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The chemotaxis system in the bacterium Escherichia coli is remarkably sensitive to small relative changes in the
concentrations of multiple chemical signals over a broad range of ambient concentrations. Interactions among
receptors are crucial to this sensitivity as is precise adaptation, the return of chemoreceptor activity to prestimulus
levels in a constant chemoeffector environment. Precise adaptation relies on methylation and demethylation of
chemoreceptors by the enzymes CheR and CheB, respectively. Experiments indicate that when transiently bound to
one receptor, these enzymes act on small assistance neighborhoods (AN) of five to seven receptor homodimers. In this
paper, we model a strongly coupled complex of receptors including dynamic CheR and CheB acting on ANs. The model
yields sensitive response and precise adaptation over several orders of magnitude of attractant concentrations and
accounts for different responses to aspartate and serine. Within the model, we explore how the precision of adaptation
is limited by small AN size as well as by CheR and CheB kinetics (including dwell times, saturation, and kinetic
differences among modification sites) and how these kinetics contribute to noise in complex activity. The robustness of
our dynamic model for precise adaptation is demonstrated by randomly varying biochemical parameters.
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Introduction

Through the process of chemotaxis, the bacterium Escher-
ichia coli swims up the concentration gradients of attractants
(nutrients) and down the concentration gradients of repel-
lents. E. coli moves via the rotation of multiple flagella. When
the flagella rotate counterclockwise, they bundle and propel
the bacterium forward. Rotation in a clockwise direction
causes the flagella to fly apart, and the organism tumbles to
change direction. Swimming up a gradient of attractant
causes a decrease in the probability of tumbling, whereas
swimming up a gradient of chemorepellent causes an increase
in the probability of tumbling. The result is that E. coli
performs a biased random walk toward chemoattractants and
away from chemorepellents [1].

The signaling pathway that governs E. coli chemotaxis is
well characterized [2–4]. Out of five different membrane-
bound chemotaxis receptors, Tar and Tsr are expressed at
high levels, whereas Tap, Trg, and Aer are expressed at lower
levels. The receptors form homodimers that can each bind
one molecule of ligand [5]. The homodimers in turn form
trimers of dimers, and associate with CheW and CheA. CheW
is a linker protein, and CheA is a histidine kinase [6,7].
Receptor signaling activates CheA autophosphorylation, and
the phosphoryl group is transferred to the response
regulator, CheY. Phosphorylated CheY diffuses and binds to
the flagellar motors, favoring clockwise rotation and tum-
bling. CheY is dephosphorylated by the phosphatase CheZ.

E. coli are able to react to small relative changes in
concentration over a range of several orders of magnitude.
In experiments done by Mao et al. [8], bacteria responded to
changes in concentration from 10 mM to as low as 3.2 nM of
the attractant aspartate. Two properties of the network that
underlie the broad range of responsiveness are interactions
among receptors and precise adaptation [9]. In vivo fluo-

rescence resonance energy transfer (FRET) measurements
[10,11] suggest that signaling is mediated by strongly coupled
complexes of 10–20 receptor homodimers that are all active
or inactive together. FRET also reveals that levels of
phosphorylated CheY adapt precisely following a transient
response to steps of chemoeffector concentration. Precise
adaptation occurs though the methylation by CheR and
demethylation by CheB of eight sites on each homodimer
receptor [12,13]. Methylation at each site increases the
activity level of receptors, whereas demethylation decreases
activity. Each Tar or Tsr receptor has a tether at its C
terminus, with a pentapeptide site that can bind one CheR or
CheB [14]. Experiments indicate that when transiently bound
to one receptor, each CheR or CheB can act on five to seven
adjacent receptor homodimers, defining an ‘‘assistance
neighborhood’’ (AN) [15].
The dynamics of receptor modification in complexes is not

well understood. A two-state single-receptor model was
proposed by Barkai and Leibler in which the modification
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activities of CheR and CheB depend only on receptor activity,
not ligand concentration or methylation level [16]. This
simple model naturally leads to precise adaptation, but does
not include interactions among receptors. More recent
approaches have incorporated receptor interactions using a
Monod–Wyman–Changeux (MWC) model [17] in which a
complex of receptors is either active (on) or inactive (off) as a
whole [11,18–20]. The free-energy difference between the on
and off states of a complex dictates the probability of its
being in the active state. To preserve precise adaptation
within the MWC model, the Barka–Leibler (BL) model was
extended [18,19] to include the action of CheR/CheB on ANs
of receptors. Static nonoverlapping ANs of size 6 were
utilized. Here, we build on this earlier model by incorporat-
ing the binding and unbinding of CheR and CheB, creating
dynamic ANs. This extension allows us to consider limits to
precise adaptation from small AN size as well as from CheR
and CheB kinetics, including dwell times, saturation, and
kinetic differences among modification sites.

Models for the E. coli chemotaxis network are complex and
depend on numerous parameters, bringing into question how
well the essential property of precise adaptation is preserved
when parameters are altered. Barkai and Leibler showed that
their simple two-state single-receptor model of the chemo-
taxis network was robust to parameter variation [16]. We find
a similar robustness of our dynamic AN model.

Model

Complex Activity
In this paper, we explore a MWC model of mixed and

strongly coupled Tar and Tsr chemoreceptor homodimers.
Within the MWC model, a complex of receptors is either on
or off as a whole (Figure 1). The average complex activity is
the probability that the complex is in the on state and is
determined by the free-energy difference between the on and
off states [19]. Here, the MWC model is used to calculate the
thermal equilibrium complex activity from the instantaneous
attractant concentration and receptor methylation state.

We assume that each receptor homodimer is a two-state
system, being either on or off. Each receptor homodimer can
bind a ligand molecule in either state, albeit with different
affinities. Therefore, the four possible configurations for each
homodimer and their free energies are (1) on with no ligand
bound, Eon

rðmÞ, (2) on with ligand bound, Eon
rðmÞ � logð½L�=Kon

r Þ,
(3) off with no ligand bound, Eoff

rðmÞ, and (4) off with ligand
bound, Eoff

rðmÞ � logð½L�=Koff
r Þ. Here Kon

r and Koff
r are the

binding constants in the on and off states for a specific type
of receptor r, and m is the methylation level (m¼ 0,...,8). Based
on experimental data, these binding constants are assumed to
be independent of ligand concentration or methylation level
[21–23]. For the two on states, the sum of the equilibrium
Boltzmann factors is

exp½� Eon
rðmÞ�þexp � Eon

rðmÞþ log
½L�
Kon

r

� �
¼ exp � Eon

rðmÞþ log 1þ ½L�
Kon

r

� �� �
;

therefore, the combined free energy of the two on states is
f onrðmÞ ¼ Eon

rðmÞ � log 1þ ½L�
Kon
r

� �
. Similarly, the combined free

energy of the two off states is f offrðmÞ ¼ Eoff
rðmÞ � log 1þ ½L�

Koff
r

� �
.

All energy units are expressed in units of the thermal energy,
kBT. Since binding of attractant favors the off state, Kon .

Koff. The opposite applies to repellents: Kon , Koff.
Adaptation to attractant occurs through methylation,

which favors the on state. Therefore, the offset energy
erðmÞ ¼ Eon

rðmÞ � Eoff
rðmÞ decreases as m increases. The free-energy

difference between the on and off states of a single receptor is

frðmÞ ¼ f onrðmÞ � f offrðmÞ ¼ erðmÞ þ log
1þ ½L�

Koff
r

1þ ½L�
Kon
r

0
@

1
A: ð1Þ

The free-energy difference F of a complex of receptors is
the summation of the individual fr(m) of all of the receptors in
the complex,

F ¼
Xn
i¼1

friðmiÞ: ð2Þ

The average activity A of the complex of receptors is its
probability of being in the on state and is given according to
equilibrium statistical mechanics by

A ¼ 1
1þ eF

: ð3Þ

Receptor Modification by CheR and CheB
Within our model, receptors dynamically bind and unbind

the adaptation enzymes CheR and CheB (Figure 1A). We
assume that a receptor-bound CheR only methylates recep-
tors when the complex is off, whereas a receptor-bound CheB
only demethylates receptors when the complex is on (Figure
1B). For precise adaptation to occur, the rates of methylation
and demethylation by CheR and CheB must depend only on
the activity of the complex A. We assumed each bound CheR
adds methyl groups at a rate kR(1� A), and each bound CheB
protein removes methyl groups at a rate kBA. In most
simulations, we assumed saturated kinetics for CheR and
CheB. Specifically, we assumed each receptor-bound CheR or
CheB acts on available sites in the AN with equal probability,
independent of the number of available modification sites.
However, we also explored the effects of nonsaturated
kinetics by introducing a factor N/(N þ Msat) into the
methylation/demethylation rates, where N is the total number
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Author Summary

Bacteria swim in relatively straight lines and change directions
through tumbling. In the process of chemotaxis, a network of
receptors and other proteins controls the tumbling frequency to
direct an otherwise random walk toward nutrients and away from
repellents. Receptor clustering and adaptation to persistent stimuli
through covalent modification allow chemotaxis to be sensitive over
a large range of ambient concentrations. The individual components
of the chemotaxis network are well characterized, and signaling
measurements by fluorescence microscopy quantify the network’s
response, making the system well suited for modeling and analysis.
In this paper, we expand upon a previous model based on
experiments indicating that the covalent modifications required
for adaptation occur through the action of enzymes on groups of
neighboring receptors, referred to as assistance neighborhoods.
Simulations show that our proposed molecular model of a strongly
coupled complex of receptors produces accurate responses to
different stimuli and is robust to parameter variation. Within this
model, the correct adaptation response is limited by small
assistance-neighborhood size as well as enzyme kinetics. We also
explore how these kinetics contribute to noise in the chemotactic
response.
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of available sites for methylation/demethylation and Msat is a
constant. Smaller values of Msat mean more nearly saturated
kinetics, with full saturation corresponding toMsat¼0. For all
of our simulations, the methylation/demethylation rate is zero
if there are no available modification sites (N ¼ 0).

Unlike the previous AN model [18,19], we include
dynamical CheR/CheB binding and unbinding to receptors.
Free receptors bind CheR/CheB molecules at a rate cbindR=B , and
receptor-bound CheR/CheB molecules unbind at a rate
cunbindR=B . In addition, each receptor can bind at most one
CheR or one CheB. At steady state, this gives for the average
proportion of receptors bound by CheR (with a similar
expression for CheB):

hCheRi ¼ cbindR =cunbindR

1þ cbindR =cunbindR þ cbindB =cunbindB
: ð4Þ

The CheR/CheB binding rates cbindR=B are assumed to increase
linearly with the concentration of free CheR/CheB, whereas
the CheR/CheB unbinding rates cunbindR=B are assumed to be
independent of concentration. As the concentration of CheR,
and therefore cbindR , rises, the proportion of CheR-bound
receptors hCheRi also rises. Since each receptor can bind at
most one CheR or one CheB, the proportion of CheR-bound
receptors hCheRi decreases with an increase in the CheB
binding rate cbindB . The CheR/CheB unbinding rates also
define an average dwell time each CheR or CheB is bound to a
receptor to be 1=cunbindR=B .

A fixed hexagonal arrangement of 19-receptor homo-
dimers (Figure 1A) was used for every simulation. For
simplicity, from this point, we refer to each homodimer as
a receptor. The ANs consist of a receptor and its nearest
neighbors. This creates 19 possible ANs, each centered on one
receptor: seven ANs of size 7, six ANs of size 5, and six ANs of
size 4. The average AN size is 5.4 receptors. Six receptors were
Tar, and 13 receptors were Tsr, consistent with the wild-type
ratio [24]. We also explored the effect of AN size through the
use of size-one AN complexes and half AN complexes. For

size-one AN clusters, each CheR or CheB can only modify the
bound receptor. For half AN complexes, we randomly chose
half of each receptor’s nearest neighbors to be in the AN and
used the same configuration for all simulations. For the six
receptors with three nearest neighbors, three have half ANs
including two adjacent neighbors, and the other three have
half ANs including only one adjacent neighbor.

Mean Field Theory
By considering the average net methylation rate of a

complex, we derived a simple mean field theory for complex
activity. The average methylation rate of a complex is the rate
of methylation by a single CheR times the number of bound
CheR with available methylation sites. Similarly, the average
demethylation rate of the complex is the rate of demethyla-
tion by a single CheB times the number of bound CheB with
available demethylation sites. Therefore, the average net
methylation rate for a single receptor is

dhmi
dt
¼ kRð1� AÞhCheRið1� Pmax

AN Þ � kBAhCheBið1� P0
ANÞ;

ð5Þ

where Pmax
AN and P0

AN are the average proportions of fully
methylated and fully demethylated ANs, respectively. The
factors 1� Pmax

AN and 1� P0
AN account for the fact that CheR

cannot methylate an already fully methylated AN, and CheB
cannot demethylate an already fully demethylated AN. The
condition that the average net methylation rate is zero
(dhmi=dt ¼ 0) determines the average steady-state activity,

A ¼ 1þ kBhCheBið1� P0
ANÞ

kRhCheRið1� Pmax
AN Þ

� ��1
: ð6Þ

As long as Pmax
AN ¼ P0

AN ¼ 0, the activity will always adapt
precisely to

A� ¼ 1þ kBhCheBi
kRhCheRi

� ��1
; ð7Þ

Figure 1. Two-State Receptor Complex and Precise-Adaptation Model

(A) Top view of the hexagonal arrangement of the 19-receptor homodimer used in our simulations. Each receptor can bind to either CheR or CheB. Each
bound CheR or CheB can then act on an ‘‘assistance neighborhood’’ of adjacent receptors (dashed line) through methylation (CheR) or demethylation
(CheB).
(B) Side view of receptor complex in the on state (top) and off state (bottom) with, respectively, active and inactive receptor-bound kinases CheA. Active
CheA kinases autophosphorylate to CheA-P. In our adaptation model, CheB only demethylates receptors when the complex is in the on state (top), and
CheR only methylates receptors when the complex is in the off state (bottom).
doi:10.1371/journal.pcbi.0040001.g001
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which is independent of ligand concentration or methylation
level, since hCheRi and hCheBi depend only on the concen-
trations and binding rates of CheR and CheB.

Fluctuations in methylation and demethylation will lead to
finite values of Pmax

AN and P0
AN . However, for large enough ANs,

the probability that a neighborhood will become fully
methylated or fully demethylated by chance will be very
small (as long as the average receptor methylation level is not
close to hmi ¼ 8 or hmi ¼ 0), so Pmax

AN ¼ P0
AN ¼ 0 will be a good

approximation. Therefore, we expect the activity in large-AN
models to adapt to A* over a broad range of ligand
concentrations.

As the average receptor-methylation level reaches hmi ¼ 8,
the methylation level cannot increase to compensate for the
increased free-energy difference due to attractant binding.
Therefore, activity drops to zero beyond the limiting ligand
concentration at which receptors become fully methylated.
At full methylation of the complex,

Fm¼8 ¼ nsfsð8Þ þ nafað8Þ

¼ ns esð8Þ þ log
1þ ½L�

Koff
s

1þ ½L�
Kon
s

0
@

1
A

2
4

3
5þ na esð8Þ þ log

1þ ½L�
Koff
a

1þ ½L�
Kon
a

0
@

1
A

2
4

3
5;

ð8Þ

where ns is the number of Tsr receptors in the complex and na
is the number of Tar receptors. Therefore, failure of precise
adaptation begins near the ligand concentration [L] for which
Fm¼8 ¼ F*, i.e., the value of F at precise adaptation. Further
increase in attractant concentration causes a rapid decay in
activity:

A ¼ 1þ exp½nsesð8Þþ naeað8Þ�
1þ ½L�

Koff
s

1þ ½L�
Kon
s

0
@

1
A
ns

1þ ½L�
Koff
a

1þ ½L�
Kon
a

0
@

1
A
na2

4
3
5
�1

:

Analytical Expression for Noise
Here, we derive an analytical expression for the fluctua-

tions of complex activity due to discrete methylation and
demethylation events by receptor-bound CheR and CheB.
First, we calculate the variance of the total complex
methylation level within the Langevin approximation [25].
If the free-energy difference between the active and inactive
state of a receptor depends linearly on the methylation level
m, then for a single receptor

frðmÞ ¼ e0 � mdeþ log
1þ ½L�

Koff
r

1þ ½L�
Kon
r

0
@

1
A; ð9Þ

and for a complex of ns Tsr receptors and na Tar receptors
(with total methylation level M),

F ¼ ðns þ naÞe0 �Mdeþ nslog
1þ ½L�

Koff
s

1þ ½L�
Kon
s

0
@

1
Aþ nalog

1þ ½L�
Koff
a

1þ ½L�
Kon
a

0
@

1
A:
ð10Þ

Since CheR/CheB methylation/demethylation rates depend
on complex activity, fluctuations in the free-energy differ-
ence F translate into fluctuations in complex activity A.
Linearization of Equation 5 with Pmax

AN ¼ P0
AN ¼ 0 yields for

d _M,

d _M ¼ @
_M

@A
dAþ noise ¼ � @A

@M
ðNRkR þ NBkBÞdM

þ
XNR

i¼1
gRðiÞ þ

XNB

i¼1
gBðiÞ;

ð11Þ

where NR/NB are the number of bound CheR/CheB enzymes,
gR(i)/B(i) are independent Langevin noise terms for each bound
CheR/CheB, and @A

@M ¼ @A
@F

@F
@M ¼ Að1� AÞde. After a Fourier

transform and integration of the power spectrum, we obtain
(with h~g2

Ri ¼ single CheR methylation rate ¼ kRð1� hAiÞ and
h~g2

Bi ¼ single CheB demethylation rate¼ kBhAi)

hdM2i ¼ NRh~g2
Ri þ NBh~g2

Bi
2dehAið1� hAiÞ½NRkR þ NBkB�

¼ 1
de
: ð12Þ

The variance in methylation level depends only (inversely)
on de, the step in free-energy difference per added methyl
group. The variance in activity is therefore

hdA2i ¼ @A
@M

� �2

hdM2i ¼ de½hAið1� hAiÞ�2: ð13Þ

Results

Figure 2 shows simulated response curves of complexes of
19 chemoreceptor dimers to step increases in concentration
of alpha-methyl aspartate (MeAsp), an attractant. The results
shown include the dynamics of CheR and CheB (see Model)
and are similar to those obtained with static ANs [18]. Precise
adaptation occurs over four orders of magnitude of MeAsp
concentration, with methylation levels increasing to com-
pensate for drops in activity due to increases in attractant
concentration.
In Figure 2, the Tar-only complexes exemplify two differ-

ent limits of precise adaptation at high attractant concen-
trations, as in the static AN model [18]. For the Tar-only
complex with higher Koff

a ¼ 0:06 mM (dot-dashed curve), the
activity continues to adapt precisely, but the activity stops
responding to increases of MeAsp. In this case, the receptors
become saturated, and further increases in MeAsp do not
produce changes in the free-energy difference between the
on and off states of the complex. The average methylation of
the complex reaches a constant value, below full methylation
(Figure 2B). In contrast, for the complex with lower
Koff

a ¼ 0:02 mM (dashed curve), the activity approaches zero
at high concentrations. In this case, full methylation occurs
before saturation of the receptors with MeAsp. When MeAsp
concentrations increase further, the resulting increase in the
free-energy difference between the on and off state of the
complex cannot be compensated by additional methylation,
so the activity drops without recovering.
Compared to the Tar-only complexes, the heterogeneous

receptor complex with six Tar and 13 Tsr receptors (solid
curve) continues to respond to MeAsp increases and to adapt
precisely over an extended range. The Tar receptors in this
complex have Koff

a ¼ 0:02 mM, as in the second case
considered above (dashed curve); these six Tar receptors
allow for a sensitive response at low concentrations of MeAsp.
In contrast, the 13 Tsr receptors in the complex have low
affinity for MeAsp. Therefore, at low MeAsp concentrations
the Tsr receptors act as extra methylation sites, increasing the
range of precise adaptation. As MeAsp concentrations
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increase, the Tar receptors become fully saturated, but the
Tsr receptors begin to bind MeAsp. This increases the upper
limit of response to well over 100 mM MeAsp.

For homogeneous complexes, the limit of adaptation at
high attractant concentration depends on which occurs first,
saturation of receptors by attractant or full methylation of
receptors. Which of these occurs first depends on the ratio
Kon

r =K
off
r . The crossover ratio between the two limits of

adaptation can be estimated in mean field theory (Equation
2). At high ligand concentrations:

F ’ nfrðhmiÞ ¼ nerðhmiÞ þ nlog
Kon

r

Koff
r
; ð14Þ

where n is the number of receptors in the complex. Loss of
activity occurs if the offset energy at full methylation er(8)
cannot compensate for the free-energy difference per
receptor due to saturating attractant, logðKon

r =K
off
r Þ. There-

fore, for F* denoting the precisely adapted free-energy
difference, if

F�, nerð8Þ þ nlog
Kon

r

Koff
r
; ð15Þ

or equivalently, if Kon
r =K

off
r .expðF�=n� erð8ÞÞ, loss of activity

will occur at high concentrations of attractant (dashed curve
in Figure 2A). In contrast, if Kon

r =K
off
r , expðF�=n� erð8ÞÞ, loss

of response will occur at high concentrations of attractant
(dot-dashed curve in Figure 2A). For fixed er(m), F*, and
complex size n, the limit of adaptation depends only on the

ratio Kon
r =K

off
r , not on the individual magnitudes of Kon

r and
Koff

r . For our simulation, er(8)¼�30, n¼ 19, and A*¼ 1/3, so F*

¼ log2 ¼ 0.693. Therefore, the expected crossover ratio is
exp(F*/n � er(8)) ¼ 20.8. For Tar-only complexes with
Koff

a ¼ 0:02 mM, Kon
a =K

off
a ¼ 25, so adaptation fails through

loss of activity as observed in Figure 2A (dashed curve). For
Tar-only complexes with Koff

a ¼ 0:06 mM, Kon
a =K

off
a ¼ 8:3, and

adaptation fails through loss of response, as also observed in
Figure 2A (dot-dashed curve).
Experiments indicate that the adapted tumbling rate, and

therefore, also the adapted receptor activity, increases with
the concentration of CheR [26]. At low levels of CheR, the
binding rate cbindR is proportional to the concentration of
CheR. In Figure 3, we show the adapted activity as a function
of the CheR binding rate cbindR . Adapted activity is the average
activity calculated according to Equation 3, after allowing the
complex to reach equilibrium (see Methods). As the binding
rate of CheR increases, the proportion of CheR-bound
receptors hCheRi also increases (Figure 3, inset). The increase
in hCheRi causes the rate of methylation for the whole
complex to rise, therefore increasing activity. The complex
with full ANs (including all nearest neighbors) closely follows
the expected mean-field-theory result (Equation 7), whereas
the complex with ANs of size one deviates to higher activity
over a wide range of CheR binding rates. In these simulations,
no attractant is present, and therefore, the average methyl-
ation level of the receptors is low. Consequently, complete
demethylation of individual receptors is likely to occur in the

Figure 2. Averaged Response Curves for Step Increases in Attractant Concentration (0–100 mM)

A mixed receptor complex of six Tar and 13 Tsr receptors (solid curve) is compared to complexes of 19 Tar receptors with K off
a ¼ 0.06 mM (dot-dashed

curve) and K off
a ¼ 0.02 mM (dashed curve). Other parameters are given in the Model section. Simulations were averaged over 500 runs.

(A) Averaged response of complex activity A (Equation 3). Upper curves are each displaced vertically by 0.4. Inset: response curve for one simulation of a
single mixed complex. The average activity is superimposed in gray.
(B) Averaged methylation m of receptor homodimers. Insets: distribution of methylation levels at 0 mM, 1 mM, and 100 mM.
doi:10.1371/journal.pcbi.0040001.g002
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AN ¼ 1 model (P0
AN¼1 . 0), leading to missed demethylation

attempts, and therefore, to an increase in adapted activity
according to Equation 6. In effect, for the AN¼ 1 model, the
demethylation rate is lower than it ‘‘should be’’ because by
chance, some individual receptors are already fully demethy-
lated, and therefore, CheB fails to act sometimes when it
‘‘should.’’

In Figure 4, we explore precision of adaptation over a
broad range of MeAsp concentrations for several variants of
our model. In general, deviations from precise adaptation
occur if and only if the rates of methylation or demethylation
cease to depend exclusively on complex activity (Equation 6).
We find that large AN sizes, saturated kinetics of CheR/CheB,
and short CheR/CheB dwell times favor precise adaptation. In
all cases, we consider the same complex of 19 receptors
(Figure 1A) composed of six Tar receptors and 13 Tsr
receptors. For comparison, we also show the mean field
theory result (see Model).

In Figure 4A, we show the effect of AN size on precise
adaptation. Within each AN, there is a ‘‘ladder’’ of possible
methylation levels. Fluctuations cause the methylation level
to move up and down the ladder, deviating from the average.
For small ANs, the ladder is shorter, and fluctuations are
more likely to produce fully methylated or fully demethylated
neighborhoods. At low levels of MeAsp and low average
methylation, fluctuations are likely to produce fully demethy-
lated neighborhoods, lowering the rate of demethylation and
increasing activity according to Equation 6. Similarly, at high
levels of MeAsp and high average methylation, neighbor-
hoods may become fully methylated, lowering the rate of
methylation by CheR and decreasing activity.

As shown in Figure 4A, complexes with ANs of size one
have a drastically reduced precision of adaptation, but half

neighborhood complexes have a precision of adaptation close
to that of full AN complexes. Beyond a certain AN size, the
methylation ladder is already long enough to effectively
prevent fluctuations from causing full methylation or full
demethylation of neighborhoods. Therefore, increasing AN
size improves precision of adaptation only up to a point,
beyond which AN size only affects activity near the concen-
tration at which all receptors become fully methylated. For
our parameters, receptors do not become fully demethylated
even at zero attractant concentration, but full demethylation
could be induced by addition of repellent.
We also performed simulations with varying degrees of

saturation of CheR and CheB (Figure 4B). Specifically, we
introduced a factor of N/(NþMsat) into the rates of CheR and
CheB action, where N is the total number of available sites for
methylation/demethylation and Msat is a constant (see Model).
For all other simulations, CheR and CheB were assumed to
work at saturation, independent of methylation level (Msat ¼
0). IncreasingMsat makes the rate of action of CheR and CheB
more dependent on the number of available modification
sites. For finite Msat, in low concentrations of MeAsp, and
therefore, low average methylation levels, the rate of
demethylation by CheB is significantly lower than the
saturated (maximal) rate. Conversely, there are many avail-
able sites for methylation, so the rate of methylation is near
maximal. Therefore NB/(NB þ Msat) , NR/(NR þ Msat) ’ 1. A
relative decrease in the rate of demethylation by CheB
compared to the rate of methylation by CheR causes an
increase in the activity of the complex as seen below 0.1 mM
MeAsp in Figure 4B. As the average methylation level
increases with increasing MeAsp concentration, the inequal-
ity is reversed so that NR/(NR þ Msat) , NB/(NB þ Msat) ’ 1
results in a relative decrease in the rate of methylation by

Figure 3. Adapted Activity as a Function of CheR Binding Rate cbind
R

Results are shown for ANs of size one, ANs of all adjacent receptors, and the mean field theory. The other enzyme binding rates are cunbind
R ¼ cunbind

B ¼ 0:1s�1

and cbind
B ¼ 0:01s�1. Inset: hCheRi (proportion of receptors bound to CheR) as a function of CheR binding rate.

doi:10.1371/journal.pcbi.0040001.g003
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CheR compared to the rate of demethylation by CheB.
Therefore, at high MeAsp concentration, above 0.1 mM, the
adapted activity decreases below the expected value for
precise adaptation.

Within mean field theory for Msat . 0, we can approximate
the crossover concentration, i.e., the concentration of
attractant at which the activity of complexes is equal to the
expected precisely adapted activity. The crossover occurs
when the saturation factors of CheR and CheB are equal, NB/
(NB þ Msat) ¼ NR/(NR þ Msat). This occurs when the average
methylation level hmi is 4, which occurs at 0.36 mM MeAsp.
This is close to the crossover concentration observed in our
simulations (Figure 4B).

Simulations were also performed in which the average
dwell time of CheR and CheB was varied (Figure 4C). The

average dwell time is equal to 1=cunbindR=B , whereas the average
number of enzymes bound to the complex depends on the
ratios cbindR=B =c

unbind
R=B (Equation 4). Therefore, in order to

change the average dwell time while conserving the average
number of CheR and CheB enzymes bound to the complex,
we altered both cbindR=B and cunbindR=B by the same factor. In the
model, when a CheR or CheB is bound for a long time, the
enzyme catalyzes the same reaction numerous times before
unbinding. The methylation level in the neighborhood will
therefore move along the ladder in one direction, possibly
reaching the end, i.e., full methylation or full demethylation.
As for the AN¼ 1 model in Figure 4A, the result in Figure 4C
for long CheR and CheB dwell times is higher activity at low
MeAsp concentrations (where full demethylation is more

Figure 4. Precision of Adaptation

The adapted activity is shown as a function of MeAsp concentration for variants of the model.
(A) Various AN sizes (and mean field theory). For ‘‘Half AN,’’ the assistance neighbors of each receptor were chosen at random (see Model).
(B) Different saturation factors Msat, for both CheR and CheB. The rate of methylation/demethylation varies as N/(NþMsat), where N is the number of
available modification sites.
(C) Different binding/unbinding rates for2 CheR and CheB. The ratio cunbind

R=B =cbind
R=B was kept constant at 10. Inset: distribution of receptor methylation levels at

1 mM MeAsp for cunbind
R=B ¼ 1:0s�1; 0:01s�1, and 10�4 s�1 10�4 s�1.

doi:10.1371/journal.pcbi.0040001.g004
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likely) and lower activity at high MeAsp (where full
methylation is more likely).

Deviations from mean field theory occur if the average
dwell time of CheR or CheB is long enough to allow full
methylation or demethylation of neighborhoods. Below 0.001
mM MeAsp, the average adapted methylation level per
receptor homodimer is ’ 2.2. Since there are on average
5.4 receptors per AN, the average distance to the bottom of
the methylation ladder is 2.2 3 5.4 ’ 12. Therefore, precise
adaptation is expected to fail when the demethylation rate is
’12 times the CheB unbinding rate (kBA�’ 12cunbindB ). For
our parameters, A* ¼ 1/3 and kB ¼ 0.2 s�1, we expect precise
adaptation to fail for cunbindB [ 0:006 s�1. Consistent with this
calculation, our simulations show that deviations from
precise adaptation begin to occur at low MeAsp concen-
trations for cunbindR=B around 0.01 s�1.

The fact that most receptors are either fully methylated or
fully demethylated for long dwell times of CheR and CheB is
clearly shown by the distribution of methylation levels for
different average dwell times (Figure 4C, inset). As dwell time
increases, the single-peaked methylation distribution flattens
out and becomes bimodal, i.e., most receptors become fully
methylated or fully demethylated. Addition of ligand causes a
shift in the amplitudes of the two peaks, but the peak
positions, at m¼ 0 and m¼ 8, do not change. We can exploit
this fact along with mean field theory to estimate the
crossover attractant concentration where the activity of the
complex crosses A*. The average methylation (demethylation)
rate has a correction factor equal to the proportion of not
fully methylated (not fully demethylated) ANs (Equation 6).
The crossover attractant concentration will occur where
these two correction factors are equal, namely where
Pmax
AN ¼ P0

AN , which implies hmi ¼ 4. For our mean field–
adapted activity of A*¼ 1/3, and requiring hmi ¼ 4, we obtain
a crossover concentration of 30 mM MeAsp, consistent with
the simulation results shown in Figure 4C.

In all our simulations, the methylation levels of receptors
fluctuate, translating into fluctuations in complex activity.
Figure 5 shows the distribution of activities due to fluctuating
methylation levels at 0 mM, 1 mM, and 100 mM of MeAsp.
Within the MWC model, complex activity is strictly either
zero or one. However, we assume that switching between
these two states is rapid, so we consider the distribution of
thermally averaged complex activities given by Equation 3.
Even for the full AN model, for which adaptation is precise,
there is a broad range of complex activities. Note though that
for the observed variation in activity of ’50% for a single
complex and assuming ’500 independent receptor com-
plexes per cell, the resulting variation in total activity would
be only ’2.5%. As shown in Figure 5, for size-one ANs at 0
mM and 100 mM MeAsp, the activity distributions are shifted
relative to the activity distributions for full ANs because
adaptation is not precise when CheR and CheB act only on
single bound receptors (cf. Figure 4A). Also shown in Figure 5,
long dwell times of CheR and CheB cause a bimodal
distribution of complex activities, corresponding to the
bimodal distribution of receptor methylation levels (cf.
Figure 4C, inset).

Within our model, noise is caused by fluctuations in both
binding/unbinding of CheR and CheB and methylation/
demethylation by CheR/CheB. For short average dwell times,
fluctuations in the number of bound CheR and CheB enzymes

are rapidly averaged out, and the dominant source of noise is
the discrete methylation/demethylation events by receptor-
bound CheR/CheB. We have estimated the resulting variance
in complex methylation hdM2i and activity hdA2i with the
linear noise approximation (see Model and Figure 6). In this
limit, the only factor that affects the variance hdM2i is the
free-energy difference de per methyl group, with hdM2i ¼
1=de. In the opposite limit of long average dwell times,
fluctuations in the number of CheR and CheB enzymes bound
to the complex add to the variance in methylation levels and
thus activity. As seen in Figure 6A and 6C, low binding and
unbinding rates cbind=unbindR=B cause an increase in noise over the
calculated theoretical noise limit due to the discreteness of
methylation and demethylation events. Increasing complex
size can decrease the noise due to CheR and CheB binding/
unbinding, but not the noise due to CheR/CheB methylation/
demethylation. Therefore, increasing complex size only
decreases noise for long average dwell times of CheR and
CheB, but has no effect in the case of short dwell times, where
noise is near the theoretical limit (Figure 6B and 6D).
It was observed experimentally by Chalah and Weis [27]

that CheR and CheB methylate/demethylate the four differ-
ent methyl-attachment sites on each receptor monomer at
different rates. These observations suggest two possible
scenarios: either CheR and CheB have different rates of
action on different modification sites, or CheR and CheB
divide their time unequally among the sites (or some
combination of these two). To test the first scenario, we
extended our model to include variation in the rates of action
of CheR and CheB, with the results shown in Figure 7.
Specifically, we assumed that when a CheR or CheB is
tethered to a receptor, it divides its time equally among all
available modification sites in the AN. The total rate of action
by a bound CheR or CheB is therefore the average over the
rates for all available modification sites in the AN. The
catalytic rates for a methylation/demethylation reaction were
assumed to vary in the ratio 1:2:4:8 for the four different sites
[27]. We studied two cases. In the first case, the ratios of
methylation and demethylation matched for each site (i.e., for
sites 1–4, the ratios for both kB and kR were 1:2:4:8). In the
second case, the ratios for methylation and demethylation
were inverted relative to each other (i.e., for sites 1–4, the
ratios for kB are 1:2:4:8 and for kR 8:4:2:1).
As shown in Figure 7, when the ratios of methylation and

demethylation match for each site, precise adaptation is
preserved. In this case, since every site has the same ratio of
kB/kR as every other site, the average methylation levels of all
sites remain the same, as shown in the inset. The average
methylation and demethylation rates over sites is therefore
constant, independent of ligand concentration, preserving
precise adaptation. In contrast, inverted ratios of methylation
and demethylation rates among the sites fail to produce
precise adaptation. In this case, the ratio kB/kR varies among
the four methylation sites, causing varying equilibrium
methylation levels (Figure 7, inset). The sites with a low kB/
kR ratio are the first to become methylated at low concen-
trations of MeAsp, leading to low average rates of demethy-
lation compared to methylation, and therefore to high
adapted activity. As average methylation levels rise with
increasing MeAsp, these low kB/kR sites ‘‘fill up,’’ leading to
high average rates of demethylation compared to methyl-
ation, and therefore to low adapted activity.
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The second scenario suggested by the Chalah and Weis data
[27], namely different dwell times for CheR and CheB among
the modification sites, leads more robustly to precise
adaptation. As long as CheR and CheB work near saturation,
differences in dwell times between sites will not affect total
rates of methylation and demethylation, and precise adapta-
tion will be preserved, according to Equation 6. Indeed, as
shown in Figure 7, even if the relative dwell times for each site
are inverted for CheR and CheB, precise adaptation is
preserved.

Experiments by Berg and Brown [9] on wild-type E. coli
indicate that whereas adaptation to aspartate is precise over a
large concentration range, precise adaptation to serine fails
at relatively low concentrations. In Figure 8, we compare our
model to these experiments. In both cases, adaptation to
aspartate (or MeAsp) is precise over four orders of
magnitude. However, adaptation to serine fails at approx-
imately 0.1 mM. Within our model, this difference with
respect to attractants reflects the presence of more Tsr
receptors (13) in the complex than Tar receptors (six). More
Tsr receptors amplify the change in complex free energy due
to serine, which results in an increased sensitivity at low
concentrations, but also results in full methylation of the
complex and loss of activity beginning at 0.1 mM serine.

We tested robustness of our theoretical model by randomly

varying parameters as described in the Model section. The
results shown in Figure 9 demonstrate that precise adaptation
is a robust property of our model. Almost ideal adaptation
occurs for all parameter sets up to a total parameter variation
of K ’ 1018. For larger parameter variations, in the range of K
¼ 104–105, 77% of the altered models still have a precision of
adaptation within 10%. These results are similar to those
obtained from the simple single-receptor model of Barkai
and Leibler [16]. However, in one regard, our MWC model
with ANs is more robust than the single-receptor model. In
the single-receptor model, precise adaptation requires that
the activity of the receptor is zero at full demethylation and
one at full methylation. Our model has the property of
precise adaptation without this assumption.

Discussion

The chemotaxis system in the bacterium E. coli is
remarkably sensitive to small relative changes in the concen-
trations of multiple chemical signals over a broad range of
ambient concentrations. We have presented a model of
complexes of strongly coupled chemoreceptors to account
for precise adaptation, as well as other properties of the
chemotaxis network. Similarly to the BBL model of precise
adaptation for a single two-state receptor, CheR only

Figure 5. Distribution of Adapted Complex Activities (Reflecting Distribution of Complex Methylation Levels) at Different MeAsp Concentrations

The MeAsp concentrations are as follows: (A) 0 mM, (B) 1 mM, and (C) 100 mM. Distributions are shown for AN¼1 and full AN at cunbind
R=B ¼ 0:1s�1, and for

full AN at cunbind
R=B ¼ 10�4 s�1. The ratio cunbind

R=B =cbind
R=B was kept constant at 10.

doi:10.1371/journal.pcbi.0040001.g005
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methylates inactive receptors, and CheB only demethylates
active receptors [16]. A previous MWC model [18,19]
extended the BL model to fit observations of in vivo receptor
clustering [10,11] and of the action by CheR and CheB on ANs
of five to seven adjacent receptor homodimers [15]. Our
model builds upon this earlier MWC model, but includes
dynamic ANs, created by the transient binding of CheR and
CheB to tethering sequences at the C termini of receptors
[14]. The importance of tethering of enzymes has recently
attracted considerable theoretical interest [28–31]. Transient
CheR and CheB binding is of particular relevance because the
experimentally observed ratio of receptor homodimers to the
enzymes CheR and CheB is approximately 50:1 and 30:1,
respectively [4]. Therefore, receptors are not likely to be
continuously in the AN of an CheR or CheB enzyme. Here, we
have shown that a model with dynamical CheR/CheB binding
and unbinding to receptors can reproduce precise adaptation
as in the previous AN model [18]. However, CheR/CheB
dynamics can both limit precise adaptation and increase
noise in complex activity. In addition, we have expanded our
results to show robust adaptation, to explain the experimen-
tally observed difference between the responses to aspartate
and serine, and to account for the persistence of precise
adaptation despite the experimentally observed kinetic
variation among methylation sites.

Although both MWC models [11,18–20,32] and Ising-type
lattice models [33–35] have been used to represent inter-
actions among receptors, analysis of FRET data provides
evidence for strongly coupled MWC complexes [36]. Mello
and Tu [20,32] successfully fit the Sourjik and Berg FRET data
[10] using an identical MWC model to ours [18,19], but did
not include CheR/CheB kinetics. Although Mello and Tu

considered methylation-dependent ligand-binding constants
Kon/off, fitting results do not require variable Kon/off. CheR and
CheB dynamics have been explored in a mixed-receptor
Ising-type lattice model by assuming Michaelis-Menten
kinetics, with each CheR or CheB only able to methylate or
demethylate the bound receptor once before detaching
[34,35]. In principle, combining catalysis with unbinding
increases precision of adaptation by decreasing the likelihood
of fully methylating or fully demethylating a receptor, but
enzyme tethering suggests each bound enzyme may catalyze
multiple methyl transfers before unbinding.
Within our model, deviations from precise adaptation

occur only if CheR/CheB methylation/demethylation rates
become dependent on the receptor-methylation level. Small
AN size and long dwell times of CheR and CheB cause full
methylation or demethylation of neighborhoods, resulting in
methylation-dependent rates and failure of precise adapta-
tion. Although the average dwell time of CheR or CheB has
not been experimentally determined, the diffusion-limited
association rate of protein–protein interactions is on the
order of 105–107 M�1s�1 [28,37]. Multiplying by the exper-
imentally determined dissociation constant of 11 lM for
CheR [38] yields unbinding rates in the range of 1–100 s�1,
well above the CheR unbinding rate cunbindR required for
precise adaptation (Figure 4). Precise adaptation also requires
saturated enzyme kinetics, meaning that each bound CheR or
CheB acts at a rate independent of the number of available
modification sites. (Unsaturated kinetics would imply de-
creased demethylation rates at low average methylation
levels, and decreased methylation rates at high average
methylation levels.) In our model, precise adaptation is
robust to differences in dwell times of CheR or CheB on

Figure 6. Variance in Complex Methylation and Activity Levels

Curves are shown for CheR/CheB binding/unbinding rates cbind=unbind
R=B ¼ 1:0s�1; 0:1s�1, and 0.01 s�1, as well as for the theoretical limit from the linear

noise approximation (see Model).
(A,C) Variance in complex methylation level as a function of the free-energy step de per methyl group (A) and complex size (C) (see Methods).
(B, D) Variance in complex activity level as a function of de (C) and complex size (D).
doi:10.1371/journal.pcbi.0040001.g006
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different modification sites, but not, in general, to different
rates of CheR or CheB action on these sites, pointing to
different dwell times as the explanation for the site-depend-
ent methylation/demethylation rates observed by Chalah and
Weis [27].

As with the BL model for a single receptor, our model for a
receptor complex robustly yields precise adaptation over a
wide range of parameters (Figure 9). One improvement is that
our model based on ANs does not require fully methylated
receptors to be fully active, or fully demethylated receptors to
be fully inactive. Experiments indicate that adaptation time
and adapted activity level vary even among genetically
identical cells [39]. Consistent with observations by Alon et.
al. [26], our model predicts that varying CheR and/or CheB
concentrations will lead to different adapted activities
(Figure 3) while preserving precise adaptation. The robust-
ness of the essential properties of the network (e.g., sensitivity
and precise adaptation) presumably also allows for genetic
polymorphisms in the binding and reaction rates of network
proteins, making the network robust to evolutionary change.

Within our model, we assume that the rates of modification
by CheR and CheB depend directly on complex activity. In
fact for precise adaptation, only one enzyme needs to
respond directly to complex activity. This is consistent with
experiment as CheR rates are affected directly by activity [40],
whereas CheB is phosphorylated to an active form by the
receptor-regulated kinase CheA [41,42], implying a global
feedback mechanism. If, hypothetically, all feedback were
global, there would be no direct ‘‘return force’’ on the activity
of individual complexes, only an indirect return force on the
average complex activity. As a result, sensitivity would be lost
as most complexes would drift to nonresponsive methylation

levels, becoming either fully active or fully inactive. However,
within our model, precise adaptation still occurs if the CheB
feedback mechanism is disabled without destroying CheB’s
demethylating ability as long as direct feedback from
complex activity to CheR is maintained. Indeed, experiments
mutating the phosphorylation site of CheB demonstrate that
CheB phosphorylation is not required for precise adaptation
[26], but is important to keep adapted CheY-P levels in the
range of motor sensitivity [43].
Our model helps explain the advantage of multiple

methylation sites per receptor. First, the number of receptors
that a tethered CheR or CheB can modify is constrained by
the physical length of the tether. Therefore, to provide
enough steps in the ladder of methylation levels to prevent
full demethylation or full methylation of neighborhoods (and
therefore loss of precise adaptation), the number of
modification sites per receptor must be sufficiently large.
Second, if the number of methylation sites per receptor were
small, then to allow precise adaptation over a large concen-
tration range would require a large change in free energy per
methyl group. However, large free-energy steps per methyl
group increase the noise in activity (Figure 6), and prevent
complexes from operating in the regime of maximal
sensitivity.
One longstanding puzzle has been the observed difference

in E. coli’s chemotactic response to serine and aspartate [9].
Our model explains both the observed broad range of precise
adaptation to aspartate/MeAsp and the failure of adaptation
at relatively low serine concentrations (Figure 8). Based on
receptor in vivo expression levels, complexes contain more
Tsr receptors then Tar receptors, so the Tsr receptors act as
extra methylation sites and increase the range of precise

Figure 7. Precision of Adaptation for Receptors with Site-Dependent and Site-Independent Methylation/Demethylation Rates

Shown are site-dependent methylation/demethylation rates with matching ratios (kR ¼ 0.0125,0.025,0.05,0.1 s�1; kB ¼ 0.025,0.05,0.1,0.2 s�1), with
inverted ratios (kR¼ 0.0125,0.25,0.05,0.1 s�1; kB¼ 0.2,0.1,0.05, 0.025 s�1), for receptors with site-independent methylation/demethylation rates (kR¼ 0.1
s�1; kB¼ 0.2 s�1), and for receptors with site-dependent CheR dwell times in the ratio 1:2:4:8 and inverted site-dependent CheB dwell times in the ratio
8:4:2:1. Inset: average site methylation at 1 mM MeAsp for receptors with site-dependent methylation/demethylation rates for both the matching-ratio
case (filled bars) and the inverted-ratio case (open bars), and for receptors with inverted site-dependent CheR/CheB dwell times (gray bars).
doi:10.1371/journal.pcbi.0040001.g007
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adaptation to aspartate/MeAsp. As the Tar receptors become
fully saturated, the Tsr receptors bind aspartate/MeAsp,
thereby also broadening the range of response. In contrast,
the high proportion of Tsr receptors amplifies the complex
free-energy change due to serine and leads to full methylation
of receptors and, therefore, loss of activity, beginning at 0.1
mM serine. The prevalence of Tsr receptors suggests that
chemotaxis to low concentrations of serine is biologically
important.

For stimulation of low-abundance (minor) receptors, our

model predicts a limited range of response. With approx-
imately one minor receptor of each type per complex, there
is no amplification of free-energy change, so sensitivity is
limited to the off-state ligand affinity Koff

r . The range of
response is then constrained by the on-state ligand affinity
Kon

r , unless the range of response is extended though weak
binding of ligand to other receptors.
The effect of AN size may be testable experimentally

through shortening the flexible tether at the C terminus of
receptors while preserving the pentapeptide binding site for
CheR and CheB. Decreasing neighborhood size should
produce deviations from precise adaptation as the ends of
the methylation ladders for ANs are reached (Figure 4A). In
addition, the consequence of nonsaturated kinetics may be
testable through mutations in CheR/CheB that reduce their
affinities for the methyl-modification sites on receptors. Our
model predicts global failure of precise adaptation for large
deviations from fully saturated kinetics, but even small
deviations from full saturation have noticeable consequences
near full methylation (Figure 4B).
Experiments demonstrate that precise adaptation is a

robust property of the E. coli chemotaxis network [26]. The
elegant BL model exhibits robust adaptation through integral
feedback control [44], but does not include interactions
among receptors. Our model provides a molecular mecha-
nism illustrating how integral feedback control is imple-
mented in the presence of receptor clustering, and highlights
the importance of ANs to effectively increase the ladder of
methylation levels.

Methods

Model parameters. In calculating complex activity, we used the
same offset energies for both Tar and Tsr receptors: er(0)¼ 1.0; er(1)¼

Figure 8. Adapted Complex Activity versus Concentration of MeAsp (Filled Circles) or Serine (Open Circles)

The saturation factor is Msat¼ 1, and other parameters are given in the Model section. Setting Msat¼ 0 would sharpen and shift the drop in activity to
higher serine concentration [18]. Inset: experimental measurement of the fractional change in run length versus concentration of aspartate (open
circles) or serine (closed circles) [9].
doi:10.1371/journal.pcbi.0040001.g008

Figure 9. Robustness of Assistance-Neighborhood Model for Adaptation

Ratio of adapted activity at 1 mM MeAsp to adapted activity at 0 mM
MeAsp plotted as a function of total parameter variation logK ¼

P
jlogkj

(see Methods). The scatter plot shows results for 3,000 different
parameter sets.
doi:10.1371/journal.pcbi.0040001.g009
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0.5; er(2)¼0.0; er(3)¼�0.3; er(4)¼�0.6; er(5)¼�0.85; er(6)¼�1.1; er(7)¼�2.0;
and er(8)¼�3.0. Both MeAsp and serine were considered as attractants.
For MeAsp (Tar ¼ a and Tsr ¼ s): Koff

a ¼ 0:02 mM, Kon
a ¼ 0:5 mM,

Koff
s ¼ 100 mM, Kon

s ¼ 106 mM. F o r s e r i n e : Koff
a ¼ 105 mM,

Kon
a ¼ 106 mM, Koff

s ¼ 0:0025 mM, Kon
s ¼ 1:0mM. The constants

chosen for Tar-MeAsp binding and Tsr-serine binding are approx-
imately consistent with experimental data [10,45]. The high values of
Koff

a and Kon
a for serine indicate that Tar does not bind serine at the

concentrations considered (�2 M). On the other hand, Tsr binds
MeAsp at lower concentrations sinceKoff

s ¼ 100 mM. BothMeAsp and
serine are attractants, so Kon . Koff. For the demethylation rate, we
used the (rounded-off) observed value kB¼ 0.2 s�1 [46,47], and for the
methylation rate we set kR¼0.1 s�1. Since kB¼2kR, this sets an adapted
activity of 1/3, assuming that the bound levels of CheR and CheB are
the same. Unless otherwise specified, we used the same rates of
binding/unbinding for CheR and CheB: cbindR=B ¼ 0:01 s�1 and
cunbindR=B ¼ 0:1 s�1, yielding hCheRi ¼ hCheBi ¼ 0:083.

Simulation algorithm. To simulate the dynamics of an MWC
complex of receptors, we used an exact stochastic Gillespie algorithm
[48]. We assumed that the rates of ligand binding/unbinding and on/
off switching of complexes are much faster than the rates of receptor
modification and the rates of CheR/CheB binding and unbinding.
Therefore, methylation/demethylation and CheR/CheB dynamics
were modeled explicitly, whereas the average activity of the complex
was calculated using Equation 3. The Gillespie algorithm involves
three different steps for the generation of each data point. First, the
reaction that occurs is picked randomly, with weighting directly
proportional to the individual rates of each event. The possible
events are methylation, demethylation, binding of CheR or CheB, and
unbinding of CheR or CheB. A receptor cannot have both CheR and
CheB bound at the same time. Next, the site of the event is randomly
chosen. The time is then incremented by s ¼�(log r)/C, where r is a
random variable picked from a uniform distribution over [0,1], and C
is the sum of the rates of all possible events.

For each attractant concentration, simulations to determine
adapted activity and distributions (Figures 3–8) were averaged over
200 runs of 10,000 Gillespie steps, each following 10,000 steps to allow
time for equilibration.

Robustness. In order to test the robustness of our dynamical
model, we randomly varied the parameters and tested the precision
of adaptation. Altered systems were obtained by modifying eight
parameters (kR, kB, Kon

a , Koff
a , cbindR , cunbindR , cbindB , and cunbindB ) by

factors of kn¼1,...,8. Total parameter variation is expressed by
logK ¼

P8
n¼1 jlogknj. Each K was randomly chosen as K ¼ 105r,

where r is a random variable picked from a uniform distribution
over [0,1]. Values of the jlog knj were randomly chosen over [0,1], and
were then normalized to yield the correct sum for log K. The sign of
each log kn was then chosen with equal probability to be negative or
positive. These systems were then subject to a concentration change
from 0 mM of ligand to 1 mM. Precision of adaptation was calculated
by dividing the adapted activity at 1 mM by the adapted activity at 0
mM.

Noise. Simulations to test the effect of the free-energy difference
de per methyl group on the variances in methylation and activity
levels (Figure 6) were performed at 10 mM of MeAsp, with the
constant free-energy offset e0 set to yield an average adapted receptor
methylation level of hmi ¼ 4 (i.e., e0¼�1.0þ 4de). de¼ 0.5 was chosen
to approximate the free-energy difference per methyl group used in
all other simulations. For increased complex sizes, we used two or
three strongly coupled 19-receptor complexes (i.e., all receptors on or
off together) to produce complexes of size 38 or 57, respectively,
preserving the original AN pattern.

Supporting Information
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The primary protein accession numbers (in parentheses) from the
Swiss-Prot databank (http://www.ebi.ac.uk/swissprot) for the proteins
mentioned in the text are as follows: CheA E. coli CHEA_ECOLI
(P07363), CheB E. coli CHEB_ECOLI (P07330), CheR E. coli
CHER_ECOLI (P07364), CheW E. coli O157 CHEW_ECO57
(P0A966), CheY E. coli O157 CHEY_ECOLI (P0AE67), Tar E. coli
MCP2_ECOLI (P07017), and Tsr E. coli MCP1_ECOLI (P02942).
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