
Matt: Local Flexibility Aids Protein Multiple
Structure Alignment
Matthew Menke

1
, Bonnie Berger

1,2*
, Lenore Cowen

3*

1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2 Department of

Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 3 Department of Computer Science, Tufts University, Medford,

Massachusetts, United States of America

Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding
the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned
fragment pair chaining, where short structural fragments from all the proteins are aligned against each other
optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently
suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We
introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining
algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are
temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body
transformations. After a dynamic programming assembly guided by these ‘‘bent’’ alignments, geometric consistency is
restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure
alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt’s global performance is
competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of
multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability
to better align the ends of a-helices and b-strands, an important characteristic of any structure alignment program
intended to help construct a structural template library for threading approaches to the inverse protein-folding
problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure
pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the
length of the common core and average root mean squared deviation (RMSD) of Matt alignments is shown to largely
separate decoys from homologous protein structures in the SABmark benchmark dataset. We postulate that Matt’s
strong performance comes from its ability to model proteins in different conformational states and, perhaps even
more important, its ability to model backbone distortions in more distantly related proteins.

Citation: Menke M, Berger B, Cowen L (2008) Matt: Local flexibility aids protein multiple structure alignment. PLoS Comput Biol 4(1): e10. doi:10.1371/journal.pcbi.0040010

Introduction

The problem of constructing accurate protein multiple
structure alignments has been studied in computational
biology almost as long as the better-known multiple sequence
alignment problem [1]. The main goal for both problems is to
provide an alignment of residue–residue correspondences in
order to identify homologous residues. When applied to
closely related proteins, sequence-based and structure-based
alignments typically give consistent answers even though
most sequence alignment methods are measuring statistical
models of amino acid substitution rates, whereas most
structure-based methods are seeking to superimpose C-alpha
atoms from corresponding backbone 3-D coordinates while
minimizing geometric distance. However, as has been known
for some time [2], these answers can diverge when aligning
distantly related proteins; most relevant, it is still possible to
find good structural alignments when sequence similarity has
evolutionarily diverged into ‘‘the twilight zone’’ [3]. In the
twilight zone, distantly related proteins can still share a
common core structure containing regions, including conserved
secondary-structure elements and binding sites, in which the
chain retains the topology of its folding pattern (see [4] for a
recent survey). Structural information can align the residues
in this common core, even after the sequences have diverged
too far for successful sequence-based alignment, because

structural similarity is typically more evolutionarily con-
served [5–7]. (While divergent sequence with conserved
structure is the typical case and the one that structural
alignment algorithms that respect backbone order such as
Matt seek to handle, there are also well-known examples
where structure has diverged more rapidly than sequence;
see, for example, Kinch and Grishin [8] and Grishin [9].)
Applications of multiple structure alignment programs

include understanding evolutionary conservation and diver-
gence, functional prediction through the identification of
structurally conserved active sites in homologous proteins [10],
construction of benchmark datasets on which to test multiple
sequence alignment programs [6], and automatic construc-
tion of profiles and threading templates for protein structure
prediction [4,11]. It has also recently been suggested that
multiple structure alignment algorithms may soon become an

Editor: Roland Dunbrack, Fox Chase Cancer Center, United States of America

Received June 12, 2007; Accepted December 6, 2007; Published January 11, 2008

Copyright: � 2008 Menke et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: AFP, aligned fragment pair; RMSD, root mean squared deviation

* To whom correspondence should be addressed. E-mail: bab@csail.mit.edu (BB);
cowen@cs.tufts.edu (LC)

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100088

important component in the best multiple sequence align-
ment programs. As more protein structures are solved, there
is an ever-increasing chance that a given set of sequences to
be aligned will contain a subset with structural information
available. To date, however, only a handful of multiple
sequence alignment programs are set up to take advantage of
any available structural data [6,12].

Pairwise structure alignment programs fall into three
broad classes: the first class, to which Matt belongs, are
aligned fragment pair (AFP) chaining methods [13,14] which
do an all-against-all best transformation of short protein
fragments from one protein structure onto another, and
assemble these in a geometrically consistent fashion. The
second class (which includes the popular Dali [15]), look at
pairwise distances or contacts within each structure sepa-
rately, then try to find a maximum set of corresponding
residues that obey the same distance or contact relationships
in pairs of structures—these are called distance matrix or
contact map methods. The third class consists of everything
else, from geometric hashing [16] borrowed from computer
vision to an abstraction of the problem to secondary
structural elements [17]. Some protein structure alignment
programs are nonsequential; that is, they allow residue align-
ments that are inconsistent with the linear progression of the
protein sequence [18–21]. Most enforce an alignment con-
sistent with the sequential ordering of the residues along the
backbone—Matt belongs to the class of sequential protein
aligners. There are strengths to both approaches: most useful
protein alignments are sequential; however, nonsequential
protein aligners can handle cases where there is a reordering
of domains, and circular permutations [9].

Multiple structure alignment programs are typically built
on top of pairwise structural alignment programs. Even
simplified variants of structure alignment are known to be
NP-hard [22,23]; important progress has been recently been
made in theoretically rigorous approximation guarantees [24]
for pairwise structural alignment using a class of single

optimality criteria scores such as the Structal score [1], and
also in provably fast parameterized algorithms for the
pairwise structural alignment problem in the nonsequential
case [20].

Performance Metrics
There are two related problems that protein structure

alignment programs are designed to address. The first we will
call the alignment problem, where the input is a set of k
proteins that have a conserved structural common core,
where the common core is defined as in Eidhammer et al. [25]
as a set of residues that can be simultaneously superimposed
with small structural variation. The desired output consists of
a superimposition of the proteins in 3-D space, coupled with
the list of which amino acid residues are declared to be in
alignment and part of the core. The second problem, which
we will call the discrimination problem, takes as input a pair of
protein structures, and is supposed to output a yes/no answer
(together with an associated score or confidence value) as to
whether a good alignment can be found for these two protein
structures or not. We discuss how to measure performance on
the alignment problem first, and then on the discrimination
problem below.
The classical geometric way to measure the quality of a

protein structural alignment involves two parameters: the
number of amino acid residue positions that are found to
participate in the alignment (and are therefore found to be
part of the conserved structural core), as well as the average
pairwise root mean squared deviation (RMSD) (where RMSD
is calculated from the best rigid body transformation using
least squares minimization [26]) between backbone atoms
placed in alignment in the conserved core. Clearly, this is a bi-
criteria optimization problem: the goal is to minimize the
RMSD of the conserved core while maximizing the number of
residues placed in the conserved core.
We first take a traditional geometric approach: reporting

for all programs and all benchmark datasets, the average
number of residues placed into the common core structure,
alongside the average RMS of the pairwise RMSDs among all
pairs of residues that participate in a multiple alignment of a
set of structures. In addition, results are compared against
Homstrad reference alignments. This approach follows God-
zik and Ye’s evaluation of their multiple structure alignment
program, POSA [27].
More sophisticated geometric scoring measures have also

been suggested, some to collapse the bi-criteria optimization
problem into a single score to be optimized [28], such as the
Structal score [1], others to incorporate more environmental
information into the similarity measure, such as secondary
structure, or solvent accessibility [29,30]. The p-value score
that we develop to handle the discrimination problem,
described below, is a collapse of the bi-criteria optimization
problem into one score that provides a single lens on pairwise
alignment quality.
An alternative approach to measuring the performance of

a structure alignment algorithm comes from the discrim-
ination problem directly. Here, the measure is typically ROC
curves; looking for the ratio of true and false positives and
negatives from a ‘‘gold-standard’’ classification for what is
alignable or not, based either on decoy structures or a
classification scheme such as SCOP or CATH. Indeed, a
possible concern with adding flexibility to protein structure

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100089

Author Summary

Proteins fold into complicated highly asymmetrical 3-D shapes.
When a protein is found to fold in a shape that is sufficiently similar
to other proteins whose functional roles are known, this can
significantly aid in predicting function in the new protein. In
addition, the areas where structure is highly conserved in a set of
such similar proteins may indicate functional or structural impor-
tance of the conserved region. Given a set of protein structures, the
protein structural alignment problem is to determine the super-
imposition of the backbones of these protein structures that places
as much of the structures as possible into close spatial alignment.
We introduce an algorithm that allows local flexibility in the
structures when it brings them into closer alignment. The algorithm
performs as well as its competitors when the structures to be
aligned are highly similar, and outperforms them by a larger and
larger margin as similarity decreases. In addition, for the related
classification problem that asks if the degree of structural similarity
between two proteins implies if they likely evolved from a common
ancestor, a scoring function assesses, based on the best alignment
generated for each pair of protein structures, whether they should
be declared sufficiently structurally similar or not. This score can be
used to predict when two proteins have sufficiently similar shapes to
likely share functional characteristics.

Flexible Multiple Structure Alignment

would be that the added flexibility in our alignment might
lead to an inability to distinguish structures that should have
good alignments from those that do not. We therefore test
our ability to distinguish true alignable structures from
decoys on the SABmark dataset (which comes with a ready-
made set of decoy structures) as compared to competitor
programs.

Our Contribution
We introduce the program Matt (Multiple Alignment with

Translations and Twists), an AFP fragment chaining method
for pairwise and multiple sequence alignment that outper-
forms existing popular multiple structure alignment methods
when tested on standard benchmark datasets. At the heart of
Matt is a relaxation of the traditional rigid protein backbone
transformations for protein superimposition, which allows
protein structures flexibility to bend or rotate in order to come
into alignment. While flexibility has been introduced into the
study of protein folding in the context of docking [31,32],
particularly for the modeling of ligand binding [33], and more
recently in decoy construction for ab initio folding algo-
rithms [34,35], it has only recently been incorporated into
general-purpose pairwise [14,36] and multiple [27] structure
alignment programs. There are two reasons it makes sense to
introduce flexibility into protein structure alignment. The
first is the main reason that has been addressed in previous
work, namely, aligning proteins that do not align well by
means of rigid body transformations because their structures
have been determined in different conformational states: a
well-known example is that the fold of a protein will change
depending on whether it is bound to a ligand or not [33]. Matt
is designed to also address the second reason to introduce
flexibility into protein structure alignment, namely to handle
structural distortions as we align proteins whose shape
becomes increasingly divergent outside the conserved core.

We find that at each fixed value for number of aligned
residues, Matt is competitive with other recent multiple
structure alignment programs in average RMSD on the
popular Homstrad [37] and outperforms them on the
SABmark [38] benchmark datasets (see Tables 1, 2, and 3).
We emphasize again that this is an apples-to-apples comparison
of the best (i.e., the standard least squares RMSD minimiza-
tion) rigid body transformation for Matt’s alignments, just as
it is for the other programs—while Matt allows impossible
bends and breaks in intermediate stages of the algorithm, it is
stressed that the final Matt alignments and RMSD scores
come from legal, allowable ‘‘unbent’’ rigid body trans-
formations. We also present RMSD/alignment length trade-

offs for Matt performance on the same datasets. In the case of
Homstrad, where a manually curated ‘‘correct’’ structural
alignment is made available as part of the benchmark, Matt
alignments are also measured against the reference align-
ments, where we are again competitive with or outperform-
ing previous structure alignment programs (see Table 1).
In addition, Matt’s ability to distinguish truly alignable

folds from decoy folds is tested with the standard benchmark
SABmark set of alignments and decoys [38]. The SABmark
decoy set was constructed to contain, for each alignable
subset, decoy structures that belong to a different SCOP
superfamily, but whose sequences align reasonably well
according to BLAST [38]. Thus, they may be more similar at
the local level to the true positive examples, and thus fool a
structure alignment program better than a random structure.
Here, we tested both the ‘‘unbent’’ Matt alignments described
above, but also the ‘‘bent’’ Matt alignments, where the
residues are aligned allowing the impossible bends and
breaks. We test Matt’s performance both against the decoy
set and also against random structures taken from the Protein
Data Bank (PDB; http://www.rcsb.org/pdb). We use Matt’s
performance on the truly random structures to generate a p-
value score for pairwise Matt alignments. Rather than choose
from among the large number of competitor pairwise
structural alignment programs, Matt was instead tested
against other multiple structure aligners, in fact the same
programs we used for measuring how well they aligned
protein families known to have good alignments. The
exception was that we also tested the FlexProt program
[36], a purely pairwise structure alignment program that was
of special interest because it also claims to handle flexibility
in protein structures.
We have made Matt along with its structural alignments

available at http://groups.csail.mit.edu/cb/matt and http://matt.
cs.tufts.edu so anyone can additionally compute any alternate
alignment quality scores they favor.

Related Work
The only general protein structure alignment programs

that previously tried to model flexibility are FlexProt [36] and

Table 1. Homstrad Performance Comparison

Program

Name

Average

Core Size

Average Normalized

Correct Pairs

Average

RMSD

MultiProt 142.331 132.350 1.347

Mustang 171.363 155.932 2.669

POSA (unbent) 165.160 152.475 2.004

POSA (bent) 167.847 154.482 2.224

Matt 172.276 155.352 2.044

doi:10.1371/journal.pcbi.0040010.t001

Table 2. SABmark Superfamily Performance Comparison

Program Name Average Core Size Average RMSD

MultiProt 68.701 1.498

Mustang 104.162 4.146

Matt 104.692 2.639

doi:10.1371/journal.pcbi.0040010.t002

Table 3. SABmark Twilight Zone Performance Comparison

Program Name Average Core Size Average RMSD

MultiProt 36.354 1.536

Mustang 66.833 5.035

Matt 66.967 2.916

doi:10.1371/journal.pcbi.0040010.t003

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100090

Flexible Multiple Structure Alignment

Ye and Godzik’s Fatcat [14] (both for pairwise alignment), and
Fatcat’s generalization to multiple structure alignment, POSA
[27]. Fatcat is also an AFP chaining algorithm, except it allows
a globally minimized number of translations or bends in the
structure if it improves the overall alignment. In this way, it is
able to capture homologous proteins with hinges, or other
discrete points of flexibility, due to conformational change.
Our program Matt is fundamentally different: it instead
allows flexibilities everywhere between short fragments—that
is, it does not seek to globally minimize the number of bends,
but rather allows continuous small local perturbations in
order to better match the ‘‘bent’’ RMSD between structures.
Because Matt allows these flexibilities, it can put strict
tolerance limits on ‘‘bent’’ RMSD, so it only keeps fragments
that locally have very tight alignments. Up until the last step,
Matt allows the dynamic program to assemble fragments in
ways that are structurally impossible—one chain may have to
break or rotate beyond the physical constraints imposed by
the backbone molecules in order to simultaneously fit the
best transformation. This is repaired in a final step, when the
residue to residue alignment produced by this unrealistic ‘‘bent’’
transformation is retained; the best rigid-body transforma-
tion that preserves that alignment is found, and then either
output along with the residue–residue correspondences
produced by the ‘‘bent’’ Matt alignment or extended to
include as yet unaligned residues that fall within a user-
settable maximum RMSD cutoff under the new rigid-body
transformation to form the final Matt ‘‘unbent’’ alignment.

Matt Implementation
Matt accepts standard PDB files as input, and outputs

alignment coordinates in PDB format as well. In addition,
when only two structures are input, Matt outputs a p-value for
whether or not Matt believes the structures are alignable (see
below). There is an option to output the ‘‘bent’’ structures in
PDB format. Matt also outputs the sequence alignment
derived from the structural alignment in FASTA format
and a Rasmol script to highlight aligned residues. Windows
and Linux binaries and source code are available at http://
groups.csail.mit.edu/cb/matt and http://matt.cs.tufts.edu.

Algorithm Overview
The input to Matt is a set of g groups of already multiply

aligned protein structures (at the beginning of the algorithm,
each structure is placed by itself into its own group). The
iterative portion of the Matt algorithm runs g� 1 times, each
time reducing the number of separate groups by 1 as it
merges two sets of aligned structures in a progressive
alignment. As we discuss in detail below, the Matt alignments
produced in the iterative portion are not geometrically
realized by rigid body transformations: they allow local
‘‘bends’’ in the form of transpositions and rotations. Once
there is only one group left, Matt enters a final pass, where it
corrects the global alignment into an alignment that obeys a
user-settable RMSD cutoff by means of geometrically realiz-
ably rigid-body transformations. A flowchart describing the
stages of the Matt algorithm appears in Figure 1.
The iterative portion: fragment pairs. There are three main

phases to the iterative portion of the Matt algorithm. The first
phase is similar to what is done by many existing AFP
chaining residues: for simplicity, it is first described here for
pairwise alignment (that is, when each group consists of a
single structure). Matt considers fragments of five to nine
adjacent amino acid residues. A fragment pair is a pair of
fragments of equal length, one from each structure. For every
fragment pair, between any pair of structures, an alignment
score is calculated based on an estimated p-value of the
minimum RMSD achievable by a rigid-body transformation
of the C-alpha atoms of one fragment onto the other. p-values
are estimated by generating a table of random RMSD
alignments of the National Center for Biotechnology In-
formation (NCBI) nonredundant PDB.
The generalization from aligning fragments from two

structures to aligning fragments from two groups of multiple
structure alignments is straightforward. The alignment score
of a pair of fragments, one from each group alignment, is
calculated based on a single rigid-body transformation acting
on all of a group’s structures together.
Dynamic programming assembly with translations and

twists. Matt’s main novel contribution involves how we
assemble these short fragments into a global alignment. Note
that Matt is an alignment program that respects the
sequential order of residues along the backbone, so it only
assembles aligned fragments that are consistently ordered.
Matt iteratively builds up longer and longer sets of aligned

fragments using dynamic programming. When deciding
whether to chain two sets of aligned fragments together,
Matt uses a score based on the sum of the alignment scores of
the individual aligned fragments together with a penalty
based on the geometric consistency of the transformations
associated with deforming the backbone of one set onto the
other. Transformation consistency cutoffs were determined
empirically using a fifth of the Homstrad benchmark dataset.
The consistency score (specified exactly in Methods below) is
a function of both relative translation and relative rotation
angles; the angles are calculated using quaternions for speed.
Matt finds the highest-scoring assembly for all pairs of

groups of aligned structures that were input. It then chooses
the pair of groups with the highest-scoring assembly, and uses
that assembly to create a new multiple alignment that merges
those two groups. If only one group remains, the algorithm
proceeds to the final pass; otherwise, it enters the realign and

Figure 1. Overview of the Matt Algorithm

doi:10.1371/journal.pcbi.0040010.g001

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100091

Flexible Multiple Structure Alignment

extend phase before looping back to calculate all fragment
pairs again.

Realign and extend phase. The realignment phase does not
change the residue correspondences in the multiple align-
ment, but tries to find local transformations that tighten
RMSD in the aligned fragments in the newly merged group. It
is described in more detail in Methods.

The extension phase is then called. The multiple alignment
is extended greedily off both ends of all its fragments as long
as average RMSD is below a cutoff (4 Å). Extended fragments
are allowed to overlap for up to five residues in this phase (if
this produces any inconsistencies in the alignment, note that
they are fixed in the next dynamic programming iteration).
When only one group of structures remains, the result is the
bent Matt alignment. The algorithm enters the final pass to
produce the rigid bent and unbent Matt alignments.

Final pass. The input to the final pass is simply which
residues have been aligned with which in the final bent
alignment; that is, the multiple sequence alignment derived
by the bent multiple structure alignment Matt has generated.
Once the mapping of which residues are to be aligned has
been fixed, finding the associate transformation that opti-
mizes RMSD of the aligned residues of one structure against a
set of structures aligned to a reference structure is
straightforward. We build up a single multiple structure
alignment from such transformations using a similar method
to that introduced by Barton and Sternberg [39]. In
particular, additional protein structures are added progres-
sively to the overall alignment. Each time a new structure is
added, all existing structures are ‘‘popped out’’ in turn, and
realigned back to the new reference alignment. This brings
the atoms into tighter and tighter alignment.

The resulting rigid RMSD Matt alignment leaves the
sequence alignment from the bent step unchanged, and thus
only includes sets with five or more contiguous residues. This
alignment is what we call the rigid bent Matt alignment, below.
We then do a final pass to add back shorter segments. In
particular, now that we have a final global multiple structure
alignment, we greedily add back in fragments of four or fewer
residues that fall between already aligned fragments but
whose RMSD is below a user-settable cutoff. That user-settable
cutoff is entirely responsible for the different tradeoffs

between average RMSD and number of aligned residues that
we obtain (see Figures 2 and 3)—in the comparisons with
other programs, the cutoff was uniformly set at 5 Å.

Results

The Benchmark Datasets
Perhaps the most popular dataset for testing protein

structural alignment programs is Homstrad [37], which is a
manually curated set of 1,028 alignments, each of which
contains between two and 41 structures. Homstrad contains
highly homologous proteins, with similarity comparable to
the family level of the hierarchical SCOP [40] structural
classification database. In this paper, in order to be
comparable to the results for POSA presented in [27], we
test only on the 399 Homstrad alignments with more than two
structures in the alignment (that is, Homstrad sets with
between three and 41 structures that necessitate a multiple
rather than a pairwise structure alignment program).
We also test Matt on the superfamily and twilight zone

SABmark [38] benchmark datasets. The superfamily set
contains 3,645 domains sorted into 426 subsets representing
structures at the superfamily level of the SCOP hierarchy, a set
designed to be well-distributed in known protein space, and
presumably containing more remote homologs than Hom-
strad. The twilight zone set contains 1,740 domains sorted into
209 subsets whose homology is even more remote than the
superfamily set. Both the superfamily and twilight zone sets
have subsets containing between three and 25 structures.
Since the ‘‘correct’’ alignments provided by SABmark are

generated automatically from existing structure alignment
programs, we do not report the percentage of ‘‘correctly’’
aligned residue pairs as we did for the manually curated
Homstrad, but rather report only the objective geometric
measures of alignment quality (number of residues placed in
the conserved core, and average pairwise RMSD among
residues placed in the combined core).
SABmark additionally provides a set of decoy structures for

nearly all its 462 sets of alignable superfamily (and 209
alignable twilight zone) sets of structures. We constructed a
decoy discrimination test suite as follows. Each SABmark
superfamily (or twilight zone) test set comes with an equal
number of decoy structures with high sequence similarity (see

Figure 3. Matt SABmark Performance Tradeoffs

Average pairwise RMSD versus average number of residue positions
placed in the common core for the SABmark superfamily benchmark.
doi:10.1371/journal.pcbi.0040010.g003

Figure 2. Matt Homstrad Performance Tradeoffs

Average pairwise RMSD versus average number of residue positions
placed in the common core for the Homstrad multiple alignment
benchmark.
doi:10.1371/journal.pcbi.0040010.g002

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100092

Flexible Multiple Structure Alignment

[38]). For each test set, a random pair of structures in the
positive set (that belong to the same SCOP superfamily and
are supposed to align) and a random decoy were selected.
Then a random discrimination test suite was similarly
constructed, the only difference being that the decoy was
chosen to be a random structure in a different SABmark set,
not a decoy structure that was specifically chosen to have high
sequence similarity to the positive set.

The Programs to Which Matt Is Compared
On Homstrad, we compare Matt to three recent multiple

structure alignment programs: listed in alphabetical order,
they are MultiProt [41], Mustang [42], and POSA [27]. Note
that MultiProt has both sequential and nonsequential align-
ment options; we compare against the option that, like Matt,
respects sequence order. MultiProt is an AFP program that
uses rigid body superimposition. Mustang uses a combination
of short fragment alignment, contact maps, and consensus-
based methods. We were particularly eager to test Matt
against POSA, because it is the only other multiple structure
alignment program that allows flexibility, though as discussed
in the Introduction, POSA’s flexibility is more limited. POSA
outputs two different structural alignments: one comes from
the version of POSA that disallows bends, and the other from
the version with limited bends allowed. We test both versions,
and results appear in Table 1.

We were not able to obtain POSA code. (Our statistics on
Homstrad come from POSA alignments provided by the

authors as supplementary data). Because we were not able to
obtain POSA code, we were not able to test POSA on all of
SABmark, but we do compare Mustang and MultiProt to Matt
on the entire SABmark benchmark. On the other hand, we
were able to submit individual sets of SABmark structures to
the POSA online server; POSA sometimes did nearly as well
as Matt on the examples we tested, but other times, it missed
finding alignable structures entirely. We show both cases in
two in-depth examples: Figure 4 shows alignments of Matt,
MultiProt, Mustang, and POSA on a seven-bladed b-propel-
ler, and Figure 5 shows alignments of the four programs on a
set of left-handed b-helix structures. POSA and Matt are the
only algorithms that successfully align all seven blades of the
b-propeller. POSA, however, entirely misses the alignable
regions in the b-helix fold.
For the discrimination problem, Matt is compared against

MultiProt and Mustang again, but also against FlexProt [36].
FlexProt has an option to allow from zero to four bends in
the aligned structure, which is specified at runtime. FlexProt
scores each of these structures by length of the alignment
found. On each structure, the alignment with the number of
bends that produces the highest-scoring alignment is output.
In the case of both POSA and FlexProt, the ‘‘bent’’ alignment
outputs the (best rigid-body transformation) RMSD of the
aligned structures with bends allowed, and the ‘‘unbent,’’ or
regular, version outputs the RMSD of the best rigid-body
transformation that places the same set of residues in
alignment as the bent version.

Figure 4. Comparative b-Propeller Alignments

The four SABmark domains in the set Group 137, consisting of seven-bladed b-propellers as aligned by Posa, Mustang, MultiProt, and Matt. Backbone
atoms that participate in the common core of the alignment show up colored as red (PDB ID d1nr0a1), green (PDB ID d1nr0a2), blue (PDB ID d1p22a2),
and magenta (PDB ID d1tbga); residues in all four chains that are not placed into the alignment by the tested algorithm are shown in gray. These
pictures were generated by the Swiss PDB Viewer (DeepView) [43].
doi:10.1371/journal.pcbi.0040010.g004

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100093

Flexible Multiple Structure Alignment

Performance
Table 1 shows the following quantities for each program on

the 399 Homstrad reference alignments that contain at least
three structures each (this is the identical set of reference
alignments on which POSA was tested). The first field is the
average number of residues placed in the common core. The
second is ‘‘average normalized correct pairs’’ computed
according to the Homstrad reference alignments. This
quantity is computed as follows: for each set of structures,
we look at every pair of aligned residues that also participate
in a Homstrad correct alignment. Then, we normalize based
on the number of structures in the set (so the alignments in
the set of 41 structures do not weight more heavily than the
alignments in the set of three structures), dividing by the
number of pairs of distinct structures in the reference set.
(Note that, as discussed in [42], having additional pairs placed
into alignment that Homstrad does not consider part of the
‘‘gold-standard’’ alignment is a positive, not a negative, if
RMSD remains low. This is because declaring a pair of nearly
aligned residues ‘‘aligned’’ or not is a judgment call that
Homstrad makes partially based on older multiple structure
alignment programs whose performance is weaker than the
most recent programs.) The second column is the same
‘‘average RMSD’’ measure that POSA reports: the average
RMS of the pairwise RMSDs among all pairs of residues that
participate in a multiple alignment in a set of structures.

We downloaded and ran MultiProt and Mustang and

computed RMSD statistics ourselves. POSA is not available
for download, but is only accessible as a webserver; however,
Homstrad alignments are available online at http://fatcat.
burnham.org/POSA/POSAvsHOM.html. POSA’s Web site
provides two sets of multiple alignments: one derived from
running their algorithm allowing geometrically impossible
bends, and one running an unbent version of their algorithm.
Note that for POSA’s bent alignments, we had to recalculate
RMSD from the multiple sequence alignment provided from
their bent alignments, because unbent RMSD based on bent
alignments was not provided on their Web site. It is of
independent interest that, as expected, POSA’s unbent
version has better RMSD, while POSA’s bent version finds
more residues participating in the alignments overall.
Matt scores slightly better than POSA on Homstrad. Matt’s

average core size is comparable with that of Mustang, but
Matt has a lower RMSD. The size of the alignments that
MultiProt finds are much smaller than for the other programs
(though its average RMSD is therefore much lower): this
becomes even more pronounced on the more distant
structures in SABmark (see Figure 3). Note that the core-
size/RMSD tradeoff of Matt is very sensitive to cutoffs set in
the last pass of the Matt algorithm, when it is decided what
segments of less than five consecutive residues are added back
into the alignment. Throughout this paper, the results
reported in our tables come from setting the cutoff at 5 Å.
By comparison, if the cutoff is set at 3.5 Å, Matt achieves

Figure 5. Comparative b-Helix Alignments

Aligned portions of the eight SABmark domains in the set Group 144, consisting of the left-handed b-helix fold as aligned by Posa, Mustang, MultiProt,
and Matt. Backbone atoms that participate in the common core of the alignment show up colored as red (PDB ID d1hm9a1), green (PDB ID d1kk6a),
blue (PDB ID d1krra), magenta (PDB ID d1lxa), yellow (PDB Is that are not placed into the alignment by the tested algorithm are shown in gray. These
pictureD d1ocxa), orange (PDB ID d1qrea), cyan (PDB ID d1xat), and pink (PDB ID d3tdt); residues in all three chains were generated by the Swiss PDB
Viewer (DeepView) [43].
doi:10.1371/journal.pcbi.0040010.g005

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100094

Flexible Multiple Structure Alignment

168.038 average core size, 153.362 average normalized pairs
correct, and 1.862 average RMSD on Homstrad. Full tradeoff
results on RMSD versus number of residues based on
changing the last pass cutoff appear in Figure 2. Note that
Matt’s cutoffs for allowable bends were trained on a random
20% of the Homstrad dataset.

While Matt competes favorably with the other programs on
Homstrad, Matt was designed for sets of more distantly
related proteins than appear in the Homstrad benchmark.
Thus, the best demonstration of the advantage of the Matt
approach appears on the more distantly related proteins in
the SABmark benchmark sets. Here, Matt is seen to do exactly
what was hoped: by detouring through bent structures, it
finds rigid RMSD alignments that place as many residues in
the conserved alignment as Mustang does (and more than
50% more than MultiProt does) while reducing the average
RMSD from that of Mustang by more than 1.4 Å (see Tables 2
and 3). It should again be emphasized that none of Matt’s
parameters were trained on SABmark.

Looking by hand through the alignments, MultiProt
consistently aligns small subsets of residues correctly, but
leaves large regions unaligned that both Mustang and Matt
believe to be alignable. Mustang, on the other hand,
frequently misaligns regions, particularly in the case when
there are many a-helices tightly packed in the structure. On
two of the twilight zone sets, Mustang fails to find anything in
the common core. Altogether on the twilight zone set, there
are four sets of structures for which Mustang fails to find at
least three residues in the common core (and there is one set
of structures in the superfamily set where Mustang also fails
to find anything in the common core). Though the effect is
negligible, these four sets are removed from Mustang’s
average RMSD calculation.

Although these tables show overall performance, it is also
helpful to look at actual examples. We pulled two example
reference sets out of the SABmark superfamily benchmark.
Figure 4 shows the Matt alignment versus MultiProt, POSA,
and Mustang alignments of the SABmark structures in the set
labeled Group 137 (b-propellers; PDB IDs d1nr0a1, d1nr0a2,
d1p22a2, and d1tbga). POSA does second best to Matt here,
and in fact, the overall alignment of the structures in POSA is
most similar to Matt—the same propeller blades are overlaid
in both alignments. Although it is hard to see in the picture,
Mustang is superimposing the wrong blades, which accounts
for the terrible RMSD. MultiProt makes a similar error, but
then gets a low RMSD by aligning less of the structure. Figure
5 shows a Matt alignment of the SABmark structures in the

set labeled Group 144 (b-helices; PDB IDs d1hm9a1, d1kk6a,
d1krra, d1lxa, d1ocxa, d1qrea, d1xat, and d3tdt). Here, POSA
does very poorly, only finding a very small set of residues to
align. MultiProt again aligns the portion that it declares in the
common core very tightly (this is a theme throughout the
SABmark dataset), but it only places five rungs in the
common core. Both these figures were generated using the
Swiss PDB Viewer (DeepView) [43]. Core size and RMSD
comparisons on both these reference sets appear in Table 4.
We then turn to the discrimination problem. Matt,

FlexProt, Mustang, and MultiProt were tested on the SAB-
mark superfamily and SABmark twilight zone decoy test
suites described in the previous section. Using a method
similar to what Gerstein and Levitt [44] did to systematically
assess structure alignment programs against a gold standard,
length of alignment versus RMSD for the true positives and
true negatives were plotted in the plane for all programs.
Figure 6 displays the results on the SABmark superfamily
set versus SABmark decoys. The separating line marks where
the true positive and true negative percentages are roughly
equal.
When comparing ROC curves over the four different

programs, we find that Matt consistently dominates both
FlexProt and MultiProt at almost every fixed true positive
rate. Mustang does as well. Interestingly, Matt and Mustang
are incomparable—on the Superfamily sets, Matt does better
than Mustang when the true positive rate is fixed over 93%
(90% for the random decoy set), and Mustang does better
thereafter. For the twilight zone set, the situation is reversed:
SABmark does better than Matt when the true positive rate is
between 93% and 98%, but Matt does better between 70%
and 92% true positives; then, performance reverses, and
Mustang does better below 70% true positive rates. Sample
percentages for the four programs near the line where the
true positive and true negative percentages are roughly equal
appear in Tables 5 and 6 on the superfamily and twilight zone
family sets, respectively.
Unsurprisingly, for all four programs, the SABmark decoy

set was more difficult to classify than the random decoy set.
What was more surprising is how competitive Mustang is with
Matt on the discrimination tasks—it is surprising because
Mustang was uniformly worse at the alignment problem. In
essence, Mustang produces alignments with very high RMSD,
but consistently even higher RMSD on the decoy sets. We
hypothesize that this may be due to Mustang’s use of contact
maps, a global measure of fold-fit that may be harder for
decoys to match, whereas the decoys may have long regions of
local similarity. Matt and Mustang both do qualitatively better
at all discrimination tasks than either MultiProt or FlexProt.
Note that in Figure 6 and in both Tables 5 and 6 we have

used the RMSD of the best rigid-body transformation that
matches the bent Matt or FlexProt alignment. At first, we
hypothesized that the bent RMSD values might give better
discrimination; after all, the bent structures are the local
pieces that align really well. However, giving credit for the
lower bent RMSD values also greatly improved the RMSD
values for the decoy structures, leading in every case to worse
performance on the discrimination tasks. Thus, reporting an
RMSD value for the rigid superimposition that minimized the
RMSD of the residues placed into a bent alignment produced
the best separation of true alignments from decoys.

Table 4. Example of Multiple Structure Alignments in the Two
Figures from the SABmark Benchmark Dataset

Program

Name

Propeller

Core Size

Propeller

RMSD

b-Helix

Core Size

b-Helix

RMSD

MultiProt 180 1.73 79 1.01

Mustang 218 6.13 83 7.05

POSA 252 2.62 23 3.13

Matt 261 2.35 98 2.42

doi:10.1371/journal.pcbi.0040010.t004

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100095

Flexible Multiple Structure Alignment

p-Value Calculation
p-values for pairwise Matt alignments are calculated based

on our 2-D alignment versus RMSD graphs. To calculate p-
values, we find the slope m of a line in the alignment length
versus RMSD graph that maximizes the number of elements
from the random negative set on one side and has at least

90% of the SABmark positives on the other. This value was
chosen because it allows roughly the same percentage of the
negative set to be on the other side. These were then used to
calculate z-scores of the distribution of RMSD —m3 length of
the random negative set. These are fit to a standard Gaussian
distribution to calculate p-values for pairwise alignments.

Figure 6. Distinguishing Alignable Structures from Decoys

Positive (blue) and SABmark decoy (red) pairwise alignments plotted by RMSD versus number of residues for Matt, FlexProt, MultiProt, and Mustang on
the SABmark superfamily set.
doi:10.1371/journal.pcbi.0040010.g006

Table 5. Discrimination Performance on the SABmark Superfamily Set

True

Positive

Matt True Negative FlexProt True Negative Mustang True Negative MultiProt True Negative

Random

Decoy

SABmark

Decoy

Random

Decoy

SABmark

Decoy

Random

Decoy

SABmark

Decoy

Random

Decoy

SABmark

Decoy

95.04 81.80 71.16 49.88 47.28 74.94 71.63 64.30 46.81

94.09 84.63 75.65 60.99 56.03 76.36 73.29 72.10 54.14

93.14 85.82 77.30 70.45 65.72 82.51 78.96 78.01 62.65

92.20 87.00 79.20 76.83 72.58 85.82 82.03 81.80 68.79

91.02 90.54 82.74 81.56 79.20 89.60 84.16 87.71 75.89

90.07 92.43 86.52 84.16 82.74 94.33 89.36 90.78 78.82

True negative percentage correct on the multiple structure alignment programs at a fixed true positive percentage rate in the range close to where the true positive and true negative
rates are equal. Results in bold are the best at that fixed true positive rate.
doi:10.1371/journal.pcbi.0040010.t005

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100096

Flexible Multiple Structure Alignment

Discussion

We introduced the program Matt, which showed that
detouring through local flexibility in an AFP alignment
algorithm could aid in protein multiple structure alignment.
We suggest that looking at local bends in protein structure
captures similarity well for fundamental biological as well as
for mathematical reasons. In particular, Matt may be both
capturing flexibility inherent naturally in some protein
structures themselves and modeling structural distortions in
the common core that arise as proteins become more
evolutionarily distant.

Matt runs in O(k2n3 log n) time, where k is the number of
sequences participating in the alignment and n is the length
of the longest sequence in the alignment. Compared with
Mustang and MultiProt, Matt takes about the same amount of
time to complete running on the benchmark datasets. We
find that Matt is typically several times slower on most sets of
structures; however, there are a small percentage of sets of
substructures in both benchmark datasets where both
Mustang and MultiProt take orders of magnitude more time
to complete their alignments than they do on the typical set
of structures. Matt is saved in these difficult cases with lots of
self-similar substructures by its implementation of the oct-
trees, which allows for better pruning of the search space.
Matt also supports a multithreaded implementation, which is
faster still. Matt is sufficiently fast that it should be feasible to
construct a set of reference alignments for similar fold classes
based on Matt, covering the space of all known folds, which
we intend to do.

Examining some of the Matt alignments by hand, the
program seems to typically do a better job of aligning the
ends of a-helices and b-strands than its competitors; we
therefore suggest that Matt may be a useful tool for
construction of better sequence profiles for protein structure
prediction, and for the construction of better templates for
protein threading libraries. For these applications, both
Matt’s rigid unbent alignments and the geometrically
impossible bent alignments may be of interest.

Finally, looking at how Matt (or the other structure aligners)
performs on the two SABmark benchmarks raises again the
philosophical question of how far into the twilight zone itmakes
sense to alignprotein structures. Clearly at the superfamily level,
there is typically substantial structural similarity. At the twilight
zone level, there ismuch increased divergence. Examining these

alignments in more details may help develop our intuition
about the limits of comparative modeling for protein structure
prediction as we go further into the twilight zone.

Methods

Pairwise alignment. First, it is useful consider Matt’s behavior on
pairwise alignments. In what follows, we assume structures are
sequentially ordered from their N terminal to their C terminal.

Notation and definitions. A block denotes the C-alpha atoms of a set
of five to nine adjacent amino acid residues in a protein structure.
For block B, let bh denote the first residue and bt denote the last
residue of the block. A block pair is a pair of blocks of equal length,
one from each of a pair of structures. For block pair BC, define TCB to
be the minimum RMSD transformation that is applied to the second
structure to align its C-alpha carbons against the first, and let RMST
denote the RMSD of the two blocks under T. Minimum trans-
formations are calculated using the standard classical singular value
decomposition method of Kabsch [26]. For block pair BC,

ScoreðBCÞ ¼ �logPðRMSDTÞ:

Here, p-values are estimated by generating a table of random five-
residue RMSD alignments of the NCBI nonredundant PDB [45]
(update dated 7 May 2007) with a BLAST E-value cutoff of 10�7. For
longer block pairs, negative log p-values for a given RMSD are
assumed to increase linearly with respect to alignment length. (This
assumption was verified empirically to be approximately true in the
relevant range.) Let S be a set of block pairs. Two block pairs BC and
DE are sequential if bt precedes dh (and ct precedes eh) and there is no
block pair with any residue that lies between them in S. A set of block
pairs is called an assembly if it consists of block pairs P1, P2, . . ., Pn such
that Pi and Piþ1 are sequential. Note that the definition of sequential
means that the Pi will be non-overlapping and seen in both structures
in precisely this order; see Figure 7.

Matt assembly. A Matt pass uses dynamic programming to create
an assembly of block pairs. A pass takes an assembly and three cutoff
values as input and outputs a new assembly. The new assembly
contains all the block pairs of the original assembly. The three cutoffs
are a maximum block-pair RMSD cutoff and maximum values for the
displacement and relative angles for each sequential pair of blocks
(the ‘‘translations’’ and ‘‘twists,’’ respectively, of Matt’s acronym).
Using multiple passes and relaxing cutoffs in each successive pass
results in favoring strongly conserved regions while still detecting
more weakly conserved regions.

All Matt results in this paper use a three-pass algorithm. All three
passes use a cutoff of 458 on the angle between the transformations of
two sequential block pairs. The first pass is restricted to block pairs
with a minimum negative log p-value of 2.0, and sequential block
pairs must have a displacement no greater than 4. The second pass
uses a minimum negative log p-value of 1.6 and a maximum
displacement of sequential pairs of 5. The last pass uses cutoffs of
0.6 and 10, respectively. The values of these cutoffs were determined
by training on a random 20% of the Homstrad benchmark dataset.

More formally, the score of a set of block pairs S is the sum of the
alignment scores of the individual block pairs and a bonus based on
how consistent the transformations associated with the two block

Table 6. Discrimination Performance on the SABmark Twilight Zone Set

True

Positive

Matt True Negative MultiProt True Negative Mustang True Negative FlexProt True Negative

Random

Decoy

SABmark

Decoy

Random

Decoy

SABmark

Decoy

Random

Decoy

SABmark

Decoy

Random

Decoy

SABmark

Decoy

85.17 85.65 83.73 71.29 70.81 77.99 77.03 78.47 67.94

84.21 88.52 84.21 74.16 73.68 78.95 77.51 80.38 69.86

83.25 89.95 85.17 74.64 74.16 80.86 78.47 80.86 70.33

82.30 90.43 86.12 76.08 75.12 81.34 78.95 81.82 72.73

81.34 90.91 86.12 77.03 75.60 82.30 80.38 82.30 73.68

80.38 92.34 87.56 77.03 76.56 84.69 81.82 82.30 73.68

True negative percent correct on the multiple structure alignment programs on the more difficult SABmark twilight zone set at a fixed true positive percentage rate, in the range close to
where the two rates are equal. Results in bold are the best at that fixed true positive rate. Matt is always the best in this range.
doi:10.1371/journal.pcbi.0040010.t006

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100097

Flexible Multiple Structure Alignment

pairs are. This score is used internally throughout the construction of
the alignment, but is not used to determine the p-value, which is
instead computed directly based on length and RMSD of the resulting
alignments; see the section on calculating p-values at the end of the
Introduction.

ScoreðSÞ ¼P
BC2S�logðPvalueðRMSDðBCÞÞÞþP
BC;DE sequential in S�logðSolidAngleðAngleðTCB;TEDÞÞÞþP
BC;DE sequential in Sð4�DisplacementðBC;DEÞÞ

;

where

DisplacementðBC;DEÞ ¼
LengthðTCBðctÞ � TEDðctÞÞ þ LengthðTCBðehÞ � TEDðetÞÞ=2

and Length is defined to be ordinary Euclidean distance, Angle is the
angle of TCBTED

�1 in axis-angle form, and SolidAngle is the solid angle
associated with an angle, measured as a fraction of the sphere.
SolidAngle(h) ranges from 0 to 1 and is the probability of a given ray
and a random point in 3-D space forming an angle less than h. To
prevent overflow, if Angle has a value below 0.1 radians, it is set to 0.1
radians.

We note that a naive implementation of dynamic programming
would use O(n4) time (where n is the length of the longer string), as
there are O(n2) block pairs. We reduce this to an O(n3 log n) algorithm
by incorporating geometric knowledge of the structural trans-
formations to reduce the search space. In particular, for each of
structure two’s C-alpha atoms, an oct-tree [46] that partitions
Euclidean space based on the transformed positions of that C-alpha
atom is created. Each transformation comes from a previously
considered block pair that ends with the C-alpha atom in question.
When the dynamic program is assembling a block pair starting with
the kth C-alpha atom in structure two, it searches the oct-trees for all
of structure two’s C-alpha atoms before k for compatible trans-
formations (meaning the associated transformations of the atom are
within the distance cutoff).

Final output. The final output is an assembly A, a bent assembly A9
(only output with a command-line option), BentRMSD(A9), Un-
bentRMSD(A), and a p-value for the assembly.

The result of the dynamic programming algorithm described
above gives the bent alignment A9, together with a set of local
transformations (allowing translations and rotations) that produced
the alignment. Its associated RMSD is BentRMSD(A9).

To produce the unbent alignment, the set of which residues are to
be placed into alignment is retained from A9, and all geometric
information is discarded. Then, the best global rigid-body trans-
formation that minimizes the RMSD of this alignment is found using
the classical SVD method of Kabsch [26]. The result is the rigid-bent
RMSD, which is not output explicitly, but implicitly forms the basis
for the p-value calculation (as described in the p-value section at the
end of the Introduction). Note that so far the sequence alignment
from the bent step is unchanged, and thus only includes sets of
contiguous residues that are at least 5 Å in length. A final pass then
greedily adds back shorter segments of four or fewer residues that fall
between already aligned fragments but whose RMSD under the global

transformation falls below a user-settable cutoff. The resulting
alignment is A, with its associated unbent RMSD(A).

Multiple alignment. In this subsection, we extend the definitions of
assemblies to sets of more than two structures in the natural way. The
input to each iteration of the Matt multiple alignment algorithm is
the set of structures to be aligned that have been partitioned into sets,
where the structures in each set are multiply aligned in an assembly.
The output of the iteration leaves all but two sets unchanged; the
structures in those two sets are merged into a single set with a new
multiple alignment assembly. (The initial iteration of Matt places
each structure into its own set and is equivalent to the pairwise
alignment algorithm described above.)

Analogous to blocks, we define block-tuples. A block-tuple is an aligned
set of already aligned equal-length blocks. A block-tuple pair is a set
of two block-tuples, one from each of two sets of aligned structures.

At each iteration, for every pair of sets in the partition, Matt uses
the merge procedure detailed below to combine the two assemblies
into a single assembly and computes its score. It then chooses the
best-scoring pair of sets to merge in that iteration. Matt terminates
when all structures have been aligned into a single assembly,
outputting the assembly, bent RMSD, and unbent RMSD.

Merging. Here is a high-level description of the steps of the merge
procedure. The merge procedure take as input two assemblies, each
possibly containing multiple structures. Each step is explained in
more detail. (1) Find the pair of structures, a0 from assembly A and b0
from assembly B, that have the highest-scoring pairwise structural
alignment, according to the pairwise structural alignment algorithm
of the previous section. (2) For each block b of a0, let Tb denote the
transformation of b back to its original atomic coordinates. Trans-
form every block in the block-tuple associated with b in A by Tb. Do
the same for each block of b0 and its associated block-tuple. (3) Within
each A and B separately, realign all blocks within each block-tuple to
reduce RMSD using the LocalOpt procedure (described below). (4)
Still within each A and B separately, an extension step is performed
than can lengthen block-tuples into unaligned regions or other block-
tuples. Note that this step may temporarily produce overlapping
blocks, but that this is corrected later, and only non-overlapping
block-tuples are returned at the end of the merge procedure. (5)
Taking the set of all aligned block-tuples of A, we consider all sets of
five to nine adjacent residues entirely contained within one of these
block-tuples by sliding a window of appropriate length. We do the
same for the block-tuples of B. These become the building blocks of
new block-tuple pairs in the merged assembly. Just as in the pairwise
case, all equal-length building blocks, one each from A and B, are
pairwise aligned and scored. Note that the RMSD algorithm easily
generalizes to align sets of aligned residues by treating each aligned k-
length set of m structures against n structures as a single RMSD
alignment of kmn residues. Let TBA(r,s) be the transformation that
produces the lowest RMSD on the block-tuple pair r 2 A, s 2 B. (6)
Dynamic programming is used to find the optimal assembly of pairs
of new block-tuples. The dynamic programming algorithm in the
multiple structural case has the same form as in the pairwise case. The
angle penalty is calculated as before from TBA(r,s). The displacement
penalty is calculated slightly differently. In each residue position, an
average C-alpha atom position is calculated for both A and B. The
displacement is calculated using the averages as if they were positions
of atoms of single structures in a pairwise alignment. Note that as in
the pairwise case, this algorithm does not allow block-tuples to
overlap, so the final set of block-tuples that are aligned by the merge
procedure will be a legal assembly.

The merge procedure has now been specified except for LocalOpt
and the extension procedure. We now explain both these steps in
detail.

LocalOpt. LocalOpt acts independently on A and B; therefore, it is
described here only on A. The intuition for the LocalOpt step comes
from merges in the previous iterations. The block-tuple alignment
that an assembly inherits is the result of a global RMSD alignment of
the block-tuple of potentially many protein structures. Therefore,
while keeping the residue alignments fixed, it is often still possible to
transform the coordinates of the C-alpha atoms to improve bent
RMSD. LocalOpt acts separately on each block-tuple in the assembly.
In particular, if a0, a1, . . ., ar are the structures within a block-tuple
(where a0 is the reference structure as defined by merge), each ai is
removed in turn and then realigned to minimize RMSD to the other r
structures for each block-tuple.

Extension phase. In the extension phase, both ends of block-tuples of
five to nine residues are explored in order to determine if additional
adjacent residues have a good multiple alignment. The LocalOpt
transformations associated with each block-tuple in each structure

Figure 7. Two Sequential Block Pairs that Could Form Part of an

Assembly

Block pair BC precedes block pair DE because B precedes D and C
precedes E in their respective protein sequences.
doi:10.1371/journal.pcbi.0040010.g007

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100098

Flexible Multiple Structure Alignment

are applied to the residues immediately before and after the block-
tuple. If the average distance between all pairs of residues in all
structures before or after a block-tuple is less than 5 Å, the residues
are added to the block-tuple. This is done in a greedy fashion. Note
that this allows block-tuples to be longer than nine residues or even
to overlap (though in practice, we do not allow them to overlap by
any more than five residues to bound computational time).

Final output. When only one assembly remains, as in the pairwise
case, this produces the bent alignment. As before, a final realignment
and extension phase is done in which additional i-residue segments
are greedily added to the common core, for i¼ 4 down to 1, provided
their average RMSD lies below a (user-settable) cutoff. This cutoff is
solely responsible for the size of common core/RMSD tradeoff found
in Figures 2 and 3. All residues that were aligned in the iterative phase
are kept in the final alignments. Block-tuples are not allowed to
overlap in the final extension phase. A new RMSD alignment of the
original unbent structures is done, aligning residues according to the
extended block-tuples. This assembly, its RMSD, and the sets of

aligned residues are the algorithm’s unbent output. A p-value is not
output when a group of more than two structures is to be aligned.

Acknowledgments

We are grateful to the anonymous referees for many helpful
comments that greatly improved the paper. The first author blames
his coauthors for the name of our alignment program.

Author contributions. MM, BB, and LC conceived and designed the
experiments. MM performed the experiments. MM and LC analyzed
the data. LC wrote the paper.

Funding. LC and BB were supported in part by National Science
Foundation Information Technology Research for National Priorities
grant (ASEþNHS)(dms)0428715. MM was supported in part by
National Institutes of Health training grant T90 DK070069.

Competing interests. The authors have declared that no competing
interests exist.

References
1. Levitt M, Gerstein M (1998) A unified statistical framework for sequence

comparison and structure comparison. Proc Natl Acad Sci U S A 95: 5913–
5920.

2. Chothia C, Lesk A (1986) The relation between sequence and structure in
proteins. EMBO J 5: 823–826.

3. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng
12: 85–94.

4. Dunbrack RL (2006) Sequence comparison and protein structure pre-
diction. Curr Opin Struct Biol 16: 274–284.

5. Abagyan RA, Batalov S (1997) Do aligned sequences share the same fold? J
Mol Biol 273: 355–368.

6. Edgar R, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struct
Bio 16: 368–373.

7. Whisstock JC, Lesk AM (2003) Prediction of protein function from protein
sequence and structure. Q Res Biophys 36: 307–340.

8. Kinch LN, Grishin NV (2002) Evolution of protein structures and functions.
Curr Opin Struct Biol 12: 400–408.

9. Grishin NV (2001) Fold change in evolution of protein structures. J Struct
Biol 134: 167–185.

10. Irving JA, Whisstock JC, Lesk AM (2001) Protein structural alignments and
functional genomics. Proteins 42: 378–382.

11. Panchenko A, Marchler-Bauer A, Bryant SH (1999) Threading with explicit
models for evolutionary conservation of structure and sequence. Proteins
(Supplement 3): 133–140.

12. O’Sullivan O, Suhre K, Abergel C, Higgins D, Notredame C (2004)
3DCoffee: Combining protein sequences and structures within multiple
sequence alignments. J Mol Biol 340: 385–395.

13. Shindyalov I, Bourne P (1998) Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Eng 11: 739–
747.

14. Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned
fragment pairs allowing twists. Bioinformatics (Supplement 2): II246–II255.

15. Holm L, Park J (2000) DaliLite workbench for protein structure
comparison. Bioinformatics 16: 566–567.

16. Nussinov R, Wolfson H (1991) Efficient detection of three-dimensional
structural motifs in biological macromolecules by computer vision
techniques. Proc Natl Acad Sci U S A 88: 10495–10499.

17. Dror O, Benyamini H, Nussinov R, Wolfson H (2003) MASS: Multiple
structural alignment by secondary structures. Bioinformatics 19: 95–104.

18. Dror O, Benyamini H, Nussinov R, Wolfson H (2003) Multiple structure
alignment by secondary structures: Algorithm and applications. Protein Sci
12: 2492–2507.

19. Kolbeck B, May P, Schmidt-Goenner T, Steinke T, Knapp1 EW (2006)
Connectivity independent protein-structure alignment: A hierarchical
approach. BMC Bioinformatics 7: 510.

20. Xu J, Jiao F, Berger B (2007) A parameterized algorithm for protein
structure alignment. J Comput Biol 14: 564–577.

21. Yuan X, Bystroff C (2005) Non-sequential structure-based alignments
reveal topology-independent core packing arrangements in proteins.
Bioinformatics 21: 1010–1019.

22. Goldman D, Istrail S, Papadimitriou CH (1999) Algorithmic aspects of
protein structure similarity. In: Beame P, editor. Proceedings of the 40th
Annual Symposium on Foundations of Computer Science. Los Alamitos
(California): IEEE Computer Society. pp. 512–522.

23. Wang L, Jiang T (1994) On the complexity of multiple sequence alignment.
J Comput Biol 1: 512–522.

24. Kolodny R, Linial N (2004) Approximate protein structural alignment in
polynomial time. Proc Natl Acad Sci U S A 101: 12201–12206.

25. Eidhammer I, Jonassen I, Taylor WR (2000) Structure comparison and
structure patterns. J Comput Biol 7: 685–716.

26. Kabsh W (1978) A discussion of the solution for the best rotation to relate
two sets of vectors. Acta Crystallogr A 34: 827–828.

27. Ye Y, Godzik A (2005) Multiple flexible structure alignment using partial
order graphs. Bioinformatics 21: 2362–2369.

28. Kolodny R, Koehl P, Levitt M (2005) Comprehensive evaluation of protein
structure alignment methods: Scoring by geometric measures. J Mol Biol
346: 1173–1188.

29. Jung J, Lee B (2000) Protein structure alignment using environmental
profiles. Protein Eng 13: 535–543.

30. Suyama M, Matsuo Y, Nishikawa K (1997) Comparison of protein structures
using 3D profile alignment. J Mol Evol 44 (Supplement 1): S163–S173.

31. Bonvin A (2006) Flexible protein-protein docking. Curr Opin Struct Biol
16: 194–200.

32. Echols N, Milburn D, Gerstein M (2003) MolMovDB: Analysis and
visualization of conformational change and structural flexibility. Nucleic
Acids Res 31: 478–482.

33. Lemmen C, Lengauer T, Klebe G (1998) FlexS: A method for fast flexible
ligand superposition. J Medicinal Chem 41: 4502–4520.

34. Schueler-Furman O, Wang C, Bradley P, Misura K, Baker D (2005) Review:
Progress in modeling of protein structures and interactions. Science 310:
638–642.

35. Singh R, Berger B (2005) ChainTweak: Sampling from the neighbourhood
of a protein conformation. In: Altman R, Jung T, Klein T, Dunker K,
Hunter L, editors. Proceedings of the 2005 Pacific Symposium on
Biocomputing. London: World Scientific Publishing. pp. 54–65.

36. Shatsky M, Nussinov R, Wolfson H (2002) Flexible protein alignment and
hinge detection. Proteins 48: 242–256.

37. Mizuguchi K, Deane C, Blundell TL, Overington J (1998) HOMSTRAD: A
database of protein structure alignments for homologous families. Protein
Sci 11: 2469–2471.

38. VanWalle I, Lasters I, Wyns L (2005) SABmark—A benchmark for sequence
alignment that covers the entire known fold space. Bioinformatics 21:
1267–1268.

39. Barton G, Sternberg M (1987) A strategy for the rapid multiple alignment
of protein sequences: Confidence levels from tertiary structure compar-
isons. J Mol Biol 198: 327–337.

40. Murzin A, Brenner S, Hubbard T, Chothia C (1995) SCOP: A structural
classification of proteins database for the investigation of sequences and
structures. J Mol Biol 297: 536–540.

41. Shatsky M, Nussinov R, Wolfson H (2004) A method for simultaneous
alignment of multiple protein structures. Proteins 56: 143–156.

42. Konagurthu A, Whisstock J, Stuckey P, Lesk A (2006) MUSTANG: A
multiple structural alignment algorithm. Proteins 64: 559–574.

43. Guex N, Peitsch M (1997) SWISS-MODEL and the Swiss-PdbViewer: An
environment for comparative protein modeling. Electrophoresis 18: 2714–
2723.

44. Gerstein M, Levitt M (1998) Comprehensive assessment of automatic
structural alignment against a manual standard, the SCOP classification of
proteins. Prot Sci 7: 445–456.

45. Hobohm U, Sander C (1994) Enlarged representative set of protein
structures. Protein Science 3: 522–524.

46. Jackins C, Tanimoto S (1983) Quad-trees, Oct-trees, and K-trees: A
generalized approach to recursive decomposition of euclidean space. IEEE
Trans Pattern Anal Mach Intell 5: 533–539.

PLoS Computational Biology | www.ploscompbiol.org January 2008 | Volume 4 | Issue 1 | e100099

Flexible Multiple Structure Alignment

