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In this study we present a detailed, mechanism-based mathematical framework of Drosophila circadian rhythms. This
framework facilitates a more systematic approach to understanding circadian rhythms using a comprehensive
representation of the network underlying this phenomenon. The possible mechanisms underlying the cytoplasmic
‘‘interval timer’’ created by PERIOD–TIMELESS association are investigated, suggesting a novel positive feedback
regulatory structure. Incorporation of this additional feedback into a full circadian model produced results that are
consistent with previous experimental observations of wild-type protein profiles and numerous mutant phenotypes.

Citation: Kuczenski RS, Hong KC, Garcı́a-Ojalvo J, Lee KH (2007) PERIOD–TIMELESS interval timer may require an additional feedback loop. PLoS Comput Biol 3(8): e154.
doi:10.1371/journal.pcbi.0030154

Introduction

Circadian rhythmicity is the product of a robust [1], free-
running, temperature-compensated [2], and adaptable [3,4]
biological clock found in diverse organisms ranging from
bacteria to humans. The model organism Drosophila is
commonly used to study this phenomenon due to the relative
ease of experimentation and the similarities to the mamma-
lian circadian clock (reviewed in [5,6]). The Drosophila
circadian clock is composed of two interlocking feedback
loops, shown in Figure 1. The first loop is composed of the
negative feedback of period (per) and timeless (tim), shown in
red, which down-regulate their own expression by inhibiting
the CLOCK–CYCLE (CLK–CYC) transcription factor. DOU-
BLE-TIME (DBT) binds to and phosphorylates PER, which
dimerizes with TIM before localizing to the nucleus via an
uncharacterized mechanism. Circadian rhythms are en-
trained by light through an increased degradation of TIM
protein, shown in yellow. In the second loop, shown in blue,
the expression of clk is regulated by vrille (vri) and PAR domain
protein 1 isoform e (pdp). Both vri and pdp expression are
activated by CLK–CYC. VRI represses the expression of clk,
creating a negative feedback loop, whereas PDP creates a
positive feedback loop through activating clk expression.
Incorporating detail on interlocked feedback loops, recently
shown to increase the stability and robustness of oscillations
[7,8], may be important to accurately capture the network
behavior.

Several mathematical models have been created to better
characterize the network underlying circadian rhythmicity in
Drosophila (e.g., [9–14]). These initial studies provided im-
portant insights into the molecular mechanisms of circadian
rhythms and the ability to produce robust 24-hour oscil-
lations. However, recent experimental observations have
created a more detailed view of network interactions,
including new critical aspects that are not described by
previous models. It is thus necessary to establish whether a
mathematical model of the current consensus network would
provide robust oscillations.

The nuclear localization of PER and TIM and the
subsequent repression of CLK activity have been two

particularly active areas of experimental research. The
necessity of TIM for PER nuclear localization has been long
established [15] and was assumed to occur through the
nuclear transport of PER–TIM dimers. In contrast to this
mechanism, recent experimental observations now suggest
that PER and TIM localize to the nucleus in a primarily
independent mechanism [16–21]. Additionally, while TIM is
required for PER nuclear localization via a cytoplasmic
‘‘interval timer,’’ the mechanism controlling this timer is
independent of both TIM and PER concentration [21]. Thus,
the way in which TIM affects PER nuclear localization is an
open question. Once in the nucleus, PER (and to a much
lesser extent TIM) repress CLK activity, recently observed to
occur via PER-mediated phosphorylation of CLK by DBT
[22,23]. These studies also provided evidence that total levels
of CLK remain nearly constant [22,23], in contrast to
previously observed CLK oscillations [24–26]. It remains
unclear whether constant total CLK concentration can
coincide with stable oscillations in this new network.
To address these questions, we first study the possible

mechanisms underlying the PER/TIM cytoplasmic interaction
in Drosophila S2 cell culture using mathematical models of this
isolated (arrhythmic) network. Using the most likely candi-
date mechanism, one based on positive feedback, we created a
detailed mathematical model of the wild-type Drosophila
circadian network. This model incorporates post-transla-
tional modifications to the PER and CLK proteins in addition
to including both interlocked feedback loops, without the use
of explicit time delays. The results of this model are

Editor: Philip E. Bourne, University of California San Diego, United States of
America

Received August 16, 2006; Accepted June 18, 2007; Published August 3, 2007

Copyright: � 2007 Kuczenski et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: clk, clock; cyc, cycle; dbt, double-time; FBM, focus-binding mediator;
pdp, PAR domain protein 1 isoform e; per, period; SM, signaling molecule; tim,
timeless; vri, vrille; ZT, zeitgeber time

* To whom correspondence should be addressed. E-mail: KHL9@cornell.edu

PLoS Computational Biology | www.ploscompbiol.org August 2007 | Volume 3 | Issue 8 | e1541468



consistent with wild-type and mutant experimental observa-
tions, provide insight into recent network revisions, and
suggest possible experimental directions to explore.

Results

Isolation of per/tim Feedback Loop
To investigate the six-hour delay created by the cytoplas-

mic interval timer observed in S2 cell culture by Meyer et al.
[21], the dynamics of the per/tim loop were isolated and
studied independently of the remaining circadian gene
network to mimic the environment within Drosophila S2 cells.
The interactions constituting the three mathematical models
studied are shown in Figure 2. All models of the isolated per/
tim loop include PER–TIM dimers in the cytoplasm that
dissociate immediately prior to nuclear localization and re-
association, but differ in the mechanism controlling the
timing of this dissociation.

The mass action model is the simplest isolated model and is
based on the commonly accepted per/tim interactions shown

in Figure 2A. In this model, PER–TIM dimers simply
dissociate prior to independent nuclear transport. The
dynamics of this model, shown as dotted lines in Figure 3A,
were able to produce nuclear localization of PER six hours
after inducing expression, but did not accurately capture the
switch-like dissociation of PER–TIM observed experimentally
[21].
Next, a model based on the sequential modification of

PER–TIM dimers, termed the serial model, was created as
shown in Figure 2B. The serial mechanism may represent the
sequential phosphorylation of PER and/or TIM. To simplify
the mathematics of this model (see Materials and Methods),
PER–TIM dimers were assumed to be initially associated
before the proceeding series of modifications after which
nuclear localization occurs. Interestingly, this model required
hundreds of intermediates to produce a stable five-hour
association followed by a precipitous dissociation, as shown
in Figure 3B.
Finally, a model based on positive feedback (previously

suggested to increase clock accuracy via the PDP loop of the
full circadian network [27,28]) was created as shown in Figure
2C. Consistent with experimental observations [21], this
model explicitly represents the cytoplasmic association of
PER–TIM dimers and the subsequent localization of these
dimers into discrete foci. Within the foci, a background level
of activity creates a low amount of dissociation and PER
nuclear localization. A nuclear-generated signaling molecule
(SM) is then created in response to PER and is used to
complete the positive feedback on the dissociation of PER–
TIM in foci. This network is conceptually consistent with the
observation that blocking nuclear export (and thus prevent-
ing the SM in this model from exiting the nucleus and
exerting the positive feedback) delays nuclear localization
[21]. The timing of PER nuclear localization in this model,
shown as solid lines in Figure 3A, is consistent with
experimental observations [21]. In addition to the feedback
SM, this model incorporates another unknown component:
the focus-binding mediator (FBM) molecule. The presence of
this molecule at limiting concentrations creates a nuclear

Figure 1. A Detailed Framework of Circadian Rhythms in Drosophila

doi:10.1371/journal.pcbi.0030154.g001
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Author Summary

The ability of an organism to adapt to daily changes in the
environment, via a circadian clock, is an inherently interesting
phenomenon recently connected to several human health issues.
Decades of experiments on one of the smallest model animals, the
fruit fly Drosophila, has illustrated significant similarities with the
mammal circadian system. Within Drosophila, the PERIOD and
TIMELESS proteins are central to controlling this rhythmicity and
were recently shown to have a rapid and stable association creating
an ‘‘interval’’ timer in the cell’s cytoplasm. This interval timer creates
the necessary delay between the expression and activity of these
genes, and is directly opposed to the previous hypothesis of a delay
created by slow association. We use several mathematical models to
investigate the unknown factors controlling this timer. Using a novel
positive feedback loop, we construct a circadian model consistent
with the interval timer and many wild-type and mutant exper-
imental observations. Our results suggest several novel genes and
interactions to be tested experimentally.

Model of Circadian Rhythmicity



localization timer that is largely independent of the max-
imum PER and TIM concentration, as shown in Figure 4A.

Wild-Type Observations
A model of the full circadian network was created based on

a simplification of the positive feedback isolated per/tim loop
model, the interactions of which are shown in Figures 1 and 5.
The expression of per, tim, clk, vri, and pdp mRNA and total
protein are in excellent agreement with experimental
observations, as shown in Figure 6 (see references therein).
The model results show a period of 24.0 hours under a light–
dark cycle (Figure 6) and 23.8 hours in constant darkness, also
consistent with experimental observations.

Gene Dosage Affects Period Length
Our results show a per dosage dependence of the period

length that is consistent with experimental observations
[29,30]. A continuation analysis of the maximum transcrip-
tional activation of per in the model demonstrates an inverse
relation between per dosage and the period of circadian
oscillation (black lines and points in Figure 7). In contrast, a
continuation analysis of the maximum transcriptional acti-
vation of tim (gray lines and points in Figure 7) revealed a
profile which is similar to per dosage and thus not very
consistent with experimental observations [17,31].

Mutant Phenotypes
The results from the model are consistent with numerous

homozygous mutant phenotypes, as shown in Table 1 (see
references therein). These results show that arrhythmic null
mutants in the per/tim feedback loop (i.e., per01 and tim01) are
unable to repress the activity of CLK–CYC resulting in
constitutively high expression of unaltered per [32,33], tim
[24,26,33–35], vri [36,37], and pdp [36]. The decreased PER
degradation in dbtP and dbtar mutants resulted in the stable
repression of CLK–CYC activity and the constitutively low
expression of per, tim, vri, and pdp mRNA and protein [34,38].

Similarly, when the level of active CLK–CYC is reduced by a
knockout of CLK or CYC (clkJrk and cyc0) or eliminating the
activator of clk expression (pdpP205), the resulting levels of per,
tim, vri, and pdp mRNA and protein are constitutively low
[36,37,39–41]. Understanding the effects of these mutants
provides key insights into the roles of specific genes in the
network, and reproducing their behavior provides support
for the model representation.
The model accurately captures a majority of the published

experimental observations. However, a number of mutant
flies display behavior that is not completely consistent with
the model results. For example, the low levels of tim mRNA in
per01, per mRNA in tim01, and tim mRNA in tim01 from some
publications [32,39] conflict with model results; however,
experimental results from other publications on these same
species do agree with our model results [32,33,37,39]. The low
levels of per mRNA in per01 [32,33,39,42], low levels of PER in
tim01 [17,20,24,26,34], and high levels of permRNA and protein
in dbtP/dbtar [34,38] observed experimentally conflict with the
model results and experimental observations of other E-box
mRNA and protein levels. The mathematical model lacks
ability to produce nuclear CLK–CYC in clkJrk and cyc0 mutants,
breaking the activation of E-box genes and producing no clk
mRNA in contrast to experimental observations [27]. Also, the
non–PER-mediated CLK phosphorylation in the model results
are not able to produce low CLK levels [24,26] without nuclear
PER in the per01 and tim01 mutants.

Discussion

Interval Timer Control
The isolated mass action model results (dotted lines in

Figure 3A) are not consistent with the experimental
observation of stably associated PER–TIM dimers and
precipitous nuclear localization [21]. The serial model results
(Figure 3B) show that hundreds of intermediates may be
required to produce this behavior. This number of inter-

Figure 2. Models of the Isolated per/tim Loop

(A) The simple mass action kinetics model.
(B) The serial model is based on a series of intermediate (possibly phosphorylated) PER–TIM states.
(C) The feedback model proposes a new role for PER providing positive feedback on the dissociation of cytoplasmic PER–TIM complexes.
doi:10.1371/journal.pcbi.0030154.g002
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mediates is larger than the potential phosphorylation sites on
PER and TIM predicted by ScanProsite (22 Casein Kinase II
sites on PER, 32 sites on TIM) [43]. The progressive
phosphorylation of PER and/or TIM may be observed as a
change in electrophoretic mobility prior to nuclear local-
ization in S2 cells. The positive feedback mechanism (solid
lines in Figure 3A) is able to produce the correct delay and
rapid dissociation, making it an attractive alternative to the
serial model.

The FBM in the positive feedback model, for which no
direct experimental evidence currently exists, is responsible
for controlling the onset of nuclear localization independent
of PER and TIM concentrations. Without this molecule, the
onset would be well correlated to experiment-to-experiment
variability in the limiting concentration of PER and/or TIM
(unpublished data). The shaggy (sgg) kinase is a potential
candidate because it has been previously shown to phosphor-
ylate TIM, affecting the nuclear localization of PER [20,44],
and also bind to cytoskeletal elements [45], a possible location
of the cytoplasmic foci. A sgg knockout in S2 cells could be
used to observe the possible disruption of PER/TIM accumu-
lation in cytoplasmic foci, which would be consistent with this
hypothesized role for sgg.

No obvious candidate for the SM exists in the literature.
Because small molecules have been shown to cause significant
structural changes in PAS domains [46], one possibility may
be a small molecule binding to and elucidating a temporary
conformational change in PER, allowing it to dissociate from
TIM and localize to the nucleus.
The feedback model is not consistent with all the data

presented by Meyer et al. [21]. The rates of nuclear
localization of PER and TIM are not completely independent
(unpublished data), and the conflict between rapid nuclear
transport and well-controlled timing of nuclear localization
results in a timing error that is double the observed seventy
minutes [21]. These differences may be the result of addi-
tional regulatory structures not already identified.

CLK Oscillation
The full network results demonstrate that while total CLK

levels do not change significantly during the course of a day,
the oscillating phosphorylation of CLK can lead to significant
and stable oscillations in mRNA (see Figure 6). These near-
constant total CLK levels are generated by synchronized
translation and degradation (see Figure S1). This result differs
from previous mathematical models [11,12,14] which show a
significant oscillation in CLK level (consistent with prior

Figure 3. Results of the Isolated per/tim Loop Models versus

Experimental Data Adapted from Meyer et al. [21] (Points with Error Bars)

(A) Five hours after induction, the isolated per/tim loop from the simple
mass action (MA) model results show PER is nuclear but without the
precipitous change in PER–TIM stability and PER localization. Both the
serial (S) (100 intermediates) and the feedback (FB) model results are
consistent with experimental observations, showing a precipitous
dissociation or PER–TIM followed by the nuclear accumulation of PER
and TIM.
(B) The serial model requires hundreds of intermediate states to be
consistent with experimental observations. Model results and exper-
imental data were scaled to a maximum of 1.0. Subscripts denote
cytoplamic (c) or nuclear (n) localization.
doi:10.1371/journal.pcbi.0030154.g003

Figure 4. Nuclear Onset in the Isolated Positive Feedback Model

(A) The onset of PER nuclear localization versus the maximum
concentration of PER (blue) and TIM (red). The initial concentrations of
PER and TIM were varied according to a log normal distribution (see
Materials and Methods) in the stochastic implementation of the positive
feedback isolated per/tim loop model. The onset of nuclear localization is
largely independent of PER and TIM concentration, consistent with
experimental observations [21].
(B) The ensemble of total nuclear PER trajectories used to create the blue
dots in (A). Trajectories were scaled to a maximum of 1.0.
doi:10.1371/journal.pcbi.0030154.g004
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experimental observations [24–26]), and suggest that the
oscillation of CLK activity, not concentration, is necessary for
circadian rhythmicity.

Conclusion
We find that independent transfer of PER and TIM by

simple mass action kinetics is inconsistent with experimental
observations, but that an additional feedback loop (or
alternatively a large number of intermediate phosphorylated
states) is able to produce the switch-like dissociation of
cytoplasmic PER–TIM underlying the interval timer [21]. This
positive feedback was introduced into a mechanistic mathe-
matical framework for Drosophila circadian rhythms which
demonstrates excellent agreement with experimentally ob-
served expression profiles of circadian genes and many
circadian mutants. The framework is consistent with obser-
vations of the relationship between per dosage and circadian
periodicity. Post-translational regulation is addressed, in-
cluding the effect of phosphorylation on the transcriptional
activation activity of CLK. Our results also show that the
nuclear translocation of the PER and TIM can occur
independently while producing stable oscillations when
positive feedback is employed.

Materials and Methods

With the exception of transcription activation kinetics, discussed
below, all reaction kinetics are mass action. These kinetics were
chosen for simplicity and because no direct experimental evidence is
available suggesting other (e.g., Michaelis-Menten or Hill) kinetic
forms. Unless otherwise noted, molecules use subscripts to denote
mRNA (m), free cytoplasmic protein (c), focus-bound protein (f), and
nuclear protein (n). Additionally, dimers are represented as [X � Y]
and phosphorylated isoforms as [X � P]. All models are available in
SBML format in Protocols S1–S4.

Isolated per/tim loop models. The simple mass action model of the
isolated per/tim loop is represented by Equations 1–7 below.

d½PERc�
dt

¼ �kPTc � ½PERc� � ½TIMc� ð1Þ

d½TIMc�
dt

¼ kMA � ½PER � TIMc� � kPTc � ½PERc� � ½TIMc� � NT � ½TIMc�

þ CT � ½TIMn� ð2Þ

d½PER � TIMc�
dt

¼ kPTc � ½PERc� � ½TIMc� � kMA � ½PER � TIMc� ð3Þ

d½PER � Pc�
dt

¼ kMA � ½PER � TIMc� � NP � ½PER � Pc� þ CP � ½PER � Pn�

ð4Þ

d½PER � Pn�
dt

¼ NP � ½PER � Pc� � CP � ½PER � Pn� � kPTn

� ½PER � Pn� � ½TIMn� þ kdPTn � ½PER � TIMn� ð5Þ

d½TIMn�
dt

¼ NT � ½TIMc� � CT � ½TIMn� � kPTn � ½PER � Pn� � ½TIMn�

þ kdPTn � ½PER � TIMn� ð6Þ

d½PER � TIMn�
dt

¼ kPTn � ½PER � Pn� � ½TIMn� � kdPTn � ½PER � TIMn� ð7Þ

The serial model is represented by Equations 8–13 below, where N
is the number of intermediates in the reaction series.

½PER � TIMc;i� ¼ ½PER � TIMc;1�t¼0 �
ðkN � tÞi�1

ði� 1Þ!
� expð�kN � tÞ for i ¼ 1::N ð8Þ

d½PER � Pc�
dt

¼ kN � ½PER � TIMc;N � � NP � ½PER � Pc� þ CP � ½PER � Pn�

ð9Þ

d½TIMc�
dt

¼ kN � ½PER � TIMc;N � � NT � ½TIMc� þ CT � ½TIMn� ð10Þ

d½PER � Pn�
dt

¼ NP � ½PER � Pc� � CP � ½PER � Pn� � kPTn � ½PER � Pn�

� ½TIMn� þ kdPTn � ½PER � TIMn� ð11Þ

d½TIMn�
dt

¼ NT � ½TIMc� � CT � ½TIMn� � kPTn � ½PER � Pn� � ½TIMn�

þ kdPTn � ½PER � TIMn� ð12Þ

d½PER � TIMn�
dt

¼ kPTn � ½PER � Pn� � ½TIMn� � kdPTn � ½PER � TIMn�

ð13Þ

To simplify the solution of the serial model, initial concentrations
of monomeric PER and TIM in the cytoplasm were eliminated by
assuming that their dimerization occurred quickly. This assumption
allowed the analytic solution of the last PER–TIM dimer in the

Figure 5. Detailed Model Black Box

The per/tim loop of the detailed mathematical model of Drosophila
circadian rhythmicity, a possible mechanism underlying the black box in
Figure 1. Only one type of monomeric TIM and no monomeric DBT
species were explicitly represented in the model. See Materials and
Methods for a list of model equations.
doi:10.1371/journal.pcbi.0030154.g005
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series of N reactions, and greatly reduced the number of equations
for large N.

The positive feedback model is represented by Equations 14–23
below. To represent the concentration effect of foci localization, a
second-order term is used for slow dissociation of PER–TIM from the
foci (see Equations 15, 17, and 18). Additionally, SM is assumed to
catalyze the release of PER–TIM from the foci, and thus is not
depleted by this reaction.

d½PERc�
dt

¼ kdPTc � ½PER � TIMc� � kPTc � ½PERc� � ½TIMc� ð14Þ

d½TIMc�
dt

¼ kdPTc � ½PER � TIMc� � kPTc � ½PERc� � ½TIMc� þ 2 � PPT

� ½PER � TIMf �2 þ kFB � ½SMc� � ½PER � TIMf � � NT

� ½TIMc� þ CT � ½TIMn� ð15Þ

d½PER � TIMc�
dt

¼ kPTc � ½PERc� � ½TIMc� � kdPTc � ½PER � TIMc� � kPTf

� ½FBMc� � ½PER � TIMc� ð16Þ

d½PER � TIMf �
dt

¼ kPTf � ½FBMc� � ½PER � TIMc� � 2 � PPT

� ½PER � TIMf �2 � kFB � ½SMc� � ½PER � TIMf � ð17Þ

d½PER � Pc�
dt

¼ 2 � PPT � ½PER � TIMf �2 þ kFB � ½SMc� � ½PER � TIMf �

� NP � ½PER � Pc� þ CP � ½PER � Pn� ð18Þ

d½PER � Pn�
dt

¼ NP � ½PER � Pc� � CP � ½PER � Pn� � kPTn � ½PER � Pn�

� ½TIMn� þ kdPTn � ½PER � TIMn� ð19Þ

d½TIMn�
dt

¼ NT � ½TIMc� � CT � ½TIMn� � kPTn � ½PER � Pn� � ½TIMn�

þ kdPTn � ½PER � TIMn� ð20Þ

d½PER � TIMn�
dt

¼ kPTn � ½PER � Pn� � ½TIMn� � kdPTn � ½PER � TIMn�

ð21Þ

d½FBMc�
dt

¼ 2 � PPT � ½PER � TIMf �2 þ kFB � ½SMc� � ½PER � TIMf �

� kPTf � ½FBMc� � ½PER � TIMc� ð22Þ

d½SMc�
dt

¼ kSM � ð½PER � Pn� þ ½PER � TIMn�Þ � DSM � ½SMc� ð23Þ

The initial concentrations of cytoplasmic PER and TIM in the mass
action and positive feedback models and the first PER–TIM dimer in
the serial model were set to the maximum concentration of PER and
TIM (10,000 molecules or approximately 104 nM). The initial
concentration of FBM in the positive feedback model was set to
5,000 molecules. All other initial concentrations in the isolated
models were set to zero. Additionally, the initial conditions of PER
and TIM in the positive feedback model were varied in magnitude
based on a log normal distribution fit to the data presented in Figure
1C of [21]. See Table S1 for a full list of reaction rate constants for the
isolated models.

Detailed mathematical model. A detailed mathematical framework
of Drosophila circadian rhythms using the differential equations below
was created based on the interactions shown in Figures 1 and 5.

d½Perm�
dt

¼ Im � 1� exp � kbP
Im
� KRC � ½CLK � CYCn�
DN þ KRC � ½CLK � CYCn�

� �� �

� Dm � ½Perm� ð24Þ

Figure 6. Comparison of the Results with the Experimental Data

The expression profiles of per (A), clk (B), tim (C), vri (D), and pdp (E) mRNA and total protein from the detailed model results (lines) were compared with
experimental observations (points with error bars generated from the average and standard deviation of published experimental data, see Table S4). Model
results and experimental data were normalized to 1.0. Bars along the horizontal axis indicate light entrainment regime: light-on (empty) or light-off (filled).
doi:10.1371/journal.pcbi.0030154.g006
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d½Timm�
dt

¼ Im � 1� exp � kbT
Im
� KRC � ½CLK � CYCn�
DN þ KRC � ½CLK � CYCn�

� �� �

� Dm � ½Timm� ð25Þ

d½PERc�
dt

¼ TP � ½Perm� � kPTc � ½PERc� � ½TIMc� � DP � ½PERc�

þ DL � Light � ð½PER � TIMc� þ ½PER � TIMf �Þ ð26Þ

d½TIMc�
dt

¼ TT � ½Timm� � kPTc � ½PERc� � ½TIMc� � NT � ½TIMc�

þ 2 � PPT � ½PER � TIMf �2 þþkFB � ½SMc� � ½PER � TIMf �
� ðDT þ DL � LightÞ � ½TIMc� ð27Þ

d½PER � TIMc�
dt

¼ kPTc � ½PERc� � ½TIMc� � kPTf � ½PER � TIMc�

� DL � Light � ½PER � TIMc� ð28Þ

d½PER � TIMf �
dt

¼ kPTf � ½PER � TIMc� � 2 � PPT � ½PER � TIMf �2

� kFB � ½SMc� � ½PER � TIMf � � DL � Light
� ½PER � TIMf � ð29Þ

d½PER � Pc�
dt

¼ 2 � PPT � ½PER � TIMf �2 þ kFB � ½SMc� � ½PER � TIMf �

� NP � ½PER � Pc� � DP � ½PER � Pc� ð30Þ

d½PER � Pn�
dt

¼ NP � ½PER � Pc� � kPTn � ½PER � Pn� � ½TIMn� þ kdPTn

� ½PER � TIMn� þ DL � Light � ½PER � TIMn�
� DP � ½PER � Pn� ð31Þ

d½TIMn�
dt

¼ NT � ½TIMc� � kPTn � ½PER � Pn� � ½TIMn� þ kdPTn

� ½PER � TIMn� � ðDT þ DL � LightÞ � ½TIMn� ð32Þ

d½PER � TIMn�
dt

¼ kPTn � ½PER � Pn� � ½TIMn� � kdPTn � ½PER � TIMn�

� DL � Light � ½PER � TIMn� ð33Þ

d½SMc�
dt

¼ kSM � ð½PER � Pn� þ ½PER � TIMn�Þ � DSM � ½SMc� ð34Þ

d½Vrim�
dt

¼ Im � 1� exp � kbV
Im
� KRC � ½CLK � CYCn�
DN þ KRC � ½CLK � CYCn�

� �� �

� Dm � ½Vrim� ð35Þ

d½Pdpm�
dt

¼ Im � 1� exp � kbD
Im
� KRC � ½CLK � CYCn�
DN þ KRC � ½CLK � CYCn�

� �� �

� Dm � ½Pdpm� ð36Þ

d½Clkm�
dt

¼ Im � 1� exp � kbC
Im
� KRD � ½PDPn�
DN þ KRV � ½VRIn� þ KRD � ½PDPn�

� �� �

� Dm � ½Clkm� ð37Þ

d½VRIc�
dt

¼ TV � ½Vrim� � NV � ½VRIc� � DV � ½VRIc� ð38Þ

Figure 7. The Effect of Gene Dosage on the Period of Oscillation in

Constant Darkness

A continuation analysis of per dosage-dependent behavior of period
under constant darkness (black line) shows an inverse relation between
the maximum transcription activation of per and the period length,
which is consistent with the experimental results (represented by black
squares and error bars) [29,30]. A continuation analysis of tim dosage-
dependent behavior of period under constant darkness (gray line) shows
a similar trend to per dosage, which is inconsistent with experimental
observations (represented by gray circles and error bars) [17,31].
doi:10.1371/journal.pcbi.0030154.g007

Table 1. Comparison of Experimental Homozygous Arrhythmic
Mutant Phenotypes

Mutant per mRNA tim mRNA vri

mRNA

pdp

mRNA

clk

mRNA

PER TIM VRI PDP CLK

per01 " [32,33,39,42] " [33,39] [32] " [36,37] " [36] # [25,27]

# [17,20,24,26,49,50] " [24,26,34,35] " [36] " [36] " [24,26]

tim01 " [32,33] [39] " [33,37,39] [32] " [36,37] " [36] # [25]

" [17,20,24,26,34] # [17,24,26,35,50,51] " " [36] " [24,26]

dbtP,

dbtar

# [34] # [34] # # "

# [34,38] # [34,38] # # "
clkJrk # [41] # [37,41] # [36,37] # [36] # [27]

# [41] # [41] # [36] # [36] #
cyc0 # [39] # [37,39] # [37] # # [27]

# [39] # [39] # [40] # [36] #
pdpP205 # # [36] # # #

# [36] # # # #

Notes: Peak expression levels for mRNA and protein are listed relative to wild-type
maxima: non-detectable to half-peak levels ( # ), or greater than half-peak level ( " ).
References (in brackets) in green are consistent with the model results, red references are
not.
doi:10.1371/journal.pcbi.0030154.t001
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d½VRIn�
dt

¼ NV � ½VRIc� � DV � ½VRIn� ð39Þ

d½PDPc�
dt

¼ TD � ½Pdpm� � ND � ½PDPc� � DD � ½PDPc� ð40Þ

d½PDPn�
dt

¼ ND � ½PDPc� � DD � ½PDPn� ð41Þ

d½CLKc�
dt

¼ TC � ½Clkm� � kCC � ½CLKc� ð42Þ

d½CLK � CYCc�
dt

¼ kCC � ½CLKc� þ kdCP � ½CLK � CYC � Pc� � PC

� ½CLK � CYCc� � NC � ½CLK � CYCc� ð43Þ

d½CLK � CYC � Pc�
dt

¼ PC � ½CLK � CYCc� � kdCP � ½CLK � CYC � Pc� þ CCP

� ½CLK � CYC � Pn� � DCP � ½CLK � CYC � Pc� ð44Þ

d½CLK � CYCn�
dt

¼ NC � ½CLK � CYCc� � PC � ½CLK � CYCn� � PCC

� ð½PER � Pn� þ ½PER � TIMn�Þ � ½CLK � CYCn� ð45Þ

d½CLK � CYC � Pn�
dt

¼ PC � ½CLK � CYCn� þ PCC

� ð½PER � Pn� þ ½PER � TIMn�Þ � ½CLK � CYCn�
� CCP � ½CLK � CYC � Pn� � DCP

� ½CLK � CYC � Pn� ð46Þ

Light ¼ 1 ZT0, t,ZT12
0 ZT12, t,ZT24

�
ð47Þ

This description does not use time delays and explicitly represents
the post-translational modifications of PER and CLK. Illumination in
light–dark cycles is modeled via Light, defined as a square wave in
Equation 47. Light acts upon the degradation of cytoplasmic and
nuclear TIM. The transcriptional activation kinetics are borrowed from
[47], and described in Text S1. FBM is not explicitly represented because
the inclusion of this molecule at limiting concentrations did not
significantly alter the presented results (unpublished data). As shown in
Figure 1 (and based on the observations of [22,23]), the presence of
nuclear PER and PER–TIM dimers causes the phosphorylation of CLK.
Once phosphorylated, CLK cannot bind to DNA and is either degraded
or exported into the cytoplasm where it can be degraded or
dephosphorylated. Chemical reaction rate constants are the only
adjustable parameters for which a set of biologically meaningful values
was found (see Parameter Estimation below). See Table S2 for a full list
of reaction rate constants for the full circadian model.

Model solutions. With the exception of the positive feedback model
of the isolated per/tim loop, the mathematical models presented in this
paper were solved using the LSODAR integrator as part of the
SloppyCell package [48]. Periodic orbits were found through sequen-
tial integration cycles until a stable limit cycle was approached. For the
continuation analysis of model parameters, AUTO 2000 was used.

Since a small number of molecules may initiate positive feedback,
the isolated per/tim loop positive feedback model was solved
stochastically using Gillespie’s algorithm. The model results are an
ensemble of trajectories for a given parameter set (a randomly
selected subset which is shown in Figure 4B), with the trajectory
closest to the experimentally observed mean nuclear onset time used
in Figure 3A. The standard deviation of nuclear onset time was
determined from this ensemble of trajectories.

Mutant phenotype characterization. Several Drosophila mutant
phenotypes were represented by the detailed mathematical model. The
parameter changes used to represent themutants described in the paper
are shown in Table S3. A typical result is shown for the arrhythmic dbtp/
dbtar mutants in Figure S2. The transient trajectory from a point on the
wild-type constant darkness limit cycle illustrates the approach to a
stable fixed point solution. Similarly, all arrhythmic mutants presented
inTable 1were found toapproach stablefixedpoints (unpublisheddata).

Experimental data. The points and error bars presented in Figure
3 were the result of averaging the five trajectories for cytoplasmic
PER–TIM dimers and nuclear PER shown in Figure 1B of Meyer et al.
[21]. These trajectories were normalized to a minimum of zero and
maximum of one prior to aligning the paired PER–TIM and nuclear
PER trajectories by minimizing the root mean-squared distance. The
mean onset time of the average of the aligned trajectories was then
set to 340 min.

The points and error bars in Figure 6 were adapted from the
publications listed in Table S4. With the exception of pdp mRNA and
protein, multiple references were available. These datasets were
interpolated and averaged to produce the means and standard
deviations presented in Figure 6. pdp mRNA and protein means and
error bars were taken directly from [36].

The points and error bars in Figure 7 are the average and standard
deviation of experimental observations of the period of oscillation in
response to changes in per dosage [29,30] and tim dosage [17,31].

Parameter estimation. A Monte Carlo random walk, guided by
importance sampling, adjusted model parameters to optimize a chi-
squared value quantifying the consistency of the model results with
available experimental observations (discussed in the previous
section and presented in Figures 3, 6, and 7). Model parameters
were manually adjusted to biologically meaningful values where
necessary.

Supporting Information

Figure S1. The Translation or Degradation of clk Protein Balance To
Produce a Nearly Constant Level of Total CLK

The reaction rate shown is normalized by the maximum level of total
CLK. The degradation term includes both cytoplasmic and nuclear
degradation (as defined in Equations 44 and 46).

Found at doi:10.1371/journal.pcbi.0030154.sg001 (7.3 MB TIF).

Figure S2. The Evolution of the dbtP/dbtar Mutants away from a Point
on the Wild-Type Constant Darkness Limit Cycle

Found at doi:10.1371/journal.pcbi.0030154.sg002 (319 KB TIF).

Protocol S1. SBML Representation of the Isolated Mass Action Model

Found at doi:10.1371/journal.pcbi.0030154.sd001 (7 KB TXT).

Protocol S2. SBML Representation of the Isolated Serial Model for N
¼ 100

Found at doi:10.1371/journal.pcbi.0030154.sd002 (111 KB TXT).

Protocol S3. SBML Representation of the Isolated Positive Feedback
Model

Found at doi:10.1371/journal.pcbi.0030154.sd003 (10 KB TXT).

Protocol S4. SBML Representation of the Detailed Circadian
Rhythms Model

Found at doi:10.1371/journal.pcbi.0030154.sd004 (51 KB TXT).

Table S1. Isolated Model Parameters

Found at doi:10.1371/journal.pcbi.0030154.st001 (33 KB DOC).

Table S2. Full Circadian Model Parameters

Found at doi:10.1371/journal.pcbi.0030154.st002 (50 KB DOC).

Table S3. Parameter Changes to Describe Mutant Phenotypes

Found at doi:10.1371/journal.pcbi.0030154.st003 (28 KB DOC).

Table S4. Experimental mRNA and Protein Measurement Sources

Found at doi:10.1371/journal.pcbi.0030154.st004 (31 KB DOC).

Text S1. Derivation of Transcription Activation Terms

Found at doi:10.1371/journal.pcbi.0030154.sd005 (32 KB DOC).
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