Correction: Signal Propagation in Proteins and Relation to Equilibrium Fluctuations

Chakra Chennubhotla, Ivet Bahar

Correction for:

Chennubhotla C, Bahar I (2007) Signal propagation in proteins and relation to equilibrium fluctuations. PLoS Comput Biol 3(9): e172. doi: 10.1371/journal.pcbi.0030172

Four mathematical expressions appeared incorrectly. The correct expressions follow.

$$\widehat{\boldsymbol{H}}_{n} = \widehat{\boldsymbol{I}}^{T} \widehat{\boldsymbol{D}}_{n} \widehat{\boldsymbol{\Gamma}}^{-1}$$
(12)

$$H(j,i) = \sum_{k=1}^{n} \left\{ \left[\Gamma^{-1} \right]_{ki} - \left[\Gamma^{-1} \right]_{ji} - \left[\Gamma^{-1} \right]_{kj} + \left[\Gamma^{-1} \right]_{jj} \right\} d_k$$
(14)

The hitting time expression Equation 14 involves three different types of contributions: a one-body term that depends on the destination node, $[\Gamma^{-1}]_{jj}\sum_{k=1}^{n} d_k$; a two-body term that depends on the initial and final nodes, $-[\Gamma^{-1}]_{ji}\sum_{k=1}^{n} d_k$; and a series of three-body terms that depend on intermediate nodes, in addition to the two end points, $\sum_{k=1}^{n} ([\Gamma^{-1}]_{ki} - [\Gamma^{-1}]_{ki}) d_k$.

Derivation of Equation 14. The discussion below borrows from results in [12,13]. Deriving $\hat{\Gamma}^{-1}$ from Γ^{-1} is a three-step process: ...

Citation: Chennubhotla C, Bahar I (2007) Correction: Signal propagation in proteins and relation to equilibrium fluctuations. PLoS Comput Biol 3(10): e223. doi: 10.1371/journal.pcbi.0030223.

Received: September 25, 2007; Accepted: September 25; Published: October 26, 2007.

Copyright: © 2007 Chennubhotla and Bahar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.