffiffi
fufv

p� �� �1=2

: ð23Þ

For Model I (Equation 2), we obtain k�h ¼ 1.32 under the following
conditions: a1 ¼ 2.5, a2¼ 0.7, Du¼ 0.01, Dv ¼ 1, S ¼ 1, u þ v¼ 2.

Periodic solution of Equation 6b. Equation 6b has the same
formulation as classical Newton mechanics. We define V(Ne) as

VðNe; PeÞ ¼ �
Dv � Du

DuDv

Z Ne

0
f �ðN; PeÞ dN ; ð24Þ

and Equation 6b implies

dx ¼ dNeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E � VðNe;PeÞ�

p ; ð25Þ

where E is a constant value, corresponding to period and total mass
of Ne(x). The period k and the average mass N ¼ (1/k)

R k
0 Ne(x)dx satisfy

the following equations:

k ¼ 2
Z Nmax

Nmin

dNeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E � VðNe;PeÞ�

p ; ð26aÞ

N ¼ 2
k

Z Nmax

Nmin

Ne dNeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E � VðNe;PeÞ�

p ; ð26bÞ

where Nmin and Nmax are minimum and maximum levels of Ne(x),
respectively, and are derived from V(Nmin)¼V(Nmax)¼E (0 , Nmin , N
, Nmax). Equations 26a and 26b give the relationship among Pe, k, and
N , where N is straightforwardly derived from the initial condition of
(u, v). For Model II (Equation 3),

VðNe; PeÞ ¼
Dv � Du

DuDv

a1Pe

3Dv
N3

e �
3Dva2
2Pe

N2
e

� �
; ð27Þ

and E can range between E* , E , 0 for Ne(x) to be a periodic
solution. Here E* ¼�f[(Dv � Du)/DuDv][(D2

va1a
3
2)/6P

2
e ]g. As E becomes

smaller (E! E*), the period k converges to kmin, which is the shortest
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wavelength in the periodic solutions. As E becomes larger (E! 0), the
period k diverges. The solution of Ne(x) at E ¼ 0 corresponds to the
separatrix of Equation 6b, indicating an infinite period (k! ‘). The
explicit form of Ne(x) for E ¼ 0 can be obtained by

NeðxÞ ¼
3Dva2
2Pe

sech2 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dv � Du

DuDv
a1a2

r
ðx� xpÞ

� �
; ð28Þ

which has the sole peak at x¼ xp and decays to zero as x! 6‘. For a
sufficiently large system, Equation 28 is a good approximation of the
solution for�L/2 , x , L/2. Equations 28 and 7 lead to Equations 8a
and 8b, and 9a–9c.

Solution of Equations 11a and 11b. If there is nontrivial (nl(x), pl(x))
that satisfies Equations 11a and 11b for l with a positive real part, the
solution is unstable. Note that (nl0, pl0) ¼ (n0sech

2(bx), � n0Pe/N0)
satisfies Equations 11a and 11b for l ¼ 0 under periodic boundary
conditions. Here n0 is an arbitrary factor, originated from the
linearity of equations, and we can set n0 ¼ 1. For l with an absolute
value near zero, we can obtain (nl, pl) by the expansion from (nl0, pl0)
with regard to l. To do this, we take nl¼nl0þlnl1þ . . . and pl¼pl0þ
lpl1 þ . . . . In the first order of the expansion, (nl1, pl1) obeys the
following equations:

d2pl1

dx2
¼ sech2ðbxÞ; ð29aÞ

d2nl1

dx2
¼ 4b2½1� 3sech2ðbxÞ�nl1 �

6b2N0

Pe
sech4ðbxÞpl1

þ Du þ Dv

DuDv
sech2ðbxÞ þ 1

DuDv

Pe

N0
:

ð29bÞ

Thus, pl is immediately derived from Equation 29a as:

plðxÞ ¼ �
Pe

N0
þ l
b2
flog½coshðbxÞ� þ C1xþ C2g; ð30Þ

where C1 and C2 are integral constants. We can obtain nl by solving
Equation 29b with substitution of pl1. C2 is determined by the
mathematical condition that nl1 should be orthogonal to nl0. In
practice, C2 has little influence on (nl, pu), and we set C2 ¼ 0 in the
analysis.

Derivation of vp from Equations 19a and 19b. The linearized
approximations of Equations 19a and 19b are given as follows:

2vpN0tanhðbzÞsech2ðbzÞ ¼ @
2peðzÞ
@z2

; ð31aÞ

0 ¼ ðDv þ DuÞ½2vpN0tanhðbzÞsech2ðbzÞ�

� DuDv
@2neðzÞ
@z2

þ ðDv � DuÞ½hN ðzÞneðzÞ þ hPðzÞpeðzÞ þ haðzÞea�2ðxÞ�:

ð31bÞ

where hN(z) ¼ @f*(Ne(z), Pe,a2)/@N, hP(z) ¼ @f*(Ne(z), Pe,a2)/@P, ha(z) ¼
@f*(Ne(z), Pe,a2)/@a�2. Because t is no longer a variable, we set t ¼ 0
without loss of generality and replace z with x in the following
analysis. Equation 31a under the periodic boundary condition leads
to pe as follows:

peðxÞ ¼ �vp
N0

b
tanhðbxÞ � 2

L
xþ C3

� �
; ð32Þ

where C3 is an integral constant. By substituting Equation 32 into
Equation 31b, we obtain the following:

d2ne

dx2
¼ 4b2½1� 3sech2ðbxÞ�ne þ vpbN0GnðxÞ þ eGaðxÞ; ð33Þ

where Gn(x) and Ga(x) are defined by:

GnðxÞ ¼
2ðDu þ DvÞ

DuDv
tanhðbxÞsech2ðbxÞ

þ 6N0

Pe
sech4ðbxÞ tanhðbxÞ � 2

L
xþ C3

� �
;

ð34aÞ

GaðxÞ ¼
4b2N0

a2
sech2ðbxÞaeðxÞ: ð34bÞ

By solving Equation 33, we obtain ne:

neðxÞ ¼ W2ðxÞ
Z

W1ðxÞ½vpbN0GnðxÞ þ eGaðxÞ� dx

�W1ðxÞ
Z

W2ðxÞ½vpbN0GnðxÞ þ eGaðxÞ� dx;

ð35Þ

where W1(x) and W2(x) are defined by

W1ðxÞ ¼ �2 tanhðbxÞsech2ðbxÞ; ð36aÞ

W2ðxÞ ¼
�1
16b
f2 cosh2ðbxÞ þ 5½1� 3 sech2ðbxÞ� þ 15bx tanhðbxÞsech2ðbxÞg:

ð36bÞ

Considering the periodic boundary condition for ne(x), we obtain the
following equation for sufficiently large L (solvable condition):

ne
L
2

� �
� ne

�L
2

� �
¼ W2

L
2

� �Z L=2

�L=2
W1ðxÞ½vpbN0GnðxÞ þ eGaðxÞ� dx ¼ 0:

ð37Þ

This leads to the velocity of the peak:

vp ¼ �

Z L=2

�L=2
W1ðxÞeGaðxÞ dx

bN0Z
; ð38Þ

where Z is given as follows:

Z ¼
Z L=2

�L=2
W1ðxÞGnðxÞ dx ¼ �

64
15

b
Dv þ Du

Dv � Du

1
a1a2

þ L2N2

6Dva2

3
7
� 1
bL

� �" #
:

ð39Þ
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