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Introduction

Why BioConductor? BioConductor [1] is a collection of
open source software packages designed to support the
analysis of biological data. BioConductor is written using the
programming language R, which itself provides access to a
wide range of tools for statistical analysis, data presentation,
and visualization. BioConductor has more than 200 packages
representing not only analytical tools but also data and
annotation. It has a highly active international developers’
community. For those unfamiliar with R and BioConductor,
numerous books and tutorials exist (see, for example, [2–4]),
and there are also very active e-mail mailing lists for both.

Why Exon Arrays? Recent studies have shown that
alternative splicing is prevalent—approximately 74% of all
human multi-exon genes are predicted to be alternatively
spliced (see Box 1 for an overview of the terminology),
corresponding to about 50% of all human genes [5,6].
Alternative splicing participates in many pathways and
processes; a detailed understanding of the cell must therefore
include knowledge of the roles played by alternatively spliced
genes and their products. Disruptions to the machinery of
alternative splicing have also been implicated in many
diseases, including neuropathological conditions such as
Alzheimer disease, cystic fibrosis, those involving growth and
developmental defects, and many human cancers [7,8]. A
detailed understanding of disease and disease progression
must therefore also involve an appreciation of the effects of
changes in a cell’s splicing behaviour.

From Genes to Exons. Until recently, most microarrays
considered transcription at the level of individual genes. They
were, for the majority of genes, unable to distinguish between
different isoforms, and, depending on the location of their
probes, there was also the potential to miss certain transcripts
entirely. Some groups have designed arrays to investigate
genes by using many probes placed along their length in
order to interrogate each exon separately. However, the
number of features required to do this systematically, for the
entire human genome, was prohibitively large.

Advances in array technology have made it possible to
design chips with increasingly smaller feature sizes.
Affymetrix Exon arrays, for example, use more than 6.5

million features: the previous generation of Gene-level arrays
had approximately 600,000. By removing the MM probes and
reducing the number of probes within a probeset from 11 to
4, the total probeset count has been increased to ;1.4
million, allowing probesets to be systematically placed along
the full length of each gene (see Box 2 for an overview of the
terminology; for more details on the design of the Affymetrix
platform see the ‘‘Learning Center’’ on Affymetrix’ Web site
[9] or one of the many review articles (e.g., [10])). The aim has
been to comprehensively target every known and predicted
exon in the human genome (Figure 1).
An important point to appreciate, particularly as feature

densities increase and arrays cover more and more of the
transcribed genome, is that microarrays do not actually
measure gene expression at all. Rather, they measure the
abundance of RNA fragments in solution; gene expression is
then subsequently inferred from the data.
How Reliable Are the Data? Exon arrays are very different

from the previous generation of (39IVT) arrays, such as the
HGU133plus2 chip. Many changes have been made, including
the removal of the MM probes, a reduction in the number of
PM probes in each probeset from 11 to 4, changes in array
design, and changes to the protocols used for RNA
preparation. Given the large number of changes, it is
important to assess the performance of the arrays. In [11] and
[12] (available at [9]), this was done by comparing them to
HGU133plus2 arrays, themselves extensively validated. Exon
arrays were found to produce data of similar quality to that
from the earlier arrays. A more detailed discussion of the
differences between exon and 39IVT arrays, including
approaches to Quality Control, can be found in Text S1.

A General Workflow for Exon Array Analysis

The community has converged on a relatively standard set
of approaches for analysing existing 39IVT arrays (Figure 2).
A similar approach can be applied to exon array data. In

particular, the same algorithms for analysing 39IVT arrays can
be used for Exon chips up until step 3. Novel strategies must
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be employed in the last two steps because of the need for
more complex annotation to deal with the richness of the
data produced by the arrays.

Pre-Processing Exon Array Data

Step 1: Normalization. Biological and technical variations
inject enough variability into the system for it to be
inappropriate to directly compare raw data for each
individual sample without first pre-processing (or
‘‘normalizing’’) the data in order to bring them together.
Many techniques exist, most working on the assumption that
on average, the majority of data points between samples are
unchanged. Thus, a straightforward procedure might simply
scale each array to the same mean intensity, perhaps after
removing outliers. A more invasive approach might also
require each array to have the same standard deviation, or to
have the same-shaped distributions. Normalization can be
performed on the raw feature/spot levels, or on the probeset
data after expression summary. Most recent algorithms
perform normalization first, and the same techniques that
were applied to 39IVT arrays are applicable to exon arrays
(see the supplement worked examples, Text S2).

Step 2: Expression summary. Expression summary is the
process by which the values for each individual probe in a
probeset are summarised to generate a single value for that
probeset. Again, many techniques exist, but all perform some
kind of weighted average, possibly with background
correction.

RMA. Observations about the relative utility of MM probes
led to the design of RMA [13]. Importantly, RMA doesn’t use
MM probes, making it directly applicable to exon arrays.

After normalization (by default, quantile), the data are
fitted to a global model of expression and probe affinities. For
each probeset, PMij¼ eiþ ajþ eij, where e is a chip effect and a
represents the probe affinity for the jth probe on the ith array.

The model is based on the hypothesis that the intensity
measured for a perfect match spot is dependent on three
things: the amount of material available to bind to the spot
(the chip effect, e), the ‘‘stickiness’’ of the probe (the probe
affinity, a), and a measurement error (e). RMA works by
estimating, for each probeset, values for the probe and chip
effects that would result in the pattern of PM values observed
in the data. This process of ‘‘model fitting’’ is performed
using an algorithm called median polish, a fast numeric
technique for estimating model parameters.

PLIER. PLIER, proposed by Affymetrix [14], is a similar
algorithm to RMA. It also fits a global model, but starts from a
slightly different set of assumptions. In theory, PLIER can use
MM probes; its behaviour without MM is qualitatively similar
to RMA. PLIER offers some additional parameters that may
be used to tune the model.
GeneBASE. An alternative, model-based approach

designed specifically for exon array summarization was
proposed recently in [15].
Step 2½: Filtering to remove poorly performing

probesets—Detection calls. While expression summary
algorithms generate an estimated value for the abundance of
transcript in solution, they do not provide a measure of how
reliable that figure is. Exon arrays, which do not have paired
MM probesets (and cannot use the approach of [16]), have a
separate pool of 25,000 background probes designed not to
match exactly to the transcriptome. A detection above
background (DABG) score can be calculated for each
probeset by matching PM probes to members of the
background pool with the same GC content and measuring
the relative distance between the two [17]. In [11], DABG calls
were found to be useful in removing poor performing
probesets prior to analysis.
Step 3: Identifying significant probesets and dealing with

multiple testing. Statistical tests (e.g., a t-test) are used to
assess how likely changes in differential expression are to
have occurred by chance. With a single test, a p-score of, say,
0.05, might be acceptable; there is a 5% chance of chasing
shadows. Microarrays present a challenge, because they
perform thousands (or in the case of exon arrays ;1.4
million) tests in parallel. At standard thresholds, many
probesets will be identified by chance (approximately 5% of
the array: ;70,000). Multiple testing correction aims to
address this by choosing more stringent thresholds in order
to reduce the false positive rate. This must be balanced
against the incorrect rejection of real results—i.e., the false
negative rate.
A popular strategy is to try to find a threshold such that the

set of probesets that pass the test is expected to contain a
specified number of false positives—i.e., the false discovery
rate (FDR). FDR is appealing not least because it is easy to
interpret and provides a useful measure of the reliability of
the dataset in question.
Exon arrays present further challenges, because of the size

of the datasets and because the non-independence between

Box 1. Alternative Splicing Terminology
A gene is a region of the genome that is transcribed into RNA. A transcribed RNA molecule is referred to as a transcript. The RNA produced by
genes that encode protein sequences is called messenger RNA or mRNA. In eukaryotes, genes can contain exons and introns. The introns
are removed from the initial transcribed RNA (or pre-RNA) by splicing. Splicing can also be used to remove exons. By selectively retaining
different sets of exons within the spliced transcript, cells can produce multiple isoforms from a single gene, and, if subsequently translated,
multiple proteins. This process is known as alternative splicing.

Box 2. Design of Affymetrix Arrays
Affymetrix expression arrays use a set of features (often referred to as ‘‘spots’’) designed to recognize each molecule of interest. Each feature
consists of millions of identical single-stranded 25-mer nucleotide probes, each designed to hybridize to a specific transcript. On a gene-level
array, such as the HGU133plus2 chip [30], each of these Perfect Match (PM) features is accompanied by an adjacent Mis-Match (MM) feature
in which the middle residue is changed. Hybridization conditions are designed to maximise binding to the PM features while minimizing
binding to the MM ones. Each MM feature can therefore be used to provide a measure of probe specific background for its PM partner.
Multiple PM/MM pairs are used for each transcript. On most gene-level arrays, 11 PM/MM pairs are used per transcript, and the complete set of
22 features is referred to as a probeset.
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probesets makes it difficult to accurately compute the FDR
[18]. That said, current techniques can still be applied to exon
array data, and do yield sizable numbers of differentially
expressed probesets.

Mapping to Annotation

A number of strategies have been developed that re-
annotate array data by in silico searches against the genome
and/or transcriptome. A popular approach is to identify
transcripts (or genes) targeted by multiple probesets. These
are then combined to produce larger consensus probesets
[19,20]. One advantage of this approach is that it reduces the
total number of probesets involved in the analysis, and thus
has a positive effect on the multiple testing issues discussed
above.

Care must, however, be taken when applying these
approaches to exon arrays, because the amount of evidence
supporting each probeset is varying, and some probesets have
been placed on the array with much less confidence than
others. Strategies that aim to define new probesets using
annotation must deal with these. Another issue is that model-
based algorithms such as PLIER and RMA make the

assumption that all probes within a probeset target the same
thing. When alternate splicing is involved (particularly given
the potential for novel and/or overlapping transcripts), this
assumption may not hold.
An alternate strategy is to use the standard probeset

definitions provided by the manufacturer, and to apply
annotation to the data only after the ‘‘interesting’’ probesets
have been selected. This is the approach taken here.
Annotation can also, in some circumstances, be used
successfully to pre-filter the data before statistical analysis by,
for example, removing all probesets except those that match
known exons in the Ensembl genome database. Again, this
can have a beneficial effect on the FDR.

X:MAP, a Database of Exon Array Annotation

X:MAP is a database of exon array annotations built by
performing an in silico search between exon array probes and
the entire genome. These data are stored in a relational
database and associated with a copy of Ensembl [21]. X:MAP
has a Web-based genome browser (based on Google Maps)
that allows the relationship between probesets, the genome,
and gene structure to be browsed [22], and an associated
BioConductor package, exonmap, which communicates with
X:MAP and provides access to its data from within R. The
design and implementation of the database is described in
more detail in [23].
Exonmap supports mappings backward and forward

between potential probe hits, probesets, exons, transcripts,
and genes. The database allows these comparisons to be
performed for Ensembl genes, ESTs, and Genscan
predictions.
Filtering is provided to allow probesets to be selected or

excluded, based on whether they map to introns, exons,
transcripts, or genes. It is also important to consider the hit-
specificity of different probes within a probeset, since a
substantial proportion (about 6%) of probes match
identically to more than one Ensembl exon. Additional
functions are provided to filter based on whether probesets
contain ‘‘Multiply Targeted’’ probes that match the genome
in more than one location. This is important because a small
but substantial number of probesets are capable of
hybridizing to the genome at multiple locations, and because
much of the genome is predicted to be transcribed. Mapping
of probesets to the genome is described in more detail in [23].

doi:10.1371/journal.pcbi.0040006.g002

Figure 2. Exon Arrays Can Be Analysed Using Standard Approaches Developed for 39IVT Arrays

A standard pipeline for array processing involves 1. normalizing the arrays, 2. generating expression summaries, 3. filtering on correlation, fold-change,
and/or statistical significance to select interesting probesets, 4. mapping those probesets to their target transcripts by annotation, and 5. visualization
and downstream analysis.

doi:10.1371/journal.pcbi.0040006.g001

Figure 1. Differences in Array Design

On standard 39IVT, arrays such as the HGU133plus2 chip, each gene is
typically targeted by a single probeset placed at the 39 end of the
transcript. These probesets consist of 11 Perfect Match spots and 11
paired Mis-Match spots in which the middle residue has been changed.
Exon arrays have probesets placed against each exon along the length of
the gene. Exon array probesets have no paired Mis-Match spots and four
probes per probeset.
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Exonmap provides some basic functions to load expression
data into R (based on the ‘‘affy’’ package). In order to
preprocess the array data, it is necessary for the software to
know which features on the surface of the array correspond
to which probesets. This is generally specified using a ‘‘Chip
Definition File,’’ or CDF. Custom CDF data for exon Human,
Mouse, and Rat arrays can be found in the ‘‘downloads’’
section of X:MAP [24].

Once data are loaded they can be processed using standard
analysis tools, such as limma, or siggenes, in order to identify
sets of interesting probesets. A simple utility function pc() is
provided to perform pairwise comparisons between two
replicate groups and to generate fold-changes and unadjusted
p-values. We will use it here for convenience—more
sophisticated analyses are of course possible, and generally
advisable—however, since the focus here is on the annotation
tools, a simple strategy is sufficient to generate an initial
probeset list for further analysis.

The data on which this tutorial was generated is part of a
comparison between MCF7 and MCF10A cell lines. It can be
downloaded from [25].

Hello world. The simplest route to a list of differentially
expressed probesets (the exon array equivalent of ‘‘ world’’) is
as follows:

1 . library(exonmap)

2 . raw.data ,- read.exon()

3 . raw.data@cdfName ,- "exon.pmcdf"

4 . x.rma ,- rma(raw.data)

5 . pc.rma ,- pc(x.rma,"group",c("a","b"))

6 . keep ,- (abs(fc(pc.rma)) . 1) & tt(pc.rma), 1e-4

7 . sigs ,- featureNames(x.rma)[keep]

Line 1 simply loads the package.
Line 2 loads the expression data into the ExpressionSet

object raw.data, and relies on the presence of a file (by default
called ‘covdesc’) that defines the names of the .cel files to be
loaded and their associated experimental parameters. The
covdesc file used here is as follows:

group

ex1MCF7_r1.CEL a

ex1MCF7_r2.CEL a

ex1MCF7_r3.CEL a

ex2MCF10A_r1.CEL b

ex2MCF10A_r2.CEL b

ex2MCF10A_r3.CEL b

When read.exon() loads the data, the additional experimental
parameters defined in covdesc are loaded into the ExpressionSet,
and can be retrieved by the function pData().

Line 3 takes a little more explanation. The raw array data is
stored in a .CEL file, which records, for each of the ;6 million
features on the array, the raw unprocessed spot intensity.
These must be grouped into probesets, as specified by a Chip
Definition File (CDF). Line 3 tells BioConductor which CDF
file defines the array layout by setting the name of the .cdf
package (‘‘exon.pmcdf’’). CDF files can be downloaded from
[24].

Line 4 uses RMA to normalize and generate expression
summaries for the probesets. To use PLIER, the following
code can be substituted:

8 x.pli ,- justPlier(raw.data, usemm¼F, normalize¼T,

norm.type¼’’pmonly’’, concpenalty¼0.08)

The concpenalty parameter can be used to adjust how
PLIER deals with probesets that have very different values on

a small proportion of the arrays in a project (i.e., outlier
probesets). We have found it can be useful to set it to a higher
value than the default (0.000001) when processing small
numbers of arrays. Otherwise, PLIER can tend to see genuine
differences between arrays as noise. This is translated into
reduced fold changes for these probesets. PLIER’s tuning
parameters are described in more detail in [26].
Line 5 uses pc() to calculate fold-changes and t-test p-values

for each probeset on the array. Note that it is using the data
loaded in from the covdesc file to specify that the comparison
should be between samples labelled ‘‘a’’ and ‘‘b’’ in the
column ‘‘group’’.
Line 6 uses the result of the pairwise comparison to find all

probesets with an absolute fold-change greater than 1—all
data are on a log2 scale, so at least 2-fold differentially
expressed—with an unadjusted p-value less than 10�4, and
line 7 fishes the names of these probesets out from the
raw.data object. Clearly, more sophisticated approaches
(using, for example false discovery rates to set thresholds) can,
and probably should, be substituted here.

Mapping to Annotation

Irrespective of how the probeset list is identified, these
must then be mapped to the genome and to gene
annotations. The aim of exonmap is to provide methods to
answer questions such as these:
1. Which probesets hit exons, introns, transcripts, and/or

genes?
2. Which probesets hit between known genes—and do they

match ESTs or Genscan predictions?
3. Which genes/transcripts are differentially expressed or

alternatively spliced?
The basic approach is to provide a series of functions

X.to.Y() that allow lists of identifiers to be mapped between
the different levels of annotation. First, however, it is
necessary to connect to the database:

9 . xmapDatabase("Human")

This relies on a configuration file specifying how to
connect to the database. Full details are in the package
vignette and installation instructions.

10 . probeset.to.exon(sigs[1:5],list.out¼TRUE)

$123186631

[1] "ENSE00000738016"

$123186751

[1] "ENSE00000737793"

$123186821

[1] "ENSE00001435048" "ENSE00000737789"

$123186931

[1] "ENSE00000401699"

Note that probeset ‘2318682’ matches to two different
exons (a quick search on X:MAP shows that these are from
two different transcripts from the same gene—PER3). Other
parameters can force the results to be returned as a vector, to
be filtered to remove duplicates (see the manual page of
[27]—i.e., ?probeset.to.gene for more details). Similar functions
can be used to perform mappings backward and forward
between exons and genes (exon.to.gene, gene.to.exon), transcripts,
etc. Functions also exist to get detailed information for exons,
transcripts and genes—for example:

11 . transcript.details("ENST00000377541")

transcript_id stable_id seq_region_id name
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ENST00000377541 226810 ENST00000377541 226034 1

seq_region_start seq_region_end seq_region_strand

ENST00000377541 7766967 7786605 1

biotype status description external_db_id

ENST00000377541 protein_coding KNOWN NA 2000

db_display_name display_label

ENST00000377541 UniProtKB/TrEMBL Q8TAR6_HUMAN

description

ENST00000377541 PER3 protein (Period homolog 3) (Drosophila).

Filtering based on probeset location. At line 7, an initial
probeset list was generated. Many of these probesets match
outside Ensembl genes, whilst others match inside genes, but
outside exons. Filtering functions are provided to select or
exclude these probesets from the probeset list, as follows:

12 . sigs.exonic ,- select.probewise(sigs, filter¼"exonic")

Intronic and intergenic probesets can be selected in a
similar way, and the analogous function exclude.probewise()
allows probesets to be filtered out of a list.

Some probesets contain probes that match the genome at
multiple sites. These can be selected or removed as follows:

13 sigs.mt ,- select.probewise(sigs, filter¼"multitarget")

Filtering criteria are based on the number of times each
probe within a probeset matches the genome, a gene, or an
exon. The aim is to identify those ‘‘well-behaving’’ probesets
that consist of probes that match only once to the feature of
interest.

Searching for Alternative Splicing—Splicing Index
and Splicing ANOVA

Exon arrays enable genome-wide, high-throughput
searches for alternative splicing events [28]. There are many
intuitive methods of assessing if the gene is alternatively
spliced (e.g., the coefficient of variance of the exonic
probesets within a gene).

A simple, but effective method, the ‘‘splicing index’’, was
proposed in [29]. Each exonic probeset is normalized by
dividing its expression by the gene-level summary value for
the entire gene to yield a normalized intensity (NI). The
splicing index is then calculated simply as a ‘‘fold change’’
between the two normalized levels:

SI ¼ log2ðNIsample1=NIsample2Þ

The method depends on the selection of the gene-level
expression summary [14]. In exonmap, the mean (or median)
value for all exons is used [19].

14 . si.sig ,- splicing.index(x.rma, sig.gene, "group",

c("a","b"))

Gene level summaries are calculated, by default, as the

median expression of ‘well-behaving’ exon probes (where
‘well-behaving’ means not multiply-targeted, and hitting an
exon with all four probes in the probeset).
Searches for alternative splicing may also be done for

experiments with multiple treatments. In this case, in place of
a simple index, there is an ANOVA model, tested for each
probeset. The null hypothesis is that there is no alternative
splicing for the gene, and the NI level for each probeset
should therefore not be significantly different across the
samples. p-Values are calculated for all the probeset-
treatment pairs; alternative splicing events are selected as
those with low p-values:

15 #in an experiment with more than two replicate groups

16 . splanv ,- splanova(x.rma, my.genes,"group","a",thr¼0.05)

17 . fval(splanv)

Downstream Analysis—Visualization Tools

A set of visualization tools is available within exonmap.
plot.gene(), for example, will plot the structure of the specified
gene, coloured according to the expression data (Figure 3).
Minimum, maximum, mean, and median intensity are all
possible, as are mean and median fold-changes between
sample groups. By default, the gene’s average expression is
calculated and used to colour the overall gene; transcripts
and exons are coloured relative to that. The default colouring
is thus very similar in philosophy to the splicing index.
gene.graph() plots expression data as a line plot, with exons

coloured and placed according to location, on the x-axis of
the graph. By default, intronic and multiply targeted
probesets are not shown; parameters allow this to be changed.
Finally, gene.strip produces a heatmap-style representation

for a list of genes. Each rectangle in the plot corresponds to
an exon, and is coloured by expression, as before. By default,
introns are not drawn; when they are, the x-axis represents
actual sequence position, exons are drawn as (by default)
black rectangles, and probesets by larger rectangles coloured
by gene expression (Figure 4).

Finally

We hope you found this tutorial useful. Further examples
and workflows can be found in the package vignettes and in
Text S1 and Text S2 including the pursuit of novel exons and
transcription from intergenic regions.

Supporting Information
Text S1. Difference between Exon and Previous Generation
Affymetrix Arrays

Found at doi:10.1371/journal.pcbi.0040006.sd001 (52 KB PDF)

doi:10.1371/journal.pcbi.0040006.g003

Figure 3. Expression for STARD10, Mapped to Known Isoforms and Coloured According to Fold Change between MCF7 and MCF10A
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Text S2. Example Workflow

Found at doi:10.1371/journal.pcbi.0040006.sd002 (93 KB PDF)
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Figure 4. 20 Differentially Expressed Genes Selected for High Variance

within Their Probesets

Each row corresponds to a gene, each rectangle to an exon. Exons are
arranged in sequence order. If an exon is targeted by multiple probesets,
these are stacked vertically within that exon. The plot is coloured by fold
change between MCF7 and MCF10A (red, up in MCF7; blue, up in
MCF10A).
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