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One of the major goals of comparative genomics is to understand the evolutionary history of each nucleotide in the
human genome sequence, and the degree to which it is under selective pressure. Ascertainment of selective constraint
at nucleotide resolution is particularly important for predicting the functional significance of human genetic variation
and for analyzing the sequence substructure of cis-regulatory sequences and other functional elements. Current
methods for analysis of sequence conservation are focused on delineation of conserved regions comprising tens or
even hundreds of consecutive nucleotides. We therefore developed a novel computational approach designed
specifically for scoring evolutionary conservation at individual base-pair resolution. Our approach estimates the rate at
which each nucleotide position is evolving, computes the probability of neutrality given this rate estimate, and
summarizes the result in a Sequence CONservation Evaluation (SCONE) score. We computed SCONE scores in a
continuous fashion across 1% of the human genome for which high-quality sequence information from up to 23
genomes are available. We show that SCONE scores are clearly correlated with the allele frequency of human
polymorphisms in both coding and noncoding regions. We find that the majority of noncoding conserved nucleotides
lie outside of longer conserved elements predicted by other conservation analyses, and are experiencing ongoing
selection in modern humans as evident from the allele frequency spectrum of human polymorphism. We also applied
SCONE to analyze the distribution of conserved nucleotides within functional regions. These regions are markedly
enriched in individually conserved positions and short (,15 bp) conserved ‘‘chunks.’’ Our results collectively suggest
that the majority of functionally important noncoding conserved positions are highly fragmented and reside outside of
canonically defined long conserved noncoding sequences. A small subset of these fragmented positions may be
identified with high confidence.
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Introduction

Comparative sequence analysis has had a major impact on
molecular biology and genetics. Comparison of the sequences
of protein-coding genes between multiple species has enabled
prediction of gene function [1], identification of protein
domains [2], prediction of functional amino acid residues
[3,4], and detection of signals of natural selection at the level
of whole genes [5] and individual codons [6,7]. Inferring non-
neutral sequence elements in the human genome is of
considerable interest even without a specific a priori
hypothesis concerning their possible functional role(s). On
a general level, for example, sequence conservation may
considerably inform human genetic studies seeking to
identify allelic variants associated with disease phenotypes,
particularly in noncoding regions [8]. The effect of human
SNPs at the level of molecular function and phenotype
depends on the importance of the individual nucleotide
position, whereas the information of the sequence region as a
whole is not necessarily relevant. For example, about half of
human SNPs within protein coding genes are represented by
synonymous variants, which are likely to be of limited
importance, even though they are embedded within highly
conserved exonic sequences. In addition, a subset of
individual nucleotides conserved in four mammalian ge-
nomes were shown to be under selective pressure [9]. A
position-specific measure of selective constraint is therefore

highly suitable for analysis of positions that are polymorphic
within the human population.
Several algorithms have been developed for detection and

scoring of sequence conservation in the context of a
multispecies sequence alignment. However, to date these
approaches have been applied almost exclusively to detect
discrete regions with elevated average sequence conservation
that typically extend for up to hundreds of contiguous bases
[10–14]. Such regions encompass canonical coding exons, as
well as so-called ‘‘conserved noncoding sequences’’ that
presumably result from purifying selection, and are thereby
indicative of functional importance [15,16].
Recently, comparative genomic sequence of unprece-

Editor: Michael Brudno, University of Toronto, Canada

Received May 10, 2007; Accepted November 13, 2007; Published December 28,
2007

A previous version of this article appeared as an Early Online Release on November
14, 2007 (doi:10.1371/journal.pcbi.0030254.eor).

Copyright: � 2007 Asthana et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: DHS, DNase I hypersensitive sites; EIGR, experimentally identified
genomic regions—regions with significantly increased histone modification

* To whom correspondence should be addressed. E-mail: ssunyaev@rics.bwh.
harvard.edu (SS), jstam@u.washington.edu (JS)

PLoS Computational Biology | www.ploscompbiol.org December 2007 | Volume 3 | Issue 12 | e2542559



dented depth has been generated by sequencing of multiple
mammalian and other vertebrate genomes orthologous to 1%
of the human genome defined by the ENCODE regions
[17,18]. Several alignment techniques have been applied to
construct multiple sequence alignments within ENCODE
regions [18]. These alignments have in turn been subjected to
analysis with existing sequence conservation detection
algorithms, including phastCons[10], GERP [11], and BinCons
[13]. The conserved regions identified by these analyses show
statistically significant overlap with experimentally identified
coding and noncoding functional elements. However, the
majority of experimentally characterized noncoding func-
tional elements fall outside of currently delineated conserved
regions, and, conversely, most conserved regions were located
outside of experimentally detected elements [18]. The fact
that many functional elements reside in noncoding regions
that do not exhibit uniformly high conservation is perhaps
not surprising given that binding sites for transcriptional
factors that mediate many biological processes are quite
plastic evolutionarily [19]. Conversely, many individual
nucleotides located outside of well-defined conserved regions
exhibit sequence conservation across multiple species. Such
conservation may be due to mere chance or, for a certain
fraction of these nucleotides, may reflect their importance
for fitness and hence function. The aforementioned observa-
tions emphasize the need for higher resolution methods for
analysis of evolutionary conservation within functional
elements and generally across the genome.

Here we develop an approach for analyzing sequence
conservation at the individual base-pair level, with an aim
toward correlating conservation with human genetic varia-
tion and with functional genomic annotations. We present a
new probabilistic conservation score, SCONE (Sequence
Conservation Evaluation). SCONE provides conservation
scores for individual nucleotide positions, and can be applied
to predict continuous sequence regions with an elevated level
of conservation.

We apply SCONE to the study of annotated functional
elements and human sequence polymorphism. We focus on
the statistical distribution of position-specific conservation
scores rather than on the bulk overlap between conserved
regions and functional features. It is clear from the outset that
the power to detect conservation at the single base-pair

resolution is limited, even when comparing multiple species
[20]. We surmount this obstacle by deriving considerable
statistical power from combined analysis of numerous
individual nucleotide positions from many genomic regions.
While this analysis does not allow us to detect individual
functional positions accurately, we can show that, collectively,
a subset of noncontiguous individual positions are important.
A key advantage of the analysis of the distribution of position-
specific scores is that it is unbiased with respect to the pattern
of conservation along a given sequence region. SCONE thus
has the potential to analyze putative functional elements in
which the conservation signal is not homogeneous or
manifested by exon-like contiguous conserved stretches.
We report herein on the relationship between sequence

conservation, functional sequence elements, and human
allelic variation, as revealed by single-nucleotide conservation
analysis.

Results

SCONE provides an estimate of the rate at which a given
position (column) in a multiple sequence alignment is
evolving and a probability (p-value) of neutrality for that
position, based on a model of neutral evolution. We used
SCONE to score conservation in all alignable human bases
using the phylogenetic tree and multiple sequence alignments
(generated by the TBA alignment program [21]) made
available by the ENCODE Multiple Sequence Alignment
group [18]. Figure 1 shows an example of SCONE scores.
Though positions were human-referenced, we excluded
human sequence from conservation analysis to avoid ascer-
tainment biases with regard to the study of human SNPs (see
Methods). Positions containing fewer than two aligned
sequences were also excluded from scoring. Despite these
limitations, SCONE scores are available for 27.6 out of 30
Mbases of ENCODE sequences (92%). We examined the
distribution of p-values for SCONE scores in putative neutral
sites (see Methods). As p-values for SCONE scores correspond
to the hypothesis of neutrality, their distribution in neutral
positions should be uniform. On average, the distribution
strongly resembles a uniform distribution (Figure S1A),
showing that the model of evolution employed by SCONE is
in general agreement with the observed pattern of evolution.
SCONE presents both an estimate of evolutionary rate (a

measure of the intensity of constraint) and a p-value for a null
hypothesis of neutrality based on the rate. Though ascertain-
ing rate (and thereby constraint) is in many instances the
more appropriate measure to use in the pursuit of functional
positions, reliability of conservation detection using the rate
estimate varies with respect to sequence coverage (Figure
S1B). p-Values, on the other hand, control fraction of
neutrally evolving positions scored as conserved independ-
ently of sequence coverage.
SCONE is available to download as a stand-alone program

for UNIX operating systems at http://ika.bwh.harvard.edu/
scone/. All SCONE scores used in this analysis may be
obtained via the UCSC Genome Browser, at http://genome.
ucsc.edu/ENCODE/.

Conservation in Mammals and Human Polymorphism
Analysis of population sequence polymorphism is an

effective and widely used tool for detecting the influence of
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Author Summary

The structure of the human genome remains largely unknown,
including which parts of the genome are functionally relevant and
which parts are ‘‘junk.’’ The availability of genomic sequence from a
large number of mammals allows a more detailed exploration of this
structure, using comparison of related sequences from different
species to identify portions of the genome that have remained
unchanged, conserved by the action of natural selection, and thus
likely to be functionally significant. To date, most efforts focused on
localizing the functional fraction of the human genome have been
based on identifying contiguous stretches of positions conserved in
multiple species. Here, we present an analysis that is based instead
on a single-position measure of conservation called SCONE. Our
analysis suggests that the majority of conserved and putatively
functional positions are highly fragmented and lie outside
contiguous regions of conserved sequence. A subset of these
fragmented positions may be identified based on local clustering.

Sequence Conservation at Nucleotide Resolution



ongoing or recent selection. Sites experiencing purifying
selection will tend to show a decrease in the density of
polymorphism and average heterozygosity, as well as a shift in
allele frequencies toward more rare derived (nonancestral)
alleles. We hypothesized that sites adjudged to be constrained
by SCONE would evince ongoing purifying selection, which
should in turn affect the distribution of population poly-
morphism. Differences in allele frequency distributions

between positions under strong constraint and uncon-
strained positions, both inside and outside of contiguous
conserved sequence regions, would thus indicate the func-
tional significance of those positions.
We employed the most comprehensive SNP dataset

available for these regions, produced by the International
Haplotype Map project [22]. The HapMap project rese-
quenced ten 500 kb ENCODE regions (total 5 Mb) in 48

Figure 1. Examples of SCONE p-Value Scores for Coding (A), Highly Conserved Noncoding (B), and Nonconserved Regions

Positions likely to be conserved (p , 0.05) are in light green; other positions are dark. Below each plot is the portion of the multiple sequence used to
generate scores for each sequence region. Deviations from human sequence (green) are indicated in red.
(A) A portion of an exon from the MET gene (chr7:115,933,744–115,933,793). The pattern of conserved positions is indicative of the triplet structure of
the genetic code.
(B) A highly conserved intronic sequence in the FOXP2 gene (chr7:113,646,877–113,646,926).
(C) An intergenic region near the AXIN1 gene (chr16:343,046–343,095) showing little overall conservation, but containing a significant number of
individually conserved positions.
doi:10.1371/journal.pcbi.0030254.g001
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unrelated individuals from four separate population sets
(Yoruba, Han Chinese, Japanese, and CEPH). Subsequent
genotyping was performed in each population on the basis of
this SNP discovery and SNPs in the dbSNP database; this is
likely to introduce biases toward frequent SNPs (i.e., those
most likely to be shared between populations) and artificially
reduce the apparent fraction of rare SNPs. We chose to rely
on the parental subset of the Yoruba population from Ibadan,
Nigeria (YRI), for our SNP analysis, which, after filtering out
SNPs in CpG positions, included a total of 13,490 SNPs in ten
ENCODE regions. In all of our analysis, we ignored SNPs
within coding regions, since selective effects on coding SNPs
are comparatively well-studied.

We detect a significant difference (p , 0.0004, Fisher exact
test) in the fraction of rare derived alleles (Figure 2) between
conserved (SCONE p-value , 0.005, Fisher exact test) and
nonconserved noncoding positions. The higher fraction of
rare derived alleles in conserved (slowly evolving) positions
indicates that these positions are experiencing purifying
selection. Because allele frequency distributions are unaf-
fected by mutation rate heterogeneity, our results suggest
that this effect is due to sites that are evolving slowly due to
selection rather than merely due to chance. For comparison,
we examined the allele frequency distribution in noncoding
conserved sequence regions, using the ENCODE multispecies
conserved sequence (MCS) element set to define contiguous
conserved elements. These were defined on the basis of
agreement between at least two out of three regional
conservation scores (phastCons, BinCons, and GERP) that
identify regions of sequence with elevated average conserva-
tion. The shift in allele frequency distributions is stronger for
SCONE-conserved positions than it is for MCS elements (p ,

0.05, Fisher exact test), suggesting that these positions are
either enriched for functional positions compared to MCS
elements, or are on average under stronger selection.

We employed a simple model of evolution that assumes
constant population size and no demographic events to
estimate the average heterozygous selection coefficient (s) for
functional noncoding positions that best explains the
observed shift in allele frequencies between SCONE con-
served and nonconserved positions. We assumed, based on

the false discovery rate in these positions (see Methods), that
61.6% of SCONE conserved positions are functional. We
estimate s in the range of 10�4–10�3.
An excess of low-frequency alleles in conserved regions was

reported in several earlier studies [23–25]. The main question
pertinent to the analysis of position-specific conservation is
whether the majority of deleterious alleles within a popula-
tion reside in conserved regions, or whether individually
conserved positions not incorporated into longer conserved
elements are also under purifying selection. To address this
question, we examined the distribution of allele frequencies
in positions outside of MCS elements. After partitioning
these positions according to their SCONE rate estimates (as
above), we were able to detect a significant difference (p ,

0.009) in rare derived allele frequency between high- and low-
scoring positions. This strong shift may be an indication that
a significant subset of functional positions lie outside of MCS
elements [9], and that a greater portion of functional
positions may be identifiable via the contribution of
position-specific analysis than can be found through the
identification of conserved elements alone. This suggests that
a search for phenotypically important human genetic
variation should not be limited to conserved regions, and
information on the conservation level of individual base pairs
is of importance for prioritizing SNPs in studies of genetics of
specific human phenotypes.

Conservation in Functional Features
Population genetic analysis indicates that a significant

fraction of functional positions lies outside MCS elements. It
is natural to seek confirmation of this fact by inquiring
whether these positions coincide with identifiable regulatory
and other functional elements, and whether we may observe a
similar distribution of conserved positions and MCS elements
with regard to annotated functional regions.
In addition to a highly accurate annotation of protein

coding genes, the ENCODE project has produced large-scale
identification of transcribed regions, a composite of putative
sequence-specific binding sites, and regions with significantly
increased histone modification (EIGRs) likely to be involved
in transcription regulation, and DNase I Hypersensitive sites
(DHSs), which are heavily validated markers of human cis-
regulatory sequences [18].
A subset of transcribed regions identified by hybridization

of RNA to tiling genomic DNA microarrays consist of
nonprotein coding transcribed regions of unclear functional
significance. Analysis of conservation may therefore poten-
tially support functionality of such regions, or may enlighten
the current debate concerning background transcription in
the human and other large genomes [26]. Promoters
represent a specific type of regulatory element, whereas
EIGR and DHS tracks are more generic in nature and may
therefore encompass a spectrum of functional elements with
differing regulatory roles.
We therefore analyzed the distribution of SCONE p-values

in all of the above types of functional elements, as well as CpG
islands, a well-known sequence-based marker of functional
elements. We found all categories of functional elements to
exhibit statistically significant deviation from the uniform
neutral distribution. The deviation of all classes of functional
regions from the neutral distribution was explained almost
entirely by a subset of positions with low SCONE p-values.

Figure 2. Rare Derived Allele Frequency in Conserved versus Non-

conserved Sites

Positions are partitioned according to (i) ENCODE MCS elements for all
ENCODE positions, (ii) SCONE conservation score for all ENCODE
positions, and (iii) SCONE conservation score for all ENCODE positions
outside of MCS elements. p-Values are calculated using Fisher’s exact
test.
doi:10.1371/journal.pcbi.0030254.g002
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The excess of conserved individual positions in functional
regions compared to putatively neutral regions (ancestral
repeats) is shown in Figure 3.

In many classes of functional elements, much of the signal of
conservation falls outside of MCS elements. With the exception
of coding sequences and 39 UTRs, a majority of individually
conserved positions do not fall within MCSs. The pattern of
conservation differs markedly across different functional
features; even a high overall level of conservation (as in CpG
islands) does not imply that these putatively functional
positions can be easily grouped into functional elements. The
true proportion of functional positions may thus be under-
represented by requiring them to be grouped into windows.

Transcribed regions and EIGRs show similar fractions of
conserved positions. DHSs, although also significantly en-
riched in conserved positions, are least conserved compared
to all other functional elements. 59 UTRs and CpG Islands
display the highest level of conservation among putative
regulatory regions, although generally sequence regions
proximal to genes are more conserved.

Fraction of Functional Positions across ENCODE Regions
What fraction of ENCODE regions are functional? If

conservation is interpreted as a signal of selective constraint,
SCONE may be employed to identify the number of
functional positions in a genomic region (that is, a set of
sites, not necessarily contiguous). The false discovery rate at a
particular p-value threshold estimates the fraction of sites
with p-values below that threshold that must be functional in
order to explain the deviation from the expected neutral
distribution. By relaxing the p-value threshold sufficiently,
nearly all conserved functional sites may be included.

Based on the distribution of SCONE p-values and the false
discovery rate, we estimate that between 5.5% and 11% of
positions in ENCODE regions are conserved because of
function. However, Figure 3 should not be taken as
representative for the human genome as a whole, since
ENCODE regions have a twice higher fraction of coding
positions compared to the genome-wide average. In addition,
stochastic variation in the mutation process and sampling

variance inevitably introduce noise into the distribution,
reducing the accuracy of the estimate.

Clustering of Conserved Positions
A substantial fraction of conserved positions lies outside of

MCS elements (65% at a SCONE p-value threshold for
conservation ,0.025, where the fraction of all ENCODE
positions called conserved according to SCONE p-value or
membership in MCS elements is approximately equal). Are
these positions randomly distributed, or do they exhibit
clustering, as we might expect if this observed sequence
conservation is due to binding sites or other short functional
elements? To evaluate the extent of clustering of conserved
nucleotides, we identified all conserved islands (see Methods),
using a p-value threshold of T ¼ 0.05. These represent
optimally bounded islands of conservation whose overall
conservation cannot be increased by expanding them in
either direction.
We restricted our analysis to short conserved islands, with

lengths ranging from five to 12 bases. These islands are
heavily overrepresented in functional sequences, with the
majority found in and around coding sequences or promoter
regions (Figure 4A).
We compared the density of short conserved islands

(number of clusters/total number of positions) in functionally
annotated regions to the density in putatively neutral
ancestral repeat regions. As seen from Figure 4B, all
functionally annotated regions show considerable over-
representation of conserved islands with lengths ranging
from five to 12 bases when compared to ancestral repeat
regions. To verify that this is not simply due to a simple excess
of conserved positions and is indeed due to significant
clustering of conserved bases, we randomly shuffled SCONE
p-value scores across all DHS sites and compared the
proportion of short conserved islands predicted in these
‘‘shuffled’’ DHS positions; we find a 5-fold excess in density in
unshuffled DHS sites, suggesting that the overrepresentation
in functional regions is due to clustering. Stretches of two or
three conserved bases do not show any over-representation in
comparison to the shuffled sequence (unpublished data). In

Figure 3. Conservation in Various Functional Classes

For each functional class, the fraction of positions with SCONE p-value � 0.005 is shown, both including (dark) and excluding (light) positions falling
within MCS elements. Ancestral repeats are included as a control.
doi:10.1371/journal.pcbi.0030254.g003
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agreement with the results of the analysis of human genetic
variation described above, over-representation of short
stretches of conserved positions in functionally annotated
regions suggests the functional importance of these short
islands.

Can SCONE scores be used to identify isolated individual
functional noncoding positions? In general, the rate of false
discovery is too high across the study regions to allow
ascertainment of such positions. However, in a subset of sites
with either a higher expected mutation rate or greater
sequence coverage, this may be possible. We chose a more
stringent p-value threshold (p , 0.001); at this threshold, the
computed false discovery rate in noncoding, non-MCS
regions was 39%, meaning 61% of these positions are
putatively functional. Based on the observation of enrich-
ment of short conserved sequences, we looked for clusters of
three non-MCS noncoding positions, each with a SCONE p-
value , 0.001, that fell within a 10 bp window. We identified
5,562 such clusters in the study regions. A majority of them
(80%) lie in CpG islands, as expected since conserved
positions there will tend to have greater significance as
determined by SCONE, due to their much higher mutation
rate. These clusters are highly enriched amongst annotated
regions such as DHS sites, showing a 520-fold increase in
density compared to ancestral repeat regions and an 88-fold
increase compared to regions lacking an annotation (that is,
excluding exons, CpG islands, transcribed sequences, and
DHS sites). Shuffling positions within DHS sites also greatly
reduces enrichment (44 clusters identified within shuffled
DHS positions compared to 1,079 within unshuffled posi-
tions). This enrichment is weaker, but still persists, even if we
apply more stringent standards, restricting ourselves to
positions with p , 0.001 that are at least 50 bp from the
nearest MCS element or CpG island; clusters identified using
these thresholds still show a 59-fold increase in density within
DHS sites compared to AR regions, and a 10-fold increase
compared to unannotated regions. Although further valida-
tion of these positions is difficult, the strong degree of

enrichment in annotated regions suggests that these positions
are highly likely to be conserved due to function.

Discussion

Detailed knowledge of the structure of coding sequences
makes them much more tractable to conservation analysis.
The genetic code, by itself, imposes significant constraints on
such sequences and provides us with a framework by which
we may better understand them. A number of methods have
been developed that exploit this knowledge to better predict
functional and selective constraints on coding positions [5–7].
In coding regions, the functional significance of a given
position is highly contingent upon the surrounding bases,
since a protein, to some extent, behaves as a single coherent
functional, and thus evolutionary, unit. The constraints
imposed by this contingency means the influence of purifying
selection on a site will be much easier to trace through its
evolutionary history, since it is anchored by other sites that
are similarly constrained. Finally, the existence of the genetic
code dictates that the evolution of coding sequences is based
almost wholly on their informational content.
In noncoding sequences, however, this situation does not

persist. Few noncoding elements are as well-characterized in
terms of structure and function as coding sequences are, but
undoubtedly many elements will show markedly different
patterns of evolution from what we have come to expect in
coding sequences. These differences suggest that paradig-
matic assumptions about conservation cannot be carried over
from coding sequences, and conservation analysis in non-
coding regions must proceed on fundamentally different
grounds. In noncoding sequences, we might expect to find
elements that, though highly functional, lack the same tight
relationship between relative position and function. If, for
example, the sequence composition bias of a region has a
strong functional significance, the region might evolve to
conserve the overall necessary property while showing very
little constraint at individual sites. Structural properties of

Figure 4. Islands of Conservation in Functionally Annotated Regions

(A) Localization of short (5–12 bp) conserved islands in functionally annotated regions. Shown is the fraction of all islands that fall within a particular
region. Nongenic transcribed regions were omitted to preserve scale, but contain 93% of short conserved islands.
(B) Fold excess of short (5–12 bp) conserved islands in functionally annotated regions compared to ancestral repeat regions. Shown is the ratio of the
density in each region (number of clusters divided by total number of positions in the region) to the density in ancestral repeat positions.
doi:10.1371/journal.pcbi.0030254.g004

PLoS Computational Biology | www.ploscompbiol.org December 2007 | Volume 3 | Issue 12 | e2542564

Sequence Conservation at Nucleotide Resolution



the sequence may show as much or more influence than
informational content. Such properties may not depend on
strict sequence conservation, and the evolutionary retention
of such properties would therefore be invisible to traditional
sequence conservation analysis.

Functional noncoding elements that show strong con-
straint might only be short, partially degenerate words only a
handful of base pairs in length. Control of gene expression,
for example, may depend on brief, influential segments (e.g.,
transcription factor binding sites) interspersed by relatively
unimportant noise. Without the benefit of long contiguous
stretches of functional positions to indicate important
elements, identification of such words amidst the general
rubble is considerably harder.

Our method attempts to take into account some of the
above difficulties. SCONE is not based on any model of
pattern of conservation along the sequence and is focused
instead on individual nucleotide positions. Conservation of a
specific nucleotide position does not directly depend on
conservation of its neighbors. Along the same lines, when we
score sequence regions, we use a purely additive scoring
scheme. Additionally, SCONE optionally incorporates inser-
tions and deletions. The importance of insertions and
deletions for the analysis of conservation is probably greater
in noncoding sequences than in genes, where most insertions
and deletions will lead to frame-shifting mutations and thus
are extremely rare.

Our analysis has revealed that many individually conserved
nucleotides not embedded in conserved elements are of
functional significance, as evident from analysis of the allele
frequency distributions of human SNPs within these positions
and analysis of individually conserved positions within
functional features. These results suggest that future efforts
at identifying functional positions in noncoding regions via
analysis of conservation would benefit from methods that are
hypothesis-free with respect to the distribution of con-
strained positions.

Methods

For each nucleotide position, SCONE provides an estimate of the
rate at which a site is evolving and the probability (p-value) that this
position evolves neutrally given the rate estimate. We assess sequence
conservation by implementing a model of sequence evolution. As is
typical of most evolutionary models, the model implemented by
SCONE treats nucleotide substitutions as a continuous-time Markov
process. The SCONE model is more detailed, accounting for some of
the influence of sequence context on nucleotide substitution rates,
and optionally incorporates indel events. It requires as input a
phylogenetic tree with known branch lengths (measured in sub-
stitutions per site rather than in years) and a multiple-sequence
alignment of species within the given tree.

SCONE takes alignments as given, and does not attempt to make
allowances for possible mistakes in the alignment process. Unaligned
sequence is necessarily ignored, even though a subset of these
positions might be conserved. Notably, misalignments may cause
errors in reported positions, resulting in incorrect ascertainment of
evolutionary rate. To minimize misalignments, we made use of
alignments generated using TBA, a local (rather than a global)
aligner, which emphasizes sensitivity rather than specificity.

We assumed that mutation processes are uniform across all species.
This assumption breaks down once one descends below the
mammalian family tree, because mutation patterns are believed to
have changed at the time of mammalian radiation, especially in CpG
dinucleotides [27], which affects both the mutation rate of those
nucleotides and the frequency of CpGs in the genome. For this
reason, we restrict all analysis performed with SCONE to mammals.

A second key assumption of our model is uniformity of mutation

processes across the genome. Although there is a well-demonstrated
heterogeneity in mutation rates even within chromosomes [28], the
cause for this heterogeneity remains poorly understood and cannot
be adequately modeled at this point. We instead assume a genome-
wide average applies equally well in any context.

We consider only two kinds of mutations: substitutions and
insertions/deletions (indels). The former are modeled as a continu-
ous-time Markov process; the latter, comparatively rarer, are
modeled as a linear process for convenience.

Estimation of mutation rates. A number of well-known parametric
models for nucleotide substitutions exist [29]. Most of these do not
consider the effect of sequence context on mutation rate, which can
have profound effects on a site-specific measure of conservation.
However, several recent studies derived context-dependent multi-
parametric models from deep mammalian phylogenies using diverse
computational strategies [30–32].

An alternative strategy is to limit the analysis to very close
genomes, where multiple substitutions per site are extremely rare and
fully general mutation models can be derived using simple counting
methods. Limiting the analysis to very close genomes avoids the
complex problem of estimation of a very large number of parameters
which arises in maximum likelihood or Bayesian methods which use
deep phylogenies. We employed human–chimpanzee comparison to
infer mutation rates. The substitution rate between human and
chimpanzee is extremely low [33], so that the chance of observing
double substitutions in the lineage at a particular site is negligible. At
the same time, there is almost no incidence of shared polymorphism
[33,34]. In the absence of multiple substitutions, transition matrix for
nucleotide substitutions can be estimated by a simple counting
approach. The ancestral state and the directionality of substitutions
can be inferred by using baboon as an outgroup. As the divergence
time between baboon and human/chimp is much greater, the
probability of double substitutions is higher in this lineage. It is
therefore necessary to correct for the occurrence of nonparsimo-
nious situations.

To do so, we used a first-order model of dependence on
neighboring positions in order to capture all context-dependent
effects on mutation rate; a higher-order model would have been both
unnecessary (unpublished data) and more computationally intensive.
We made alignments of human, chimpanzee, and baboon sequence
taken from ENCODE regions using the multiple sequence aligner
TBA. The frequency of all trinucleotide triples within background
positions in the aligned sequences was counted (ignoring any triples
containing gaps). In order to correct for nonparsimonious situations,
trinucleotide substitution rates in the human lineage, p(A! B), were
computed in a manner similar to Jordan et al. [35].

This allows us to build a Markov transition rate matrix Q, where
Q(i,j) ¼ p(i ! j), i 6¼ j, and Qði; iÞ ¼

P
j=2i�Qði; jÞ. If we operate under

the assumption that the human lineage after divergence from chimp
is short enough that multiple mutation events are unlikely at a single
site, this transition rate matrix, if scaled to a unit time, will be
identical to the instantaneous rate matrix for the human lineage.
Under a standard continuous-time Markov model, we may compute a
transition rate matrix P for an arbitrary time t according to the
matrix exponential Pt ¼ eQt. We compute the matrix exponential
using the Padé approximation [36].

Our estimate compares well against other previous estimates of
context-dependent mutation rates [30–32]. Direct comparison shows
our matrix is extremely similar (R2¼ 0.96) to the matrix produced by
Siepel and Haussler, while a matrix produced without context
dependency, estimated via PAML [37] on the same data using the
HKY85 model [38], fares much worse (R2 ¼ 0.25).

Gap model. SCONE optionally allows inclusion of a model of
insertion/deletion mutations in assessing conservation. Indel rates
were estimated using a procedure similar to that for mutation rates.
Four classes of insertions and deletions (of size 1, 2, 3, or greater than
3) were considered. Human/chimp/baboon alignments were used to
infer the total number of insertion and deletion events of each class
in the human lineage for the entire sample (with baboon as the
outgroup to determine the ancestral state), as well as the number of
ancestral bases, Na.

The frequency of an insertion of size k in a window of size n is
ins(k)*n / Na, where ins(k) is the number of insertions of size k
observed in the sample; the probability of seeing a deletion of size k at
a single site is (k þ n � 1)*del(k) / Na, where del(k) is the number of
deletions of size k observed in the sample.

Indel events are comparatively rare, more than an order of
magnitude less frequent than substitutions (Cooper et al., 2004).
Thus, we assumed the absence of double-hit events on individual
branches of the mammalian tree. The probability of an indel event
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therefore scales linearly according to time. Although this is not ideal,
it avoids the considerable computational complications imposed by
considering convolutions of indels.

Computation of evolutionary rate. SCONE requires as input a
rooted phylogenetic tree for all species in an alignment intended to
be scored, with branch lengths denoted in substitutions per site.

The algorithm proceeds in two phases: first, it computes an
estimate of the rate of evolution of the site based on the observed
alignment columns; then it computes a p-value for the rate score. The
rate estimate is computed as follows.

Consider an alignment of N sequences and a column i of the
alignment. Let s(i,n) be the ‘‘state’’ of the n-th sequence in the i-th
column, where possible states are S ¼ fA,T,G,C,1,2,3,4g, either
nucleotide bases (A,T,G,C), or the size of an overlapping gap
(1,2,3,4þ). Then c(i,n)¼ (s(i�1,n),s(i,n),s(iþ 1,n)) describes the sequence
context of the i-th column in the n-th sequence.

To compute the rate, we begin by labeling the leaves of a
phylogenetic tree W with the sequence state c(i,n) for all n 2 N
sequences (species) in the alignment.

We define the transition probability between two states a ¼
(Ai�1,Ai,Aiþ1), b¼ (Bi�1,Bi,Biþ1) as p(a,b,t)¼ subst(a,b,t)*indel(a,b,t), where
subst(a,b,t) ¼ Pt(a,b) and indel(a,b,t) is the probability of the specific
insertion or deletion event between a and b as derived from our gap
model above (1 if we are ignoring gaps when computing rate) for time
t.

We further define a conditional transition probability between two
states a, b as:

p9ða; b; tÞ ¼ pða; b; tÞX
j2S

pða; ðBi�1; j;Biþ1Þ; tÞ
ð1Þ

or, alternatively, if W is a branch of length t in W between nodes with
states a and b, p9(W) ¼ p9(a,b,t).

Using this conditional probability, we compute the likelihood,
recursively:

Li ¼
X
a2S

pðaÞgiðr; aÞ ð2Þ

where p(a) is the probability of seeing state a and for a node n with
children n1, n2:

giðn; aÞ ¼ Giðn; a; n1; t1ÞGiðn; a; n2; t2Þ ð3Þ

Giðn; j;m; tÞ ¼

X
k2S

p9ððNi�1; j;Niþ1Þ; ðMi�1; k;Miþ1Þ; tÞgiðm; kÞ

if m is an internal node

p9ððNi�1; j;Niþ1Þ; ðMi�1;Mi;Miþ1Þ; tÞ
if m is a leaf

8>>>><
>>>>:

ð4Þ

The state (Ni�1,N,Niþ1) of node n is taken from the sequence, if n is a
leaf; if n is an internal node, the values of Ni�1 and Niþ1 are taken from
the most parsimonious labeling of the tree at positions i�1 and iþ1.
Iteration thus proceeds over all possible states only for N, while Ni�1
and Niþ1 are fixed.

L is the likelihood of the observed state under the assumption of
neutrality. We introduce the factor x to represent the rate of
evolution of the site; this represents a scaling of the entire tree, not
the individual branches of the tree. That is, in a site evolving at rate x,
all branch lengths in the given (neutral) tree are uniformly scaled by
the factor x. If x , 1, the site is evolving slower than expected by
neutrality, etc. The transition probability p9 between states a and b for
a site evolving at rate x is p9 (a,b,xt), and similarly for L, e.g.,:

LðxÞ ¼
Y
w2W

p9ðw;xtÞ ð5Þ

Note that x is independent of the mutation rate at the site.
We may take two routes from this point. The simplest is to estimate

x by finding the value that maximizes L (by, for example, golden
section search). The rate of evolution is the best possible discrim-
inator we can use to distinguish between sites. However, our ability to
accurately estimate x depends on the mutation rate and depth of the
tree at the site. For sites with very low mutation rate or very little
sequence coverage, maximum-likelihood estimates of x will be
inaccurate due to sampling errors. A Bayesian estimate of x may be
more appropriate.

A number of Bayesian estimators and choice of prior distribution

are available. SCONE allows the choice of multiple prior distribu-
tions, including a Gamma distribution and a log-normal distribution
(or an arbitrary user-specified distribution). In the analysis presented
here, rather than exploring these options exhaustively, we opted for
simplicity and selected a relatively conservative estimator, x, at the
median value of the posterior probability distribution, and a simple
prior, a uniform distribution [0,1].

SCONE allows either the Bayes estimate of x or the maximum-
likelihood estimate of x to be reported. This rate estimate is called
the ‘‘SCONE score’’ for the site.

Computation of p-value. Exact computation of a p-value for the
above rate estimate is theoretically possible; however, enumerating
across the space of all possible leaf states increases in computational
cost exponentially as the number of species in the tree grows, and is
usually prohibitively expensive. This computation is also apparently
intractable to dynamic programming methods.

To avoid such costs, we approximate p-values via Monte Carlo
simulation, which allows an arbitrary degree of precision. In practice,
we usually perform 104 iterations. For present purposes, this level of
error is sufficient.

In each iteration, we perform a forward simulation of neutral
evolution at a site. We first label the root of the phylogenetic tree
with a random state a ¼ (i,j,k), i,j,k 2 fA,T,G,Cg. Next, each daughter
node b is labeled by random sampling according to the transition
probability p(a,b,t), where t is the length of the intervening branch.
This process is repeated until the entire tree is labeled. Special
dispensations must be made for insertions, which propagate toward
the root of the tree, symbolically. Therefore, insertion events are
computed independently after the initial labeling, then propagated
along the tree. Subsequently, the rate estimate is computed for the
given labeling of the tree.

Sufficient iteration allows us to determine the approximate shape
of the distribution of rates for the given phylogenetic tree. We may
then approximate a p-value for a given rate estimate as the fraction of
rates in the Monte Carlo sample that exceed the given rate. Iteration
is performed once for each tree topology encountered—the resulting
distribution is then memorized and used to compute p-values for
subsequent positions with the same topology.

False discovery rate. We estimate the false discovery rate for a
particular p-value threshold p as follows.

Under a simple model of evolution, we assume that some fraction
N of all sites under consideration are evolving neutrally, while the
remainder 1�N are functional. Furthermore, some fraction C of all
sites will be scored by SCONE with a p-value below p. Because SCONE
scores are uniformly distributed in neutral sites, the fraction of
neutral positions with a p-value below p will be simply p. The fraction
of functional positions with a p-value below p is the unknown true-
positive rate t. Therefore C ¼ pNþ t(1�N). And N ¼ (C�t)/(p�t).

We may observe some further constraints. If C , p, then N . 1, and
so C � p. Also, if t , C, then N , 0; therefore t � C. Under these
constraints, the false discovery rate pN/C has a maximum when t¼ 1.
To estimate the minimal proportion of functional positions, we may
conservatively assume that t ¼ 1. The false discovery rate is thus
conservatively given by:

FDR ¼ pðC � 1Þ=ðCðp� 1ÞÞ ð6Þ

where p and C are known quantities. From this we may estimate both
the false discovery rate and the proportion of functional sites in a
genomic region.

Missing information. In any multiple sequence alignment of a
given syntenic region, some species may show incomplete coverage,
whether due to incomplete sequencing, alignment failure due to
divergence, or differences in the evolutionary history of the site. We
deal with missing information in several ways. If sequence informa-
tion from certain species is missing from the alignment for whatever
reason at a given site, then those species are pruned from the
phylogenetic tree and SCONE scores are computed using the pruned
tree for the site. If the tree has an empty root (that is, the site
represents a recent insertion in the lineage of the reference
sequence), scores are computed using the subset of the tree
containing the insertion (as it makes little sense to track the
evolution of a nonexistent site in the full tree).

Mutation rate heterogeneity. A major potential source of inaccur-
acies in the SCONE model is variation in mutation rate. Hetero-
geneity in mutation rate is well-documented [39] and is believed to
vary at a scale somewhere between 1 Mb and 15 Mb [28]. As neutral
divergence depends only on mutation rate [29], such heterogeneities
are a potential source of model failure. Regions with lower mutation
rate will tend to have an excess of apparently conserved positions,
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while regions with higher mutation rate will be depleted in conserved
positions.

We quantified the deviation in SCONE p-value distributions for
each sequence region as the mean p-value for that region (the
expected mean for a [0,1] uniform distribution is exactly 0.5). We
estimated mutation rate in non-CpG neutral positions for each
region by counting the number of substitutions or indels per site
between human and chimpanzee. According to these simple
measures, deviation and mutation rate are significantly correlated
(Figure S1C, R2¼ 0.26). Some fraction of the deviation of SCONE p-
value distributions from uniform expectation may thus be explained
as the result of mutation rate variation between genomic regions. It is
possible to partially correct for mutation rate effects simply by
scaling the length of the phylogenetic tree according to local rate
variation. Estimates of local mutation rates should be made using
nucleotide divergence, which may lead to artificial correlations
between mutation rate and sequence conservation, due to the
influence of purifying selection on divergence rates. Though this
correlation may be mitigated by making mutation rate estimates
based on putatively neutrally evolving regions over a megabase scale,
such estimates would require the input of external genomic
annotations into SCONE. These corrections may be externally
applied as seen fit; we have elected to avoid such heuristic corrections
within our model. Future developments in the understanding of the
causes of mutation rate heterogeneity will hopefully allow the
construction of more precise mutation models.

Comparison against existing scores. A number of methods already
exist that make use of multiple sequence alignments to score
conservation, including several single-position scores [11,13,14].
SCONE is similar to previous single-position scores, in that it relies
on a given phylogenetic tree and compares expected versus observed
rates of evolution. Like GERP [11] and the parsimony-based p-value
score available as part of the FootPrinter software package[13] (and
unlike the phylogenetic shadowing method of Boffelli et al.), SCONE
has no model for functional sequences, and instead is based on a null
model of neutrality. Although SCONE may be run using the simple
parsimonious substitution-counting method employed by Margulies
et al., its intended mode relies on estimation of the rate of evolution
of a site. SCONE differs from GERP and phylogenetic shadowing in
that it computes a p-value for each position, in addition to making an
estimate of the rate of evolution of the site. SCONE is the only
method of scoring-sequence conservation that makes use of a
context-dependent model of mutation.

We compared SCONE against several scores that were employed in
generating the ENCODE MCS elements set (viz., phastCons [10],
BinCons, and GERP). BinCons is a truly regional measure of sequence
conservation, i.e., it scores conservation of sequence regions rather
than individual nucleotides. PhastCons assigns scores in the form of
Bayesian posterior probabilities to individual positions. However,
these scores depend on the overall level of regional conservation.
GERP scores conservation of individual nucleotide positions inde-
pendently. We examined the utility of various conservation metrics in
distinguishing between functional and neutral positions. We em-
ployed nondegenerate coding positions as the best available model of
functional positions (although we are more broadly interested in
applying SCONE to analysis of noncoding sites). Figure S2 represents
ROC curves for all scores in terms of their ability to discriminate
nondegenerate positions from ancestral repeat positions (Figure S2A)
or 4-fold degenerate positions (Figure S2B).

From the ROC curves for each conservation score (Figure S2A), it
is evident that regional measures of conservation, such as phastCons
or BinCons, are able to return a more efficient partition of functional
and nonfunctional sites than position-specific measures (GERP and
SCONE), as regional scores rely on the interdependence of
conservation amongst neighboring positions in functional elements.
However, a similar comparison between positions showing heteroge-
neous conservation, using 4-fold degenerate coding positions as the
‘‘neutral’’ dataset (Figure S2B), paints a very different picture.
Region-based conservation scores are less suited to distinguishing
between contiguous conserved and nonconserved positions.

In comparing position-specific scores, SCONE is much more
efficient at distinguishing nondegenerate coding and AR positions.
This suggests that the context-dependent model employed by SCONE
improves the identification of conserved positions. However, GERP
more successfully discriminates nondegenerate coding positions from
4-fold degenerate coding positions. The difference between GERP
and SCONE in this test is solely due to fully conserved positions and
can be attributed to SCONE’s context-dependent matrix; running
SCONE with the Kimura two-parameter model recapitulates GERP’s
behavior. This discrepancy is unlikely to be explained by a difference

in mutation rate patterns between synonymous and noncoding
positions. Raw mutation rates and context-dependent effects (most
notably CpG effect) are similar between coding and noncoding
regions [40]. Thus, the most likely explanation is the well-documented
effect of natural selection in favor of C and G in degenerate positions
[41,42]. The top 1% of highly constrained sites according to SCONE
are fully conserved positions within CpG dinucleotides, or positions
within CpG di-nucleotides containing only a single substitution. The
mutation rate for CpG dinucleotides is greatly elevated, and coding
sequences are no exception. Such a high fraction of conserved CpG
positions is extremely unexpected by chance and suggests they are
maintained by selection. Another observation suggesting that
conservation of these positions is due to selection is the clustering
of these highly conserved 4-fold degenerate C and G nucleotides
along the sequence. In 55% of cases, a 4-fold degenerate position
neighboring a highly constrained 4-fold degenerate position is also
conserved (SCONE p-value , 0.05).

Scoring in ENCODE regions. For the purposes of the analysis
performed in this paper, SCONE scores were generated using
Bayesian estimates of rate based on the most parsimonious labeling
of the tree and including indels in the model. The phylogenetic tree
was provided by the ENCODE MSA group. Human sequence was
excluded from score generation; since SNP positions may appear in
human consensus sequence and thus be counted as substitutions,
significant artificial correlations between allele frequency and
conservation may result from the inclusion of human sequence.

Conserved elements. Conserved elements are defined according to
an additive score. For a given confidence threshold T and a series of
bases numbered 1..N:

Sð1;NÞ ¼
XN
i¼1
�lnðXiÞ þ lnðTÞ ð7Þ

where Xi is the SCONE score at position i. Here T represents the
threshold of conservation for individual positions; relaxing this
threshold results in larger contiguous elements being defined as
conserved. A conserved element represents an optimally bounded
region of sequence, for which the sum S cannot be increased by
extension in either direction, which may be identified by an efficient
linear search. We begin with starting position j ¼ 1 and compute
S(j,jþk) for k¼ j..N. Then k0 is the first value of k . j where S(j,jþk) , 0,
and kmax ¼ argmaxk2½1;k0 � Sðj; j þ kÞ. For this interval, (j,kmax) are the
optimal bounds of a conserved element, with score S(j,jþkmax). We
define a new starting position j¼ kmaxþ1 and continue iterating until
we walk off the end of the sequence.

Datasets. Although there is currently no well-accepted annotation
of strictly neutral regions in the human genome, and indeed each
passing day seems to further whittle down those portions of the
genome believed to be neutral, we made a best guess by excluding any
features annotated as functional. A number of studies have employed
mammalian ancestral repeats [13,18] as a neutral standard. These
regions comprise repetitive elements that have been retained since
the mammalian ancestor. We used these as our neutral standard and
additionally excluded all sites falling within 50 bp of exon
boundaries, regulatory regions identified by quantitative chromatin
profiling [18], and CpG islands. This was the ‘‘neutral’’ set employed
in all of our analysis.

We restricted ourselves to mammalian species in all our
conservation analysis (excluding humans), which left 22 species in
the ENCODE alignments, viz.: armadillo, baboon, chimp, colobus
monkey, cow, dog, dusky titi, elephant, galago, hedgehog, human,
macaque, marmoset, oppossum, mouse, mouse lemur, owl monkey,
platypus, rabbit, rat, bat, shrew, and tenrec.

Supporting Information

Figure S1. Properties of SCONE p-Values
Found at doi:10.1371/journal.pcbi.0030254.sg001 (505 KB PDF).

Figure S2. Comparison with Existing Methods

Found at doi:10.1371/journal.pcbi.0030254.sg002 (503 KB PDF).
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