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Phenotypic mutations are errors that occur during protein synthesis. These errors lead to amino acid substitutions that
give rise to abnormal proteins. Experiments suggest that such errors are quite common. We present a model to study
the effect of phenotypic mutation rates on the amount of abnormal proteins in a cell. In our model, genes are
regulated to synthesize a certain number of functional proteins. During this process, depending on the phenotypic
mutation rate, abnormal proteins are generated. We use data on protein length and abundance in Saccharomyces
cerevisiae to parametrize our model. We calculate that for small phenotypic mutation rates most abnormal proteins
originate from highly expressed genes that are on average nearly twice as large as the average yeast protein. For
phenotypic mutation rates much above 5 3 10�4, the error-free synthesis of large proteins is nearly impossible and
lowly expressed, very large proteins contribute more and more to the amount of abnormal proteins in a cell. This fact
leads to a steep increase of the amount of abnormal proteins for phenotypic mutation rates above 5 3 10�4.
Simulations show that this property leads to an upper limit for the phenotypic mutation rate of approximately 2 3 10�3

even if the costs for abnormal proteins are extremely low. We also consider the adaptation of individual proteins.
Individual genes/proteins can decrease their phenotypic mutation rate by using preferred codons or by increasing their
robustness against amino acid substitutions. We discuss the similarities and differences between the two mechanisms
and show that they can only slow down but not prevent the rapid increase of the amount of abnormal proteins. Our
work allows us to estimate the phenotypic mutation rate based on data on the fraction of abnormal proteins. For S.
cerevisiae, we predict that the value for the phenotypic mutation rate is between 2 3 10�4 and 6 3 10�4.
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Introduction

Every biological organism is built according to information
stored in its genome. Genomes composed of billions of base
pairs are not unusual. This information has to be duplicated
during cell replication. Since replication errors can have
devastating effects, DNA replication needs to be very
accurate. Estimates for error rates in Eukaryotes are as low
as 5 3 10�4 errors per base pair per replication [1]. But even
flawless genetic information is useless if the cell is not able to
synthesize functional proteins. Transcription and translation,
the two processes involved in decoding DNA, have to be
sufficiently accurate to allow a cell to build a reliable protein
machinery. We refer to errors that occur during transcription
and translation as phenotypic errors, and to errors that occur
during DNA replication as genotypic errors. Most phenotypic
errors are introduced during translation when ribosomes
translate RNA sequences into amino acid sequences [2,3]. The
accuracy of translation depends on the considered codon and
context. In Escherichia coli it can range from 5 3 10�4 to 1 3

10�4 (see Table 1 for some examples), with 5 3 10�4 as a
commonly used estimate for the average frequency of errors
per codon [4,5]. In comparison, Blank et al. [2] measured an E.
coli error rate during transcription of 5 3 10�6.

Measuring the genotypic mutation rate is easier than
measuring the phenotypic mutation rate. Estimates of geno-
typic mutation rates exist for many organisms. The data show
that the number of mutations per genome per replication is
constant for a wide range of organisms [1]. This is in agreement
with theoretical results that suggest that the number of errors

per replication per genome have to be below a certain error
threshold to avoid an error catastrophe at which the
propagation of genetic information becomes impossible [6–
9]. There are many theoretical approaches for studying the
evolution of genotypic mutation rates [10–14], and one can
tentatively claim that we have a basic understanding of what
governs the evolution of genotypic mutation rates.
This is not the case for phenotypic mutation rates.

Apparently, very little theoretical work has been devoted to
this topic. A notable exception is Wilke and Drummond [15],
who study translational robustness and the evolution of gene-
specific phenotypic mutation rates. Their work predicts
selection for proteins that fold properly despite mistransla-
tion and provides an explanation for the fact that highly
expressed genes evolve slower. A closely related study, and the
starting point for this investigation, is Bürger et al. [16]. They
studied a model in which the total number of synthesis
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attempts to produce sufficiently many functional proteins is
limited and showed that the selection pressure to reduce the
phenotypic mutation rate below a certain threshold vanishes.

In addition, empirical information is scarce. Most measure-
ments of phenotypic mutation rates are limited to E. coli [5].
For fast-growing E. coli laboratory strains, a correlation was
found between ribosomal accuracy and ribosomal kinetics
[3,17]. This suggests that the (high) phenotypic mutation rates
are a result of a cost–benefit tradeoff. More accurate
ribosomes reduce speed of translation and are hence
disadvantageous. Natural isolates, however, do not show such
a correlation between ribosomal accuracy and ribosomal
kinetics. They display a wide diversity of ribosomal kinetic
properties and growth rates which suggests that the tradeoff
between accuracy and kinetics is not limiting in natural
populations [17–19]. Apparently, natural populations are not
so obsessed with optimizing translation kinetics for fast
growth under laboratory conditions. This is not surprising
considering that the estimated doubling time of, for example,
intestinal E. coli (40 h) is substantially longer than the
doubling time of laboratory strains (0.5 h) [20].

Hence, it is not clear if the optimization of translation
kinetics is governing the evolution of phenotypic mutation
rates. In this paper we analyse phenotypic mutations from a
genomic/proteomic viewpoint. In particular, we derive and
analyze a model that allows us to calculate the amount of
abnormal proteins in a cell as a function of the phenotypic
mutation rate. We also evolve genotypic and phenotypic
mutation rates in computer simulations that are based on
properties of the Saccharomyces cerevisiae genome/proteome.
We discover that the current estimate for global phenotypic
mutation rates of 5 3 10�4 is at a value where the amount of
erroneous proteins begins to increase exponentially with the
mutation rate. Further, at this value we observe a change in
the kind of genes that contribute the most to erroneous
proteins. For phenotypic mutation rates below 5 3 10�4,
erroneous proteins from highly expressed genes are frequent.
Above 5310�4, however, erroneous proteins from large genes
begin to dominate. Finally, we study models in which
individual proteins can decrease their phenotypic mutation
rate by using preferred codons or evolve robustness against
amino acid substitutions. We point out the similarities and
differences between the two mechanisms and show how an

increase of the amino acid substitution rate above 5 3 10�4

affects the adaptation of highly expressed proteins.

Materials and Methods

In the following, we develop and analyze a model regarding
the evolution of phenotypic mutation rates. We use data from
S. cerevisiae to parameterize our model and calculate here
relevant properties of the available yeast data.
The genotypic mutation rate in S. cerevisiae is approx-

imately 2.2 3 10�10 mutations per base pair per replication
[1]. Our model requires the number of deleterious mutations
per codon per replication as the unit for the genotypic
mutation rate. Since each codon is composed of three
nucleotide acids and 438/576 ’ 3/4 single site mutations are
nonsynonymous [21], the mutation rate per codon is given by
33 3/43 2.23 10�10¼ 4.953 10�10. Of these nonsynonymous
mutations, about 10% to 60% [22] are deleterious, placing
the genotypic mutation rate somewhere between 4.95310�11,
and 2.97 3 10�10 deleterious mutations per codon per
replication. For simplicity, we use 1 3 10�10. The phenotypic
mutation rate in yeast appears to be similar to the mutation
rates measured in E. coli [23]. The mutation rate is therefore
likely to range from 1 3 10�5 to 5 3 10�3, with 5 3 10�4 as an
estimate for the global phenotypic mutation rate [5].
To parameterize our model, we need the length ni and

abundance yi of each protein in yeast. Complete genomic
sequences [24] provide the length, ni, of each protein of
an organism. We only consider reading frames from the
Saccharomyces Genome Database [24] that have been classified as
nonspurious by Ghaemmaghami et al. [25]. This leaves us
with 5,675 open reading frames (proteins) that have an average
length of 496 amino acids. The effective genome is
n ¼

P
i ni ¼ 2:813 106 residues long. Information about the

abundance, yi, of proteins is provided by Ghaemmaghami et al.
[25]. Fromtheirdatawecalculate that the total amount (measured
in number of amino acids) of functional proteins is given by
y ¼

P
i yini ¼ 2:033 1010 and that y ¼

P
i yin

2
i ¼ 1:343 1013

(this expression is relevant for Equation 8).

Results

The Model
We consider a large population of asexual single-cell

organisms (cells, for short), each with one DNA chromosome

Table 1. Amino Acid Substitution Rates During Protein Synthesis
in E. coli

Codon Amino Acid Frequency Reference

Normal Substituted

AAC Asn Lys 4 3 10�4 [44]

AAU Asn Lys 23 10�3 [44]

CGU Arg Cys 1 3 10�3 [45]

CGU/C Arg Cys 5 3 10�5 [46]

GGC Gly Ser 1 3 10�3 [47]

UGG Trp Cys 3 3 10�3 [45]

4.5 3 10�4 [4]

See Table 1 of Parker [5] for more information.
doi:10.1371/journal.pcbi.0030203.t001
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Author Summary

A functional protein machinery, built from genetic information, is
central to every living organism. Surprisingly, the decoding of genes
into amino acid sequences is fairly inaccurate. Errors in this process
(phenotypic mutations) are several orders of magnitude more
frequent than errors during DNA replication (genotypic mutations).
Many researchers have explored the evolution of genotypic
mutation rates, but there are as yet few investigations into the
evolutionary dynamics of phenotypic mutation rates. Here we
present a mathematical model that describes the effect of
phenotypic mutation on the amount of abnormal proteins in cells.
We parameterize our model using data from yeast (Saccharomyces
cerevisiae). We show that for phenotypic mutation rates above 5 3

10�4 per amino acid, the error-free synthesis of large proteins
becomes nearly impossible. We estimate the phenotypic mutation
rate of S. cerevisiae to be between 2 3 10�4 and 6 3 10�4 per amino
acid.

Phenotypic Mutations and Abnormal Proteins



and K genes of (possibly) different length and expression
level. Gene i (i¼1,. . .,K) is ni amino acids long. During one cell
cycle, yi, functional proteins have to be synthesized from gene
i. We assume that regulation of gene expression guarantees
that the gene is expressed until yi functional proteins are
present. A cell with error-free transcription and translation
will therefore synthesize exactly yi proteins of gene i. Since we
are interested in variation within a population, we can
normalize the fitness of such a cell to 1 and consider only
relative fitnesses. Any cost of synthesizing all the functional
proteins is accounted for in the fitness value of 1. Cells,
however, have a phenotypic mutation rate u . 0, which
denotes the probability (per codon) that protein synthesis is
erroneous and produces a nonfunctional protein. Hence, a
phenotypic mutation is a deleterious amino acid substitution
that occurs during protein synthesis. We assume that
phenotypic mutations are independent of each other. Hence,
the probability of synthesizing a nonfunctional protein from
gene i is given by ui ¼ 1� ð1� uÞni . Let xi denote the number
of nonfunctional proteins that have been synthesized until yi
functional proteins were made. Then a cell synthesizes

P
i yi

functional and
P

i xi nonfunctional proteins. It uses
y ¼

P
i niyi amino acids to synthesize functional proteins and

x ¼
P

i nixi amino acids to synthesize nonfunctional proteins.
We are interested in the cost of erroneous protein synthesis

in natural populations. Natural populations grow much
slower than laboratory cultures. The growth of bacteria is
limited by the rate of protein synthesis per ribosome. In slow-
growing bacteria, the rate of protein synthesis per ribosome
is, because of limiting amounts of charged tRNAs, almost 50%
lower than in fast-growing bacteria [26]. We will therefore
base our cost function on the effects of the phenotypic
mutation rate on the availability of charged tRNAs.

Most erroneous proteins are identified as abnormal and are
degraded rapidly [27]. In this case, the amino acids that have
been used to synthesize the erroneous proteins can be
recycled to charge new tRNAs. This constant turnover,
however, will diminish the pool of charged tRNAs by an
amount depending on x. Hence, the cost of phenotypic
mutations is a function of x. We will use g(x) to denote the
cost of erroneous protein synthesis. Even though we have
motivated g(x) by the cost of depleting the tRNA pool, it can
account for other possible costs of erroneous proteins
synthesis as well. Examples include toxic effects of aggregates
of misfolded proteins, the waste of metabolic energy (ATP/
GTP), or usage of the ribosomal machinery to synthesize
nonfunctional instead of functional proteins. Overall, the
fitness of a cell that uses x amino acids to synthesize
nonfunctional proteins is given by 1� g(x). It is unnecessary
to explicitly consider the cost of protein synthesis of
functional proteins, cy, because y is constant and, hence,
1� cy � ~gðxÞ}1� ~gðxÞ

1�cy ¼ 1� gðxÞ, where ~gðxÞ denotes the
costs if the costs of synthesis of functional proteins are not
included.

Besides phenotypic, we also take genotypic mutations into
account. This allows us to directly compare the cost and
evolution of phenotypic and genotypic mutation rates.
Genotypic mutations introduce deleterious mutations at rate
l per codon, that is, gene i replicates successfully with
probability ð1� lÞni , and all genes are replicated successfully
with probability (1� l)n, where n ¼

P
i ni can be interpreted

as the effective genome size, i.e., the total number of amino

acids encoded by all K genes. We assume that the population
is large enough so that deleterious mutations cannot spread.
We ignore mutations that recover the wild type.
In the following, the average fitness of a population with

phenotypic and genotypic mutation rates u and l per codon
will play a central role. In the absence of genotypic mutations,
the mean fitness is 1 ��gðuÞ, where �gðuÞ ¼

P
x gðxÞpuðxÞ, and

pu(x) denotes the probability that a cell with a phenotypic
mutation rate u uses x amino acids to synthesize abnormal
proteins. Genotypic mutations reduce this mean fitness.
Because we ignore back mutations, at mutation–selection
balance the mean fitness is reduced by the factor (1� l)n, and
this factor is independent of the actual fitness of the mutants.
This is a special case of Haldane’s principle for the mutation
load (see the section Mutation Rates at Equilibrium. The
mean fitness at mutation–selection balance is given by

�f ðl; uÞ ¼ ð1� lÞn½1� �gðuÞ�: ð1Þ

As a consequence, we get the following formula for the cost
Cu of phenotypic mutations, which is defined as the difference
between the expected mean fitness of a population with and
without phenotypic mutations:

Cu ¼ �f ðl; 0Þ � �f ðl; uÞ ¼ ð1� lÞn�gðuÞ: ð2Þ

Similarly, the cost Cl of genotypic mutations is

Cl ¼ �f ð0; lÞ � �f ðl; uÞ ¼ ½1� ð1� lÞn�½1� �gðuÞ�: ð3Þ

Evolving Mutation Rates
We allow the mutation rates l and u to evolve. Our aim is to

derive approximations for the mutation rates that evolve in
the long run. For this purpose, it is convenient to consider l
and u as quantitative traits with values between 0 and 1. Both
traits have the potential to evolve due to new mutations which
are assumed to occur at constant rates pl and pu, respectively.
These mutations will primarily increase the genotypic and
phenotypic mutation rates, but some will decrease them.
Because the precise form of these mutation distributions does
not enter our approximate formulas given here, we introduce
them only in the context of our computer simulation model
below. Mutation is counteracted by selection because, on
average, cells with a higher mutation rate have a lower fitness.
Applying Haldane’s principle, it can be shown (see the section
Mutation Rates at Equilibrium) that the evolved genotypic
mutation rate, l̂, can be approximated as

l̂ ’ pl=n: ð4Þ

Similarly, the phenotypic mutation rate equilibrates to a
value, û, which is obtained (approximately) by solving the
equation

pu ¼ �gðuÞ ð5Þ

for u. If, as is likely the case, �g is monotone increasing, this
solution û is uniquely determined. By taking the ratio of
Equation 4 and Equation 5, and performing a simple
rearrangement, we obtain

l̂n’ �gðûÞ pl

pu
: ð6Þ

The term l̂n gives the number of mutations per genome
per replication and is surprisingly constant for a wide range
of organisms [1]. The rates pl and pu at which the genotypic
and phenotypic mutation rates are changed will primarily

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2032060

Phenotypic Mutations and Abnormal Proteins



depend on the number of genes (and their length) involved in
DNA replication and protein synthesis, respectively. In our
model, for a given set of parameters, genotypic and
phenotypic mutation rates evolve independently. Although
we focus on the evolution of phenotypic mutation rates, for
the analysis of our simulations it proved useful to also keep
track of the genotypic mutation rate. Its equilibrium value is
independent of the cost function g and can be used to
estimate the effectiveness of selection (i.e., the drift–selection
equilibrium value of �f ) for given population size and given
values of pu and pl .

A more detailed expression for the evolved phenotypic
mutation rate can be obtained by approximating the cost
function g(x), presumably concave, by a linear one. Thus, let
us assume henceforth g(x) ¼ cx, so that fitness decreases
linearly with the number of amino acids used to synthesize
erroneous proteins. Here, c measures the costs per codon to
synthesize an abnormal protein. As a consequence, we can
write �gðxÞ ¼ c�x. In the Discussion we will address how
nonlinear cost functions might affect our results.

Since, according to our model, a cell produces proteins
until exactly yi functional proteins of gene i are synthesized,
the number xi of nonfunctional proteins produced during the
process follows the negative binomial distribution NB(yi,1 �
ui). Here, 1 � ui gives the probability of a successful protein
synthesis. The expected value of xi is �xi ¼ yiui=ð1� uiÞ. Hence,
�x, the expected value of x, is given by

�x ¼
X
i

ni�xi ¼
X
i

niyi½1� ð1� uÞni �=ð1� uÞni

¼
X
i

niyi½ð1� uÞ�ni � 1�:

ð7Þ

For uni , 1, we obtain

�x’ u
X
i

n2i yi; ð8Þ

and �gðuÞ’ uc
X
i

n2i yi. Therefore, Equation 6 can be rear-
ranged to

û
l̂

’

X
i

ni

c
X
i

n2i yi

pu

pl
: ð9Þ

This illustrates nicely the factors that determine the ratio
of the evolved genotypic and phenotypic mutation rates. This
ratio depends on (i) the effective genome size,

P
ini, (ii) the

average total cost of abnormal protein synthesis, c
P

n2i yi, and
(ii) the ratio at which mutations of the two mutation rates
occur. Below, we will use computer simulations to comple-
ment these analytical considerations.

Simulating the Evolution of Mutation Rates
We simulate the evolution of phenotypic and genotypic

mutation rates based on the model introduced above. The
main difference is that we use a finite (effective) population
of size N¼ 104 and that we specify our mutation distributions
for the mutation rates. Each generation, N organisms are
selected (with replacement) for reproduction with probabil-
ities proportional to their fitness (Wright-Fisher model of
drift and selection). Fitness is calculated as 1� �gðuÞ ¼ 1� c�x,
where �x gives the expected amount (in amino acids) of
abnormal proteins. Protein length and abundances are taken
from S. cerevisiae (see Materials and Methods). The number of
expected abnormal proteins is calculated according to
Equation 7. To avoid the fixation of genotypic mutants for
high genotypic mutations rates at the beginning of the
simulations, we set the fitness of genotypic mutants to zero.
As predicted by the theory, the fitness of the genotypic
mutants does not affect the equilibrium mutation rates (see
the section Effect of Initial Values and Parameters on the
Simulation Results).
The initial population is homogeneous with equal pheno-

typic and genotypic mutation rate. To allow the evolution of
mutation rates, we change (mutate) u and l with probabilities
pu and pl, respectively. Unless otherwise mentioned, we
assume pl ¼ pu ¼ 10�4. In the section Effect of Initial Values
and Parameters on the Simulation Results, we show that
changes in the initial values of u and l do not affect the
results of our simulations and changes in pu and pl affect
them as predicted by the theory. Since beneficial mutations,
that is, mutations decreasing the mutation rate, are generally
rare, we increase the mutation rate with a probability of 0.99
(conditional on a mutation event). In this case, we draw a new
phenotypic mutation rate from a beta distribution B(a¼ 1,b¼
9) on [u,2u] (or on [l,2l] for genotypic mutation rates).
Hence, the average increase is 10% and small changes are
more frequent than large ones. Similarly, in case of a
decrease, we draw the new mutation rate from a reflected
beta distribution B(a¼1,b¼9) on [0, u] (or [0, l]). Hence, small
changes are again more likely than large ones.
During a simulation run, we kept track of the ancestry of

each individual. After 4 3 106 generations, we calculate the
most recent common ancestor of the population and
determine its line of descent. We can use this line of descent
to observe the evolution of phenotypic and genotypic
mutation rates. For each parameter combination, we con-

Figure 1. Evolving Phenotypic and Genotypic Mutation Rates

The evolution of phenotypic (solid lines) and genotypic (dotted lines)
mutation rates is shown. For each of seven different values for the cost of
erroneous proteins, c, we conducted ten simulation runs and calculated
an average evolutionary trajectory (see text for more details). As
expected, only the phenotypic mutation rate is affected by changes in
c. Near u ¼ 2 3 10�3 we observe an upper limit for the phenotypic
mutation rate. Even large changes in c affect the phenotypic mutation
rate only marginally (compare grey and brown lines). This (effective)
upper bound for u is the result of a rapid, nonlinear increase in abnormal
proteins as a function of u (see Figure 2). The (grey) box indicates the
possible range of phenotypic mutation rates (1 3 10�5 – 5 3 10�3,
according to Parker [5]) with 5 3 10�4 (dashed line) as a commonly used
estimate for the global error rate.
doi:10.1371/journal.pcbi.0030203.g001
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ducted ten runs that differ only with respect to the seed for
the random number generator. Based on the ten trajectories,
we compute an expected evolutionary trajectory for each
parameter combination by calculating the geometric average
of l and u.

Figure 1 shows these average trajectories of u and l for
seven sets of simulations that use different values for c,
ranging from 1 3 10�16 to 1 3 10�10, with increments of one
order of magnitude. For all seven cost values, the genotypic
mutation rates (lower lines) show essentially identical
behavior. They decrease from the initial value of 1 3 10�7

to about 1.01 3 10�9 which leaves the cost of genotypic
mutations at about Cl ¼ 2.84 3 10�3.

The equilibrium value of the phenotypic mutation rate
depends strongly on the cost of abnormal proteins. For the
given values of n ¼ 2.81 3 106 and

P
i yin

2
i ¼ 1:343 1013 (see

Materials and Methods) and because we assume pl ¼ pu,
Equation 9 predicts û=l̂ ¼ 2:103 10�7=c. For c ¼ 10�10, this
equals 2.10 3 103 and is indeed very close to the observed
value of û=l̂ ¼ 2:003 10�6=1:013 10�9 ¼ 1:973 103 (see
black curves in Figure 1). For this set of simulations, the
phenotypic mutation rate evolves to a level at which the cost
of phenotypic mutations is Cu ¼ 2.67 3 10�3, which is very
close to Cl.

As expected, a decrease in the cost of abnormal proteins, c,

results in an increase of the phenotypic mutation rate. But,
apparently, there is an upper limit for phenotypic mutation
rates above which a further decrease of c does not increasel̂
muchmore (compare brown and grey curves in Figure 1). Also,
for very small c, Equation 9 becomes inaccurate. For example,
if c¼10�13, we get û=l̂ ¼ 8:743 10�4=1:013 10�9 ¼ 0:873 106

instead of û=l̂ ¼ 2:113 106.
We can explain both observations by considering the

average number �x of amino acids required to synthesize
nonfunctional proteins (Equation 7) and the total numberP

i �xi of nonfunctional proteins. For brevity and in distinc-
tion to the number of nonfunctional proteins,

P
i �xi, we

henceforth refer to �x ¼
P

i ni�xi as the amount of abnormal
proteins. (We use the number of amino acids as the unit for
the amount of proteins.) Figure 2 displays these quantities as
functions of u (solid line for �x, dash-dotted line for

P
i �xi) as

well as the linear approximation (Equation 8) to �x (dashed
line). As one can see, the linear approximation becomes
inaccurate if u . 53 10�4, and �x begins to grow exponentially
with u. Consequently, even a small increase in u will cause a
tremendous increase in �x. Even if abnormal proteins are not
very costly, the rapid increase in �x prevents a further increase
of u.
We used ð1� uÞ�ni � 1’ uni to linearize �x. This approx-

imation is only accurate if uni is sufficiently small. For a
protein length of about 890 amino acids (see below for an
explanation why we chose 890) and a phenotypic mutation
rate of 5 3 10�4, we have uni¼ 0.445, which is apparently too
large for the approximation to be accurate. For ni¼890 and u
¼ 5 3 10�4, the exact value for ð1� uÞ�ni � 1 is 0.56; this
illustrates the difference between the true value of �x and its
linear approximation at u ¼ 5 3 10�4. It is important to
emphasize that the observed upper bound for u is a
consequence of the protein length distribution and the
expression profile of the organism, as we will see below.

Components of �x
It would be interesting to know the length and expression

level of the genes that contribute most to the amount of
abnormal proteins in a cell. For a given phenotypic mutation
rate, it is easy to calculate ni�xi, the amount (in amino acids) of
erroneous proteins that were produced from gene i. To
determine which gene lengths and expression levels are most
important for �x, we calculate weighted averages of ni and yi. As
weights, we use the amount of erroneous proteins that stem
from gene i, that is, ni�xi. Hence, we haveX

i

nini�xi=
X
i

ni�xi ð10Þ

and X
i

yini�xi=
X
i

ni�xi ð11Þ

as indicators of the average protein length and expression
level, respectively, that are most important for the amount of
abnormal proteins in the cell. Since the expected number of
abnormal proteins, �xi, depends on the phenotypic mutation
rate, the weighted averages are functions of u as well. How
they change as a function of u is shown in Figure 3.
Interestingly, the weighted average of ni for very small u is
about 890 and nearly twice as large as 496, the average
protein length in yeast. Even more interestingly, this value

Figure 2. The Amount of Erroneous Proteins as a Function of the

Phenotypic Mutation Rate, u

The solid curve shows the expected number �x of amino acids required to
synthesize abnormal proteins according to Equation 7 with values for ni

and yi from yeast (see Methods and Materials). The dash-dotted curve
shows the total number

P
i �xi of abnormal proteins. For better

comparison, we scaled the number of proteins so that the dash-dotted
and solid curves meet at u ¼ 10�5. The dashed line shows the linear
approximation to �x (see Equation 8). The dotted line indicates the
amount (in amino acids) of functional proteins in a yeast cell, which
equals 2.029 3 1010. Near u ¼ 5 3 10�4 (the estimate for the global
phenotypic mutation rate), the linear approximation begins to deviate
noticeably from the exact value. A doubling of u at this point would
result in more erroneous than error-free proteins. Another doubling
would result in more than seven times as many erroneous than error-free
proteins. This nonlinear increase is also observed if one considers the
number of abnormal proteins (dash-dotted curve).
doi:10.1371/journal.pcbi.0030203.g002
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increases suddenly as u increases beyond 5 3 10�4. For high
values of u, phenotypic mutations are so frequent that it
becomes essentially impossible to synthesize large proteins
accurately. These large proteins dominate the cost of
phenotypic errors. This can also be seen in the change of
the weighted average of the expression level. For low
mutation rates, the amount of erroneous proteins is
dominated by highly expressed genes with a weighted average
expression level of 2.67 3 105 proteins per cell. This value
begins to decrease at u ¼ 5 3 10�4 because large proteins,
instead of highly expressed proteins, begin to increasingly
contribute to the amount of abnormal proteins in the cell.

For u ¼ 5 3 10�4, the bulk of the amount of erroneous
proteins comes from proteins that are noticeably larger than
the average protein and are highly expressed. How much
these proteins contribute to �x compared with the rest of the
genome can be seen in Figure 4. The solid line showsPk

i¼1 ni�xi=�x for k ¼ 1; 2; . . . ; 5675, that is, the cumulative
contribution of each gene to �x. Genes are sorted decreasingly
by their contribution to �x. It is obvious that only few genes
contribute to most of the abnormal proteins in the cell. In
fact, 5% (10%) of the genes contribute to 78.6% (87.5%) of
the abnormal proteins in a yeast cell. The average length of
these proteins is 927 (818) which confirms the conclusion
from above that genes that contribute most to the amount of
abnormal proteins are much larger than the average gene.

From Equation 7 we know that nix̄i¼niyi(1�(1�u)ni)/(1�u)ni
and can distinguish three components: (i) the protein length,
ni, (ii) the expression level, yi, and (iii) the expected number of
erroneous proteins that have to be synthesized to get one

error-free protein, ui=ð1� uiÞ, with ui ¼ 1� ð1� uÞni . Which
of these components is primarily responsible for the fact that
only few genes contribute to most of the abnormal proteins
in a cell? To answer this question, we can compare the
dashed, dotted, and dash-dotted lines in Figure 4 which show
how unevenly genes contribute to each of the three
components (for u ¼ 5 3 10�4). For example, the dotted line
shows

Pk
i¼1 yi=

P5675
i¼1 yi for k ¼ 1; 2; . . . ; 5675. From the three

components, only the expression level (dotted line) shows a
curvature similar to the solid line. Hence, the fact that few
genes contribute to most of the abnormal proteins in a cell is
due to differences in expression levels rather than differences
in protein length.

Adaptation of Highly Expressed Proteins
If most of the abnormal proteins in a cell are synthesized by

few, highly expressed proteins, the cell could reduce the cost
of phenotypic mutation rates considerably by decreasing the
phenotpyic mutation rate for these few genes. In fact, highly
expressed genes are special in many ways. They use preferred
codons more frequently than ‘‘normal’’ genes [28] and evolve
more slowly [29]. The usage of preferred codons conveys
several advantages, among them is a more efficient [30–32]
and accurate [33–35] translation. As argued by Drummond et
al. [29], the slow rate of evolution of highly expressed genes
might be the result of selection for translational robustness,
that is, the ability of proteins to work properly despite amino
acid substitutions [15,29]. The effect of preferred codon usage
and translational robustness are conceptually very different.
The usage of preferred codons reduces the phenotypic

Figure 3. Weighted Averages of Protein Length (10) and Expression

Level (11)

To determine which protein and expression levels are most relevant for
the amount of abnormal proteins in a cell, we calculated weighted
averages of protein length (solid line) and expression level (dashed line).
As weights, we used the amount of expected abnormal proteins, ni�xi . For
small phenotypic mutation rates, highly expressed proteins are most
relevant for the amount of abnormal proteins in a cell. This begins to
change at u ¼ 5 3 10�4, when lowly expressed, large proteins begin to
dominate �x. Inaccurate protein synthesis makes it practically impossible
to synthesize these larger proteins error-free.
doi:10.1371/journal.pcbi.0030203.g003

Figure 4. Relative Contribution of Each Gene to the Amount of

Erroneous Proteins in Yeast if u ¼ 5 3 10�4

The solid line shows the cumulative contribution of each gene to �x. A
steep increase, as seen here, indicates that few genes are responsible for
most of the abnormal proteins in a cell. We also plot the cumulative
distribution for the three components of ni�xi : protein length, ni (dashed
line), number of functional proteins, yi (dotted line), and expected
amount of erroneous proteins to synthesize one error-free protein,
ui=ð1� uiÞ ¼ ð1� ð1� uÞni Þ=ð1� uÞni (dash-dotted line). The curvature
of the solid line is similar to the curvature of the dotted line. Hence, most
of the abnormal proteins stem from few genes because these genes are
also expressed at a very high level.
doi:10.1371/journal.pcbi.0030203.g004
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mutation rate by reducing the amino acid substitution rate,
while an increase in translational robustness reduces the
phenotypic mutation rate by improving a protein’s ability to
withstand the effect of amino acid substitutions. Let us first
consider translational robustness.

Selection for translational robustness
Let uaa denote the amino acid substitution rate. Together

with the robustness of a protein against amino acid
substitutions it determines the protein’s phenotypic mutation
rate ui. According to Bloom et al. [36], the probability that a
protein retains its wild-type structure after m amino acid
substitutions is given by

Pf ðmÞ}vm; ð12Þ

where v denotes the average neutrality to amino acid
substitutions (m-neutrality), that is, the average probability
that a protein will be unaffected by (‘‘neutral’’ to) an
additional amino acid substitution. In the following we make
the conservative assumption that a protein is functional if it
is able to fold into its wild-type structure and that the wild-
type sequence always folds into its wild-type structure, i.e.,
that Pf ð0Þ ¼ 1. Consequently, Pf ðmÞ ¼ vm is the probability
that a protein exposed to m amino acid substitutions is
functional.

A protein contains m amino acid substitutions with
probability

pðmÞ ¼ n
m

� �
ð1� uaaÞn�mumaa ð13Þ

and is therefore functional with probability

pF ;i ¼
Xni
m¼0

pðmÞPf ðmÞ ¼
Xni
m¼0

ni
m

� �
ð1� uaaÞni�mumaavmi : ð14Þ

The probability to synthesize a nonfunctional protein from
gene i is given by

ui ¼ 1� pF ;i: ð15Þ

For protein i, the average number of nonfunctional
proteins is given by �xi ¼ yiui=ð1� uiÞ ¼ yiðp�1F ;i � 1Þ, and the
overall average amount of nonfunctional proteins in a cell is
given by

�x ¼
X
i

ni�xi ¼
X
i

niyiðp�1F ;i � 1Þ

¼
X
i

niyi
Xni
m¼0
ð ni
m
Þð1� uaaÞni�mðuaaviÞm

" #�1
� 1

 !
:

ð16Þ

In comparison with Equation 7, we note that ð1� uÞ�ni , the
term that is responsible for the rapid, nonlinear increase of �x,
has been replaced by a sum over the number of amino acid
substitutions. Since ni is usually much larger than the number
of amino acid substitutions, we have ni ’ ni�m for relevant m
values and can approximate the sum very accurately by

ð1� uaaÞni
Xni
m¼0

ni
m

� �
ðuaaviÞm: ð17Þ

We see that the term that caused the dramatic increase in
the previous model also appears in this model, which
considers translational robustness. The phenotypic mutation
rate u is replaced by uaa and the term ð1� uÞni multiplied by a
factor that depends on the protein’s m-neutrality vi.

Analogous to our previous observations, we can expect a
nonlinear increase of �x for uaa . 5 3 10�4.
In theory, but not in practice, it is possible to reduce the

phenotypic mutation rate to zero by increasing vi to 1 for all
proteins. In practice, an upper limit for vi is given by the
function and stability of the protein. In our simulations, this
upper limit is set by a prior distribution for the values of vi.
Very high values for vi will be possible but unlikely. Given this
(soft) upper limit for m-neutralities, we can, for a given amino
acid substitution rate, ask which proteins will be selected for
translational robustness (large m-neutralities) and what
amount of abnormal proteins can be expected.
We present simulations in which m-neutralities are drawn

from a beta distribution, B(vja,b) } va�1 (1 � v)b�1 with a ¼
16.95 and b¼ 20.72, which has variance 0.0064 and mean 0.45,
reflecting the mean and variance of m-neutralities of seven
proteins estimated by Bloom et al. [36]. We want to emphasis
that the quantitative results, in particular the relative changes
as a function of uaa, are not affected when other (reasonable)
prior distributions are used. We obtained similar results for a
beta distribution with mean 0.5 and variance 0.02 and for
corresponding normal distributions (truncated to the interval
[0, 1]). Even though the absolute value of �x is smaller for prior
distributions that allow larger m-neutralities, the relative
changes remain the same.
Mutations generate m-neutralities vi for each protein from

the prior distribution. Selection determines if an m-neutral-
ity reaches fixation and subsequently the eventual distribu-
tion of vi after many generations of selection. By how much
selection has caused a protein’s m-neutrality to deviate from
the prior distribution can be expressed in terms of the log
likelihood (LL) of the vi values under the prior distribution,
log(B(vija,b)) } (a� 1) log (vi)þ (b� 1) log (1� vi). If selection
leads to a significant increase of a protein’s m-neutrality, then
the LL of this m-neutrality will be very low. The average LL
for a cell’s proteins is given by

log
YK
i¼1

Bðvija; bÞ
 !1=K

¼ 1
K

XK
i¼1

log½Bðvija; bÞ� ð18Þ

and can be used to quantify the extent of selection for
translational robustness that the proteins of a cell were
exposed to. As we will see, the LL of the m-neutralities (after
selection) decreases substantially for uaa . 5 3 10�4 and
indicates the intensified selection for translational robust-
ness.
We use a drift-selection model based on the fixation

probability in a Moran process to determine the vi values at
mutation–selection balance (the post-selection vi distribu-
tion). For a given amino acid substitution rate, we initialize vi
for all proteins by setting it equal to the mean of the prior
distribution and calculate �x. For every protein (gene) i, we
draw a new vi from the prior distribution and calculate the
new �x that reflects this change, �xnew ¼ �xþ niyiðp�1F ;i;new � p�1F ;i Þ.
For computational reasons and since the binomial distribu-
tion has most of its weight at small values of m, we truncate
the summation over m in Equation 14 to the smallest integer
larger than niuaa þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niuaað1� uaaÞ

p
(i.e., m-values that are

more than four standard deviations away from the mean are
ignored; the probability of getting m’s above this threshold is
less than 2310�3). We accept the new vi with probability (1–1/
r)/(1–1/rN), which corresponds to the fixation probability in a
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Moran process of a mutant with relative fitness r¼ fnew/f in a
population of size N. We use N¼ 10,000 and f ð�xÞ ¼ e�c�x, with c
¼ 10�9. Here, we cannot use the fitness function 1� c�x as
before, because it might lead to negative fitness values. In the
previous section, we chose 1� c�x because of its analytical
tractability and its similarity to the cost of genotypic
mutations (see Equation 1). We did not have to worry about
negative values for 1� c�x since u could evolve freely and
selection caused u to converge to levels where c�x’ 5=N , 1.
In this section, uaa is constant and the adaptation of
individual proteins cannot reduce �x arbitrarily (there are
upper limits to vi). Note that 1� c�x’ e�c�x for small c�x. Hence,
our results from the previous section, where we used 1� c�x as
cost function also hold for the cost function e�c�x.

For each uaa, we report the average of 20 simulations, which
differ only with respect to the seed for the random number
generator. For each simulation, we sequentially conducted
500,000 updates of each protein as described above. We then
analyzed which proteins were selected for translational
robustness by calculating the LL. We also analyzed to which
extent �x is reduced by increasing vi and how an increase in uaa
affects the selection for translational robustness.

Figure 5 summarizes the results of our simulations. The top

and the middle panels show �x and the average LL (18) after
selection as a function of uaa. Similar to the previous section,
we notice a dramatic increase of �x for uaa . 5 3 10�4. This is
not surprising, considering the mentioned analytical similar-
ities between Equations 7 and 16. For amino acid substitution
rates above 5 3 10�4, the cell has difficulties to prevent the
increase of �x. This is also evidenced by the decline of the LL.
The lower panel in Figure 5 shows the change in the average
LL of three sets of 100 proteins. The three sets of proteins are
given by the 100 proteins with the largest ni, yi, and yin2i ,
respectively. As expected, proteins with large yin2i values are
more effectively selected for large m-neutralities than large
or highly expressed proteins and, accordingly, have the
smallest LL. With increasing uaa, large proteins contribute
more to the amount of abnormal proteins and the corre-
sponding LL decreases more rapidly than for the other two
groups of proteins. In Figure 6 we show the m-neutralities of
individual proteins for three amino acid substitution rates. It
illustrates the intensified selection for large m-neutralities in
large proteins.
The simulations conducted in this section implicitly assume

that the population is homogeneous and that one mutant
appears at a time and either goes extinct or gives rise to

Figure 5. Selection for Translational Robustness as a Function of Amino Acid Substitution Rate

The top panel shows the average amount of abnormal proteins, �x, after 500,000 cycles of mutation and selection (see text for more detail). The mid-
panel shows the average log-likelihood (LL) of the m-neutralities after selection. For u � 1.92 3 10�5, the average LLs are significantly lower than
expected by chance. The 5 (0.1) quantile is given by�25.024 (�25.040). The total LL decreases noticeably for uaa . 5 3 10�4. The lower panel shows the
average LL of three groups of 100 proteins. We consider the 100 largest proteins, the 100 most highly expressed proteins, and the 100 proteins with the
largest yin

2
i . For 100 proteins, the 5% (0.1%) quantile for the average LL is�25.117 (�25.215). The lower panel shows that the extent of selection for

translational robustness increases nonlinearly for large proteins whereas it increases approximately linearly in the other two groups of proteins.
doi:10.1371/journal.pcbi.0030203.g005
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another homogeneous population. Hence, every organism in
these simulations represents a homogeneous population of
size N. This organism is of course also the MRCA of this
population. We can compare its fitness, f ¼ e�c�x, with the
fitness, f ¼ 1� c�x (’ e�c�x for c�x’ 0:005), of the MRCA in our
previous simulations to speculate on what would happen if we
allowed uaa to change here as well. Here, where uaa was held
constant, the fitness of the organism converged to fairly small
values compared to the equilibrium values of f ’ 0.995 in our
previous simulations which allowed changes in u. For uaa¼13

10�5, where selection for higher m-neutralities is insignificant,
f¼ 0.938, and f is much lower for larger phenotypic mutation
rates (e.g., f¼ 0.090 for uaa¼ 53 10�4). This suggests that if uaa
is able to evolve freely to equilibrium values of f ’ 0.995, then
selection for translational robustness will be insignificant.
Simulations in which we mutated uaa as described in the
previous section confirmed this expectation. No significantly
elevated m-neutralities evolved (unpublished data).

This was not the case in simulations with few (e.g., ten)
genes, where the LL of highly expressed proteins converged
to significantly lower values. Apparently, if there are many
genes and if uaa is in mutation–selection balance, the m-
neutralities of individual proteins do not contribute enough
to allow selection for higher m-neutralities. But as we have

seen above, if uaa is constant, selection for larger m-
neutralities can reduce �x to some extent. Hence, if uaa is
above its mutation–selection-balance value, then significantly
higher m-neutralities will evolve and decrease the phenotypic
mutation rate by decreasing the effect of amino acid
substitutions.

Selection for Preferred Codons
Besides increasing the translational robustness of certain

proteins, a cell can also use preferred codons to decrease
the phenotypic mutation rate ui. This would actually decrease
the amino acid substitution rate and is therefore conceptually
different from translational robustness, which reduces the
effect of amino acid substitutions but not their occurrence.
Considering codon usage, the amino acid substitution rate uaa
has two components, a ribosomal component ur and a codon-
based component, uc. We assume that uaa¼ uruc for preferred
codons and that uaa¼ ur for nonpreferred codons. Preferred
codons are more accurate than nonpreferred codons, hence,
uc , 1. In this section we ignore translational robustness,
i.e., u ¼ uaa. A protein of length ni that uses ñi preferred
codons synthesizes a functional protein with probability
ð1� urÞni�~nið1� urucÞ~ni . The average amount of abnormal
proteins is given by

Figure 6. m-neutralities, vi, After Selection for Three Different Amino Acid Substitution Rates uaa

The data points are sorted according to the length of the proteins. The increased effectiveness of selection for higher m-neutralities in large proteins for
high amino acid substitution rates is clearly visible.
doi:10.1371/journal.pcbi.0030203.g006
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�x ¼
X
i

niyi½ð1� urÞ�ðni�~niÞð1� urucÞ�~ni � 1� ð19Þ

¼
X
i

niyi½ð1� urÞ�ni
1� uruc
1� ur

� ��~ni

� 1� ð20Þ

Again, we notice similarities between Equations 7 and 19
and can expect a rapid increase of �x for ur increasing above 5
3 10�4 .

We conducted simulations analogous to those investigating
the effect of translational robustness. We calculate �x accord-
ing to Equation 19 with uc ¼ 0.1. Each time we mutate the
number of preferred codons, we increase ñi by one with
probability ðni � ~niÞ=ni (the fraction of nonpreferred codons
in the gene). We decrease ñi by one with probability ~ni=ni.
After changing ñi, we calculate �xnew and accept the new ñi as
described in the section Selection for Translational Robust-
ness. We report the average of 20 simulations for each ur.
Each simulation was terminated after 2 3 107 sequential
mutations (not necessarily fixation) of ñi.

Figure 7 shows the results of our simulations. Analogous to
Figure 6, we plot the equilibrium fraction of preferred
codons, pi ¼ ~ni=ni, for each gene for three ribosomal amino

acid substitution rates ur. For u¼ 1.37 3 10�4, only few genes
evolve a major codon bias of pi . 0.6. The gene with the
largest codon bias of about 0.8 encodes for the protein with
the largest yin2i and contributes 5.7% to the total amount of
functional proteins and 7.9% to

X
yin2i .

For ur . 5 3 10�4, large proteins begin to contribute more
to the amount of abnormal proteins and selection increases
the codon bias of large proteins. Similar to our observation in
Figure 2, the codon bias cannot prevent the drastic increase
of �x for ur . 5 3 10�4. As before, no significant codon bias
evolved if we allowed ur to change as well.
Comparing Figure 6 with Figure 7, we notice that selection

for translational robustness results in a more distinct bias in
vi than what we observe for pi after selection for preferred
codons. In the next section we compare the two mechanisms
to identify the source of this difference.

Similarities between Preferred Codons and Translational

Robustness
In our simulations, the two mechanisms differ in the way

pF,i, the probability of synthesizing a functional protein, is
calculated and in the way it is mutated.
For the translational robustness model, we calculate pF,i as

Figure 7. Fraction of Preferred Codons ðpi ¼ ~ni=niÞ After Selection for Three Different Ribosomal Amino Acid Substitution Rates ur

The genes are sorted according to the length of the protein. For ur¼1.37 3 10�4, selection introduces a codon bias only for few genes (compare with m-
neutralities in Figure 6). An increase in the phenotypic mutation rate leads to more intensive selection for preferred codons in large genes than in small
genes.
doi:10.1371/journal.pcbi.0030203.g007
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pF ;i ¼
Xni
m¼0

ni
m

� �
ð1� uaaÞni�mumaavmi ’ð1� uaaÞni

Xni
m¼0

ni
m

� �
ðuaaviÞm:

ð21Þ

The approximations are accurate as long as proteins with
many amino acid substitutions are rare. For the preferred
codon model, we have

pF ;i ¼ ð1� urÞni�~nið1� urucÞ~ni

¼ ð1� urÞni 1þ ur
1� uc
1� ur

� �nipi
’ ð1� urÞni ½1þ urpið1� ucÞ�ni

¼ ð1� urÞni
Xni
m¼0

ni
m

� �
½urpið1� ucÞ�m;

ð22Þ

where we used 1 þ ur/(1 � ur)’1 þ ur and [1 þ ur(1 � uc)]
pi

’1 þ urpi(1 � uc), which are reasonable approximations if ur
is small. The analogy between Equation 21 and Equation 22 is
obvious. In theory, the m-neutralities, vi, can range from 0 to
1. In our simulations, for the chosen prior distribution, vi’s
larger than 0.8 are rare. The m-neutralities vi are analogous to
the term pi(1 – uc) in the preferred codon model. Since pi can
range from 0 to 1, the two mechanisms can reduce the
amount of abnormal proteins equally well if vmax ¼ 1 – uc,
where vmax denotes the upper limit for m-neutralities. In our
simulations, we have vmax ’ 0.8 , 1 – uc ¼ 0.9. Hence, we
would expect lower �x values in the preferred codon model.
This is not the case. For example, for uaa¼ 10�5, �x converged
to 6.4 3 107 in the translational robustness model, whereas �x
converged to 7.33 107 in the preferred codon model. Hence,
we have to consider the way in which the pF,i’s are mutated to
understand this result.

In the translational robustness model, vi is sampled from a
prior distribution. The new vi value is independent of the
previous one. Hence, large changes of vi and, consequently, of
pF,i are possible. In the preferred codon model, the number of
preferred codons can only change in increments of one, and
corresponding changes of pF,i and �x are small. The small
changes in pi and, therefore, in pF,i allow the evolution of
noticeable codon biases only in genes that produce large
amounts of abnormal proteins. In the translational robust-
ness model, large changes in the pF,i’s are possible, and they
have a higher fixation probability.

Take, for example, the protein with the largest value of yin2i .
It is 918 amino acids long, and a change of ñi from 459 to 460
increases pi from 0.5 to 0.501 (by 0.2%). This small change
reaches fixation only if the costs of abnormal proteins from
this gene are very large. Changes larger than this are frequent
in the translational robustness model and have a higher
probability of fixation.

Discussion

A functional protein machinery, built from genetic
information, is central to every living organism. Surprisingly,
the decoding of genes into amino acid sequences is fairly
inaccurate. Errors (phenotypic mutations) occur several
orders of magnitude more frequently than during DNA
replication. The frequency of errors depends on the codon
and its context (see Table 1).

In this paper, we have explored the evolution of pheno-

typic mutation rates. In our model, a cell maintains protein
synthesis until a certain number of functional proteins are
present. Depending on the phenotypic mutation rate, u, a
certain number of amino acids, x, are ‘‘wasted’’ in erroneous
proteins and reduce the fitness of the organism by g(x). For
simplicity, we used a linear cost function g(x) ¼ cx. With
genomic and proteomic data from S. cerevisiae [24,25], we
discover (a) an effective upper bound for the phenotypic
mutation rate, (b) that most of the abnormal proteins stem
from genes that are highly expressed and substantially larger
than the average yeast protein, (c) that an average phenotypic
mutation rate of u ¼ 5 3 10�4 is at a value where x begins to
increase dramatically as a function of u and large, lowly
expressed genes begin to contribute substantially to the
amount of abnormal proteins, and (d) that an increased
codon bias or translational robustness in highly expressed
genes can reduce the amount of abnormal proteins but
cannot stop the dramatic increase for amino acid substitution
rates above 5 3 10�4.
To what extent do our results depend on the assumption

that g(x) is linear and that gene expression is maintained
until a certain number of functional proteins are present?
Dekel and Alon [37] found a convex increase of the cost of
protein synthesis with the amount of proteins synthesized.
Considering this and that aggregates of misfolded proteins
are, in a concentration-dependent way, toxic to cells [27,38],
we can expect the cost of erroneous proteins to increase
faster than linear with the amount of erroneous proteins
produced. A nonlinear g(x), however, would only affect the
position of the upper bound for u, which we observed in our
simulations (see Figure 1). For a nonlinear cost function, we
would expect this upper bound to be lower than what we have
observed here, because of the nonlinear increase of x on top
of the nonlinear increase of the costs of x. Results (b)–(d) are
not affected by the shape of the cost function.
Let us now consider our assumption about the regulation

of gene expression. The largest protein in the yeast genome is
Mdn1p, a dynein-related AAA-type ATPase [24,39]. It is 4,910
amino acids long. For u ¼ 5 3 10�4, only 12.8% of the
synthesized proteins are error-free. To get the required
number of 0.5383 103 error-free proteins [25], the cell has to
synthesize 6 3 103 proteins. This is not a tremendous burden
considering that about 46,600 3 103 functional proteins are
synthesized in total. However, this number increases rapidly if
u increases. Doubling or quadrupling u would require the
synthesis of 72.7 3 103 or 10,000 3 103 proteins, respectively.
It is unrealistic to assume that a cell will synthesize 107

proteins to get 538 functional ones. But we can consider this
rapid increase as an indication for the inability of the cell to
synthesize this protein and would have to rephrase result (c)
to account for our assumption about gene expression: (c9) a
phenotypic mutation rate of u¼ 53 10�4 is at a value where it
is still feasible to synthesize large proteins. Higher phenotypic
mutation rates would make it impossible to synthesize large
proteins.
Interestingly, if one considers the ability of the cell to

synthesize a certain number of functional proteins after a
certain number of synthesis attempts, an upper bound for u is
also encountered. In this situation, however, this upper
bound is not due to the increase in abnormal proteins and
the associated cost but due to the inability of the cell to
synthesize enough functional proteins. In such a situation the
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cost of abnormal proteins is largely irrelevant and the upper
bound for u primarily a result of the protein-length
distribution and not of the cost of abnormal proteins.
Furthermore, in such a situation there is little selection
pressure to reduce the phenotypic mutation rate much below
this upper bound [16].

If the synthesis of large proteins is such a problem, why
does the cell not synthesize many smaller proteins and
assemble them after successful production? An intermediate
check for proper folding (which equals proper function for
most amino acid substitutions) would prevent the incorpo-
ration of nonfunctional subunits and reduce the probability
of assembling a nonfunctional complex. In yeast, proteins
with a length of about 1,000 amino acids are quite common.
This suggests that the complexation of proteins much smaller
than 1,000 amino acids constitutes a considerable challenge.
For so many large proteins, it might be impossible to get the
same biological function from a complex of smaller proteins.
According to our model, an upper bound of 1,000 for the
yeast protein length does not reduce the drastic increase by
much. If we calculate �x after removing all proteins from the
dataset that are larger than 1,000 amino acids, we can still
observe a rapid increase in �x at u ¼ 5 3 10�4; doubling
(quadrupling) u would lead to a 2.4 (7.3)-fold increase in the
amount of abnormal proteins. Therefore, partitioning ex-
tremely large proteins into protein complexes is not
sufficient to avoid the negative effects of an increasing
phenotypic mutation rate.

Instead of complexing large proteins, evolution could
reduce the phenotypic mutation rate of individual proteins.
The phenotypic mutation rate of individual proteins could be
reduced by using preferred codons [33–35] or by increasing
the translational robustness of proteins [15,29,40]. Our
analysis shows that these two mechanisms have nearly the
same potential to minimize �x if uc is sufficiently small (i.e., if
preferred codons are sufficiently more accurate than non-
preferred codons). One big difference between preferred
codons and translational robustness is the way in which the
trait is mutated. For preferred codon usage, it seems
reasonable to assume that the number of preferred codons
changes in increments of one, which leads to very small
changes in the amount of abnormal proteins.

Considering translational robustness, little is known about
how mutations change the translational robustness of a
protein. In our simulations, we mutate the translational
robustness of a protein by sampling it from a prior
distribution, which allows for large changes. Alternatively,
one can use models that allow only small changes in a
protein’s translational robustness. More empirical data on the
translational robustness spectrum of proteins is necessary to
develop a satisfying model.

The effect of incremental changes of the number of
preferred codons on the amount of abnormal proteins is
fairly small. An increase in the number of preferred codons
by one increases the probability of synthesizing a functional
protein only by a factor of (1 – uruc)/(1 – ur). For u¼ 5 3 10�4

and uc ¼ 0.1, this equals 1.00045. Since only few genes
contribute much to the amount and number of abnormal
proteins, this will lead to very small changes of �x for most
proteins.

As mentioned previously, preferred codons are also able to
increase the rate of translation. Selection for faster trans-

lation (or higher expression level) could be responsible for
the observed codon biases. Since the time it takes to
synthesize yi functional proteins is proportional to yini and
the amount of erroneous proteins is approximately propor-
tional to yin2i , it is possible to distinguish between the two
sources of codon bias by comparing the observed codon bias
in yeast with the predicted codon bias if selective forces were
proportional to yini or yin2i .
Further, a refined version of our preferred codon model

that considers the genetic code and the actual amino acid
sequence of each yeast protein could be used to estimate the
cost of abnormal proteins and the amino acid substitution
rate. For a given amino acid substitution rate, ur, an increase
of the cost of abnormal proteins, c, increases the extent of
codon bias but does not affect its distribution with respect to
the protein length (the points in the top panel of Figure 7
would all move upward by an amount that is independent of
ni since ni�xi remains unchanged for constant ur). For given c,
an increase of ur changes the extent of codon bias as well as
the codon bias distribution with respect to the protein length
(as seen in Figure 7, if ur increases, the codon bias of large
proteins changes to a greater extent than the codon bias of
small proteins since �xi will increase more for genes with large
ni). Hence, by choosing different values for c and ur and by
comparing the resulting extent and distribution (with respect
to ni) of codon biases with the extent and distribution of
codon bias found in yeast, one can estimate the two
parameters.
To experimentally measure the rate of amino acid

substitutions during protein synthesis is notoriously difficult.
Abnormal proteins are difficult to detect and usually
degraded within minutes [27]. Experiments are usually
limited to measuring the rate of specific substitutions at
specific sites (see Table 1). One exception is work by Ellis and
Gallant [4], who measured the rate of substitution of charged
amino acids by uncharged amino acids. For many proteins
such substitutions are detectable as satellite spots after 2-D
gel electrophoresis. However, their method might fail to
detect rapidly degraded abnormal proteins and is dependent
on the number of codons at which charge substitutions can
occur [4].
It would be highly desirable to be able to calculate the

actual frequency of phenotypic mutations, that is, the
frequency of deleterious amino acid substitutions during
protein synthesis as opposed to the frequency of all
(detrimental or not) amino acid substitutions. We can use
our model together with data on the fraction of proteins that
are abnormal and degraded rapidly [41,42] to calculate this.
Schubert et al. [41] and Princiotta et al. [42] measured that in
human cells about 33% and 25%, respectively, of newly
synthesized proteins are rapidly degraded. The proteins are
degraded mainly because of their inability to achieve a
functional state [27]. Since these are values for human cells
and might also include proteins that could not achieve a
functional state despite error-free protein synthesis, we will
use 15%–35% as the range for the fraction of proteins that
are nonfunctional due to phenotypic mutations. In our
model, y and �x give the amount of functional and nonfunc-
tional proteins synthesized, respectively. Hence the fraction
of nonfunctional proteins synthesized due to phenotypic
errors is given by �x=ðyþ �xÞ. According to our model (Equation
7) and the data from yeast (see Materials and Methods), 2.4 3
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10�4 to 6.1 3 10�4 deleterious amino acid substitutions per
codon would result in the synthesis of 15% to 35%
nonfunctional proteins. Better estimates of the fraction of
abnormal proteins in yeast would allow a narrowing of the
calculated range.

Mutation Rates at Equilibrium

Here, we derive our main analytical results on the
magnitude of the genotypic and phenotypic mutation rates
stated in the section The Model. We start by recalling
Haldane’s principle for an asexually reproducing population.
This population is assumed to be sufficiently large so that
random genetic drift can be ignored. The only evolutionary
forces considered are selection and mutation. We assume that
there is an optimal type (wild type) in this population. Its
fitness is denoted by W0, the rate at which mutations to other
types occurs is denoted by U, and back mutations are ignored.
Then the mean fitness of the population at mutation–
selection balance is given by �W ¼ ð1� UÞW0. This is obtained
immediately from the recursion relation p9

0 ¼ ð1� UÞW0p0= �W
for the frequency p0 of the optimal type. The important, but
simple point, first made by Haldane, is that the mean fitness is
independent of the fitnesses of the deleterious types ([43], pp.
106–107).

This principle can be generalized to a large class of
mutation patterns among possible types, and even to a
continuum of possible types. It then states that in mutation–
selectionbalancemeanfitness �W satisfies ð1� UÞW0 , �W ,W0,
where every type in the population is assumed to have the same
mutation rate U. In addition, �W becomes asymptotically equal
to ð1� UÞW0 if the mutation rate U becomes sufficiently small.
Detailed formulations as well as proofs canbe found in ([43], pp.
127, 143–148). Again, the equilibrium mean fitness is, to first
order inU, independent of the precise mutation pattern and of
the fitnesses of the deleterious types.

Now we derive approximations for l̂ and û in our model.

We assume that the cost function g is linear, i.e.,
�gð�xÞ ¼ 1� c�x. Because of its complexity, we need a simplified
model to make analytical progress. We identify all cells that
have the same pair of mutation rates, (l,u), and assign to them
the average fitness �f ðl; uÞ (see Equation 1) of a population of
cells with these mutation rates. For given l and applying
Haldane’s generalized principle to the trait ‘‘phenotypic
mutation rate,’’ we get

�f ðl; uÞ ¼ �W ’ �f ðl; 0Þð1� puÞ: ð23Þ

Rearrangement and use of Equation 8 yields the following
approximation for the evolved phenotypic mutation rate at
equilibrium:

û’ pu
1

c
X
i

n2i yi
: ð24Þ

For the evolved genotypic mutation rate, we already have
derived the approximation (Equation 4). The general theory
[43], as well as numerical results (unpublished data), show that
the above approximations for l̂ and û are slight overestimates
of the true values. Taking the ratio of Equation 24 and
Equation 4, we obtain Equation 9.

Effect of Initial Values and Parameters on the

Simulation Results

To show the robustness of our results with respect to the
initial conditions and the parameters, we conducted addi-
tional simulations analogous to the simulations presented in
Figure 1. For Figure 1, we used pu ¼ pl ¼ 10�4 and 10�7 as
initial values of u and l; genotypic mutations were lethal. The
blue and violet lines in Figure 8 show that the initial values
for u and l and the fitness of the genotypic mutant do not
change the equilibrium mutation rates at mutation–selection
balance. The genotypic and phenotypic mutation rates will
converge to the same equilibrium mutation rates as long as (a)
the initial value for u is low enough so that f ¼ 1� gð�xÞ.0 ,
and (b) the initial value for l is low enough (or genotypic
mutations deleterious enough) so that a fixation of genotypic
mutants does not occur.
We conducted simulations with different values for pu and

pl. The green and cyan lines in Figure 8 show the evolution of
u and l for pu¼ pl¼ 10�3 and pu¼ pl¼ 10�5, respectively. As
expected, higher (lower) pu and pl lead to faster (slower)
evolution of u and l and to increased (decreased) equilibrium
values. The magnitude of this change is smaller than
predicted by theory, e.g., Equation 9. This can be attributed
to the finite population size, N ¼ 104. In finite populations,
selection is inefficient for costs (Cu,Cl) below a certain
threshold. Note that from Equations 23 and 2 we have
�f ðl; uÞ’ �f ðl; 0Þð1� puÞ and �f ðl; uÞ’ �f ðl; 0Þð1� CuÞ, respec-
tively.
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