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Abstract

Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonymous codons. Although
alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns
of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse
bacteriophages that infect E. coli, P. aeruginosa, and L. lactis as their primary host. We use the concept of a ‘‘genome
landscape,’’ which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of
randomization tests that allow us to interrogate the significance of one aspect of codon usage, such as GC content, while
controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly
non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins
of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our
results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of
bacteriophages.
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Introduction

The genomes of most organisms exhibit significant codon

bias—that is, the unequal usage of synonymous codons. There are

longstanding and contradictory theories to account for such biases.

Variation in codon usage between taxa, particularly within

mammals, is sometimes attributed to neutral processes—such as

mutational biases during DNA replication, repair, and gene

conversion [1–4].

There are also theories for codon bias driven by selection. Some

researchers have discussed codon bias as the result of selection for

regulatory function mediated by ribosome pausing [5], or selection

against pre-termination codons [6,7]. However, the dominant

selective theory of codon bias in organisms ranging from E. coli to

Drosophila posits that preferred codons correlate with the relative

abundances of isoaccepting tRNAs, thereby increasing transla-

tional efficiency [8–13] and accuracy [14]. This theory helps to

explain why codon bias is often more extreme in highly expressed

genes [15], or at highly conserved sites within a gene [14].

Translational selection may also explain variation in codon usage

between genes selectively expressed in different tissues [16,17].

However, recent work suggests that synonymous variation,

particularly with respect to GC content, affects transcriptional

processes as well [18].

The codon usage of viruses has also received considerable

attention [19,20], particularly in the case of bacteriophages [21–

26]. Most work along these lines has focused on individual phages,

or on the patterns of genomic codon usage across a handful of

phages of the same host.

Here, we provide a systematic analysis of intragenomic variation

in bacteriophage codon usage, using 74 fully sequenced viruses

that infect a diverse range of bacterial hosts. Motivated by energy

landscapes associated with DNA unzipping [27,28], we develop a

novel methodological tool, called a genome landscape, for

studying the long-range properties of codon usage across a phage

genome. We introduce a series of randomization tests that isolate

different features of codon usage from each other, and from the

amino acid sequence of encoded proteins. Thirty-three of the

phages in our analysis are shown to exhibit non-random variation

in synonymous GC content, as well as non-random variation in

codons adapted for host translation, or both. Additionally, we

demonstrate that phage genes encoding structural proteins are

significantly more adapted to host-preferred codons compared to

non-structural genes. We discuss our results in the context of

translational selection and lateral gene transfer amongst phages.

Results

Genome Landscapes
We start by introducing the concept of a genome landscape,

which provides a simple means for visualizing long-range

correlations of sequence properties across a genome [29]. A

genome landscape is simply a cumulative sum of a specified

quantitative property of codons. The calculation of the cumulative

sum is straightforward, and it consists of scanning over the genome

sequence one codon at a time, gathering the property of each

codon, and summing it with the properties of previous codons in

the genome sequence. Similar cumulative sums are used in solid-
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state physics for, e.g., the calculation of energy levels [30]. In the

case of the GC3 landscape, we have

FGC3 mð Þ~
Xm

i~1

gGC3 ið Þ{gGC3ð Þ ð1Þ

where gGC3(m) equals one or zero, depending upon whether the mth

codon ends in a G/C or A/T, respectively. Note that we subtract

the genome-wide average GC3 content, gGC3, so that

FGC3(0) = FGC3(N) = 0, where N is the length of the genome. In

other words, we convert the genome codon sequence into a binary

string of 1’s and 0’s according to whether each codon is of type

GC3 or AT3, and we cumulatively sum this sequence to compute

FGC3(m).

The interpretation of a GC3 landscape is straightforward.

Regions of the genome whose landscape exhibits an uphill slope

contain higher than average GC3 content, whereas regions of

downhill slope contain lower than average GC3 content. The

genome landscape provides an efficient visualization of long-range

correlations in sequence properties across a genome, similar to the

techniques introduced by Karlin [31].

Traditional visualizations of GC3 content involve moving

window averages of %GC3 over the genome [32]. In order to

compare these techniques with the landscape approach, we focus

on the E. coli phage lambda as an illustrative example. Figure 1A

shows the lambda phage GC3 landscape above its associated

‘‘GC3 histogram’’. The histogram shows the GC3 content of each

gene, and the width of each histogram bar reflects the length of the

corresponding gene. Thus, the gene-by-gene histograms mimic a

sliding window average view of nucleotide content across the

genome, but focus on the contributions of individual genes to these

sequence properties. Figure 1A reveals a striking pattern of lambda

phage codon usage: the genome is apparently divided into two

halves that contain significantly different GC3 contents [33,34].

The large region of uphill slope on the left half of the GC3

landscape reflects the fact that the majority of the genes in this

region contain an excess of codons that end in G or C. This trend

is also reflected in the GC3 histogram bars, which are higher than

average in the left half of the genome (Figure 1).

It is clear that genome landscapes contain the same information

as gene-by-gene histograms. However, as has been noted before

[29], genome landscapes also represent a powerful visualization

tool that emphasizes genome-wide trends in sequence properties.

As we demonstrate below, gene-by-gene histograms offer a

mechanism by which to quantify these trends, while the landscapes

offer striking views of these trends that can aid in their

interpretation. In addition, GC-landscapes are directly useful for

modeling physical properties of DNA unzipping [28].

Genome landscapes also provide a natural means of evaluating

whether or not features of codon usage are due to random chance.

Under a null model in which the g(i)’s above are chosen as

independent random variables with var(g(i)) = Æg(i)2æ2Æg(i)2æ = D,

one can show (see Methods) that the standard deviation of

F(GC3,m) is

sGC3(m)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SF (GC3,m)2T{SF (GC3,m)T2

q

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DGC3m(N{m)

N

r
:

ð2Þ

This quantity is shown as a purple band in Figure 1. For g(i)’s

chosen to be 0 or 1 at random, DGC3 = 1/4 and the maximum

width
ffiffiffiffiffi
N
p �

4 is obtained at m = N/2. Since the scale of variation

across the lambda phage GC3 landscape is much greater than its

expectation under the null, we can conclude that the distribution

of G/C versus A/T ending codons is highly non-random in the

lambda phage genome.

We can also gain intuition about the degree of non-randomness

in the GC3 landscape by considering what would happen if the

lambda phage genome were to accumulate random synonymous

mutations. Figure 2A shows snapshots of the lambda GC3

landscape as we simulate synonymous mutations to the genome.

Between each snapshot, N synonymous mutations were introduced

by picking a codon at random along the genome, and then

choosing a new synonymous codon at random according to the

global lambda phage codon distribution. By preserving the global

codon distribution in each synonymous variation of the genome,

this procedure inherently controls for any mutational bias or other

source of global codon usage bias that may be present in the phage

genome nucleotide content. The same is true for all randomization

tests discussed in this paper. As more mutations are introduced,

the GC3 landscape of the synonymously mutated lambda genome

approaches the purple band, indicating that the GC3 pattern in

the real lambda phage genome is highly non-random.

The procedure of producing a genome landscape can be

applied to other properties of codon usage. In addition to GC3, we

will study patterns in the Codon Adaptation Index (CAI). CAI

measures the similarity of a gene’s codon usage to the ‘preferred’

codons of an organism [35]—in this case, the host bacterium of

the phage under study. Every bacterium has a preferred set of

codons defined as the codons, one for each amino acid, that occur

most frequently in genes that are translated at high abundance.

These genes are often taken to be the ribosomal proteins and

translational elongation factors [35] (see Methods).

In order to calculate CAI, the preferred codons are each

assigned a weight w = 1. The remaining codons are assigned

weights according to their frequency in the highly-translated

genes, relative to the frequency of the w = 1 codon. The CAI of a

gene is defined as the geometric mean of the w-values for its

codons

CAI~ PM
i~1wi

� �1=M
, ð3Þ

where wi is the w-value of the ith codon, and M is the length of the

Author Summary

Any protein can be encoded by multiple, synonymous
spellings. But organisms typically prefer one spelling over
another—a phenomenon known as codon bias. Codon
bias is generally understood to result from selection for
synonymous spellings that increase the rate and accuracy
of protein translation. In this work, we have examined the
complete genomes of all sequenced viruses that infect the
bacteria E. coli, P. aeruginosa, and L. lactis, and have found
that many of these viral genomes also exhibit codon bias.
Moreover, the degree of codon bias varies across the viral
genome, as visualized using a technique called a ‘‘genome
landscape.’’ By comparing the observed genomes to
randomly drawn genomes, we demonstrate that the
regions of high codon bias in these viral genomes often
coincide with regions encoding structural proteins. Thus,
the proteins that a virus needs to produce in high copy
number utilize the same encoding as its host organism
does for highly expressed proteins. Our results extend the
translational theory of codon bias to the viral kingdom:
parts of the viral genome are selected to obey the
preferences of its host.

Bacteriophage Codon Usage
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Figure 1. GC3 and CAI landscapes for lambda phage. Landscapes of GC3. (left) and CAI (right) measures of codon usage in Lambda phage.
Only coding sequences are considered, which when concatenated together are 40,773 bp long (see Table 2). The GC3 landscape is the mean-
centered cumulative sum of the GC3 content (GC3 = 1, AT3 = 0) of codons. The CAI landscape is the mean-centered cumulative sum of the log w-
value for each codon. For each landscape, a region exhibiting an uphill slope corresponds to higher than average GC3 or CAI. The horizontal purple
band represents the expected amount of variation in a random walk of GC3 or AT3 choices, given by Equation 2. Both landscapes exhibit features far
outside of the purple bands, indicating that the patterns of codon usage are highly non-random. Gene boundaries are represented by the bars in the
histograms below each landscape. The height of the bars in the histogram indicate the GC3 and CAI values for each gene.
doi:10.1371/journal.pcbi.1000001.g001

Figure 2. Snapshots of simulated synonymous mutation in the lambda phage genome. (A) Shows GC3 and (B) shows CAI landscapes. In
between successive snapshots (labeled by integers), N synonymous mutations are introduced into the genome and the resulting landscape is shown,
where N is the number of codons in the lambda phage genome (see the Genome Landscapes section). These snapshots show that the simulated
genome landscapes approach the random null model, indicated by the purple band (see Figure 1). The final CAI landscape (3) lies almost completely
within the purple band. Using the lambda phage mutation rate of 7.761028 mutations/bp/replication [57], we can estimate that approximately 107

genome replications would be required to relax within the purple bars.
doi:10.1371/journal.pcbi.1000001.g002

Bacteriophage Codon Usage
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gene. This quantity can be re-written as

CAI~exp
1

M

XM
i~1

ln wið Þ
 !

: ð4Þ

The latter formulation is more useful for calculating genome

landscapes, because the argument of the exponential function is

now a sum of the logs of the w-values. Therefore, we define the

CAI landscape as

FCAI mð Þ~
Xm

i~1

gCAI ið Þ{gCAIð Þ, ð5Þ

where gCAI(m) = ln(wm).

The CAI landscape for lambda phage is shown in Figure 1B,

along with the CAI histogram of lambda phage. For the CAI

histograms, the height of each bar represents the CAI value of that

gene (Equation 3). As in the case with the GC3 landscape, we find

that the lambda phage CAI landscape corresponds closely to the

CAI histogram, but it offers a more striking global view of the

long-range CAI structure in the lambda phage genome. One

contiguous half of the lambda phage genome exhibits elevated

CAI, whereas the other half exhibits depressed CAI. The observed

CAI landscape lies far outside the purple band in Figure 1,

calculated according to Equation 2, indicating that the pattern of

CAI across the lambda phage genome is non-random. However,

the purple band is wider for the CAI landscape than for the GC3

landscape, because the variance in the ln(wi)’s, DCAI, is greater than

DGC3.

The GC3 and CAI landscapes for lambda phage are highly

correlated with each other (Figure 1). In particular they both have

large uphill regions on the left-hand side of the genome, indicating

a region containing codons with elevated GC3-content and CAI

values, compared to the genome average. It is possible that the

observed correlation between the GC3 and CAI landscapes could

be caused by the conflation between high CAI and GC3 in the

preferred E. coli codons, as we discuss below.

We note that the genes in the region of elevated CAI primarily

encode the highly translated structural proteins that form the

capsid and tail of the lambda phage virions. This pattern suggests

the hypothesis that, because of the need to produce structural

genes in high copy number during the viral life cycle, structural

genes preferentially use codons that match the host’s preferred set

of codons. We will explore this translational-selection hypothesis in

greater detail below.

The Effect of Amino Acid Content on Genome
Landscapes

The previous section illustrated that the codon usage across the

lambda phage genome is highly non-random with respect to both

GC3 and CAI. In this section we quantify this statement, and we

focus on aspects of lambda’s codon usage patterns that are

independent of the amino acid sequences of the encoded proteins.

Since we are interested in studying the patterns of synonymous

codon usage, it is important that we control for the amino acid

sequence of encoded proteins. Phages utilize a diverse spectrum of

proteins, ranging from those that form the protective capsid for

nascent progeny, to those encoding for the tail and tail fibers, to

those that regulate the switch between lytic or lysogenic infection

pathways. As with other organisms, phage proteins have been

selected at the amino acid level for function and folding. Some

portion of a phage’s codon usage is surely influenced by selection

for amino acid content.

We can construct a simple randomization test to interrogate the

potential influence of the amino acid sequence on the GC3 and

CAI landscapes of lambda phage. In this test, we generate random

genomes that have the exact same amino acid sequence as lambda

phage, but shuffled codons, such that the genome-wide, or global,

codon distribution is preserved in each random genome (see

Methods). As summarized in Table 1, we refer to this test as the

‘aqua’ randomization test. For each of the randomized genomes,

we calculate GC3 and CAI landscape. Similar to a recent

randomization method [36], we then compare the observed

landscape of the actual genome to the distribution of landscapes

generated from the randomized genomes.

Figure 3 shows the results of this comparison, with the observed

landscapes plotted as black lines, and the mean6one and two

standard deviations of random trials shown in dark and light aqua,

respectively. As the figures show, the observed landscapes lie in the

far extremes of the randomized distributions – indicating that the

amino acid sequence of the lambda phage genome does not

determine the extraordinary features of the observed landscapes.

It is also instructive to query the influence of amino acid content

on codon usage in each gene individually. The histogram view of

these randomization tests allows us to ask this question precisely.

Because the amino acid sequence is preserved exactly across the

genome, each histogram bar in Figure 3 can be considered as its

own randomization test, one for each gene. The position of the

horizontal black bar reflects the actual codon usage of each gene,

and it can be compared to the distribution of random trials in

order to compute a quantile for each gene:

qw~
number of trials less than observed

number of trials
,

qv~
number of trials greater than observed

number of trials
:

ð6Þ

Note that we have defined two quantiles, q. and q,, that describe

the proportion of random trials strictly less or strictly greater than

the observed data. These two quantities sum to a values less than

one (and equal to one if there are no ties). A value of q..0.5

signifies that the observed statistic (e.g. GC3 or CAI) is greater than

most of the random trials.

Associated with each of these quantiles is a p-value quantifying

whether the observed gene sequence has significantly different

codon usage than the random trials: p, = 12q, and p. = 12q.. If

either one of these p-values is low, it signifies that the GC3 (or CAI)

content of the gene is significantly different than the genomic

average, controlling for the amino acid sequence of the gene. p,

tests for significantly depressed GC3 (or CAI) in a gene; and p.

tests for significantly elevated GC3 (or CAI) in a gene. We will use

these p-values, which arise from the ‘aqua’ randomization test, in

two ways.

Since we are interested in studying the effects of synonymous

codon usage alone, we first wish to filter out any genes whose

codon usage does not significantly deviate from random, given the

amino acid sequence. Therefore, in the subsequent gene-by-gene

analyses reported in this paper, we retain only those genes whose

quantiles fall in the extreme 5% of random trials. That is, we only

keep those genes for which pv

aquav0:025 or pw

aquav0:025. These

genes are said to ‘pass’ the aqua test, and they are unshaded in

Figure 3.

We also use the gene-by-gene p-values to quantify the degree to

which codon usage is independent of amino acid sequence across

the genome as a whole. To do so, we combine all the gene-by-gene

Bacteriophage Codon Usage
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p-values into an aggregate p-value for the entire genome, paqua,

using the method of Fisher [37]. We calculate the combined p-

value by summing the logs of twice the minimum of each gene-

specific p-value

faqua~{2
Xi~k

i~1

ln 2min pv

aqua,i,p
w

aqua,i

� �h i
, ð7Þ

where pv

aqua,i represents the aqua p,-value for gene i, and k is the

number of genes in the genome. It is well known that faqua is chi-

squared distributed with 2k degrees of freedom [37]. Thus, the

combined p-value for the entire genome,

p
aqua
combined~1{Px2,2k faqua

� �
, where Px2,2k fð Þ is the cumulative

chi-squared distribution with 2k degrees of freedom. In the case of

lambda phage, we find p
aqua
combined~7:42|10{98 for GC3 and

p
aqua
combined~1:50|10{41 for CAI. Thus, we conclude that the

neither the GC3 nor the CAI patterns across the lambda phage

genome are determined by the genome’s amino acid sequence.

In the following sections we will use the aqua test (see Table 1)

and its associated gene-by-gene and combined p-values as a

control to verify that features of codon usage are not driven by the

amino acid sequence.

Disentangling CAI from GC3
Depending upon the preferred codons of the host species, the

effect of selection for high CAI in a viral gene is not necessarily

independent from the effect of selection for other features of viral

codon usage, such as high GC3. For example, codons with high

CAI values associated with a given host may be biased towards

high GC3 values as well (see Figure 4). It is important, therefore, to

disentangle the effects of selection for CAI versus selection for

GC3, in order to determine which one of these forces is

responsible for the non-random patterns of codon usage observed

in the lambda genome.

The weights used to compute CAI for E. coli are shown in

Figure 4. The 61 codons are placed into one of four groups

according to whether they are GC3 or not (red or blue,

respectively), and whether they have high CAI or not (dark or

light, respectively). High CAI is determined by an arbitrary cutoff

of w$0.9. As this table demonstrates, the set of preferred codons in

E. coli is slightly biased towards GC-ending codons (58%).

The GC bias of preferred codons, although slight, could

conflate the results of selection for CAI versus GC3 in phages that

infect E. coli, such as lambda. We therefore introduce another

randomization test that allows us to disentangle patterns of CAI

content from patterns of GC3 content. Similar to the aqua

randomization test described above, we draw random phage

genomes such that the amino acid sequence is conserved, but we

add the additional constraint of conserving the exact GC3

sequence as well (see Methods). For example, at a site containing

a GC3 codon for leucine, in our random trials we only allow those

leucine codons terminating in G or C. By comparing the observed

landscapes of the genome with the distribution of randomly drawn

landscapes, we can isolate the features of codon usage driven by

CAI, independent of GC3 and amino acid content. We refer to

this randomization procedure at the ‘orange’ randomization test

(Table 1).

Conversely, we also wish to assess the strength of patterns in

GC3 content, independent of CAI and amino acid content. The

appropriate randomization procedure in this case requires that we

constrain the amino acid sequence and the sequence of codon CAI

values while allowing GC3 to vary. However, because CAI values

are not binary, CAI cannot be constrained exactly while still

allowing for enough variability to produce a meaningful

randomization test. Thus, we introduce a binary version of the

CAI measure, called BCAI, that is qualitatively the same as and,

for our purposes, interchangeable with CAI.

The BCAI w-value for a codon is defined to be 0.7 if the codon

is high CAI, and 0.3 if the codon has low CAI. High CAI is

defined by the threshold of w$0.9 (see Figure 4). The threshold

value w$0.9 is arbitrary, and our results are robust to changing

this threshold (see Figures S1 and S2). Our use of the term ‘binary’

here refers to the binary classification scheme and not the

particular values of BCAI. The actual values assigned for BCAI

are arbitrary, for the most part, and have no effect on our results.

Nevertheless, we cannot assign low BCAI a value of zero, because

this value would be problematic when included in the geometric

averaging procedure, or when computing the logarithm of w-

values for BCAI landscapes.

BCAI provides a useful surrogate for CAI because its values are

binary, thereby allowing us to constrain a gene’s amino acid

sequence and BCAI sequence exactly, while varying GC3 content

in random trials. The BCAI landscapes and histograms are

calculated in the same way as CAI landscapes and histograms,

except using BCAI w-values. As expected, the BCAI landscape of a

genome is qualitatively similar to its CAI landscape (compare

Figures 5B and 3B), and the two landscapes are highly correlated

(e.g. r = 0.72 for lambda phage). Thus BCAI is interchangeable

with CAI for the purposes of our randomization tests.

Figure 5 shows the results of the two randomization tests

outlined above: the ‘green’ test that compares the observed GC3

landscape to a distribution of random trials constraining the amino

acid sequence and the BCAI sequence; and the ‘orange’ test that

compares the observed BCAI landscape to a distribution of

random trials constraining the amino acid sequence and the GC3

sequence. Our convention for naming these two tests is

summarized in Table 1.

As seen in Figure 5A, the observed GC3 landscape lies

significantly outside of the random trials that preserve amino acid

sequence and BCAI sequence. Combining the gene-by-gene p-

values for this test, we find p
green
combined~5:1|10{68 – indicating that

the lambda phage genome as a whole has non-random GC3

variation independent of amino acid and CAI (actually, BCAI)

Table 1. Randomization test descriptions.

Test Name Genome Properties Constrained Genome Properties Varied Figure

Aqua Amino acid sequence, global codon distribution Synonymous codons 3

Orange Amino acid and BCAI sequences GC3 5

Green Amino acid and GC3 sequences BCAI 5

The three randomization tests used in the paper are color-coded according to what genome properties are constrained in the random trials.
doi:10.1371/journal.pcbi.1000001.t001

Bacteriophage Codon Usage
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Table 2. Phage properties.

Name Host Accession Lifestyle
Number of
Genes Length

Coding
Length

Percent
GC3 Orange p-value Green p-value

T5 E. coli NC_005859 NT 161 121750 96051 31.6 1.38610231 1.71610219

RB69 E. coli NC_004928 NT 273 167560 156147 29 1.25610221 5.21610201

phiEL P. aeruginosa NC_007623 NT 201 211215 194850 57.8 7.38610220 2.17610209

RB49 E. coli NC_005066 NT 273 164018 152592 36.9 2.01610218 2.48610201

F116 P. aeruginosa NC_006552 T 70 65195 60240 76.3 1.31610210 6.31610216

CTX P. aeruginosa NC_003278 T 47 35580 31971 81.2 1.44610209 6.82610232

phiKMV P. aeruginosa NC_005045 NT 49 42519 38310 79.9 3.25610209 9.54610203

T4 E. coli NC_000866 NT 269 168903 153660 24.3 4.59610209 8.62610201

lambda E. coli NC_001416 T 69 48502 40773 53.5 6.25610209 5.10610268

D3 P. aeruginosa NC_002484 T 94 56425 49095 68.3 1.57610208 3.85610207

P2 E. coli NC_001895 T 42 33593 30411 54.7 5.60610208 2.54610261

P1 E. coli NC_005856 T 108 94800 80103 48.2 9.37610208 3.51610211

D3112 P. aeruginosa NC_005178 T 55 37611 34908 80.4 3.05610207 4.35610205

WPhi E. coli NC_005056 T 43 32684 29601 56.4 8.39610207 7.80610255

K1F E. coli NC_007456 NT 43 39704 34629 53.4 1.75610205 8.03610202

T3 E. coli NC_003298 NT 47 38208 29694 54.3 3.50610205 3.07610204

PaP3 P. aeruginosa NC_004466 T 71 45503 41115 58.1 5.09610205 1.64610219

phiV10 E. coli NC_007804 T 55 39104 36111 48.8 1.25610204 9.38610211

P27 E. coli NC_003356 T 58 42575 37707 50.5 2.24610204 2.23610220

933W E. coli NC_000924 T 78 61670 52956 50 4.29610204 8.88610209

B3 P. aeruginosa NC_006548 T 56 38439 36138 77.3 4.40610204 3.33610205

HK97 E. coli NC_002167 T 59 39732 34191 52.1 7.61610204 1.19610220

VT2-Sa E. coli NC_000902 T 83 60942 52647 51.3 1.31610203 7.40610207

PRD1 E. coli NC_001421 NT 21 14925 11988 47.6 2.99610203 5.97610202

JK06 E. coli NC_007291 U 71 46072 32841 43 3.84610203 1.63610203

T1 E. coli NC_005833 NT 77 48836 44010 47.7 7.45610203 3.64610201

Pf1 P. aeruginosa NC_001331 U 12 7349 6282 75.7 9.66610203 6.67610201

HK022 E. coli NC_002166 T 57 40751 33885 52.7 1.25610202 4.36610218

4268 L. lactis NC_004746 NT 49 36596 33759 24.7 1.59610202 3.20610201

BP-4795 E. coli NC_004813 T 48 57930 22356 48.1 1.66610202 3.29610210

186 E. coli NC_001317 T 43 30624 27747 58.7 4.02610202 1.79610222

I2-2 E. coli NC_001332 U 8 6744 5166 35 6.91610202 1.01610201

phiKZ P. aeruginosa NC_004629 NT 306 280334 243384 26.8 1.32610201 1.79610214

bIL312 L. lactis NC_002671 T 27 15179 11292 28.1 1.49610201 8.85610204

HK620 E. coli NC_002730 T 58 38297 33717 45.9 1.61610201 1.41610205

Mu E. coli NC_000929 T 54 36717 33900 54.1 1.68610201 4.49610210

P4 E. coli NC_001609 T 14 11624 9765 52.4 1.71610201 4.17610218

N15 E. coli NC_001901 T 59 46375 41472 54.9 2.17610201 1.38610209

Stx2 I E. coli NC_003525 T 97 61765 34932 48.4 3.04610201 4.23610204

bIL286 L. lactis NC_002667 T 61 41834 38694 24.8 3.68610201 1.17610201

Tuc2009 L. lactis NC_002703 T 56 38347 35178 28 4.08610201 1.81610202

Stx2 II E. coli NC_004914 T 99 62706 34755 50.1 5.85610201 9.94610203

BK5-T L. lactis NC_002796 T 52 40003 33267 24 5.91610201 6.68610201

Stx1 E. coli NC_004913 T 93 59866 33444 49.5 6.75610201 2.97610203

LC3 L. lactis NC_005822 T 51 32172 29607 24.6 7.31610201 4.90610201

ul36 L. lactis NC_004066 NT 58 36798 32400 27.7 8.64610201 4.66610202

Pf3 P. aeruginosa NC_001418 U 9 5833 5487 35.9 8.70610201 1.64610206

bIL285 L. lactis NC_002666 T 62 35538 32646 26.7 9.20610201 9.93610201

Bacteriophage Codon Usage

PLoS Computational Biology | www.ploscompbiol.org 6 2008 | Volume 4 | Issue 2 | e1000001



sequence. Conversely, Figure 5B shows that the BCAI landscape

contains non-random features when controlling for both GC3 and

amino acid sequence (p
orange
combined~6:3|10{9). In other words, the

lambda phage genome exhibits highly non-random patterns of

both GC3 and CAI codon variation, independent of one another

and independent of the amino acid sequence.

Non-Random Patterns of CAI and GC3 in Bacteriophages
In the sections above we have demonstrated and quantified highly

non-random patterns of GC3 and CAI codon usage variation across

the lambda phage genome. We have also demonstrated that these

trends are independent of one another. In this section, we will extend

our analysis to a large range of diverse phages.

In this section we consider all sequenced phages that infect E.

coli, Pseudomonas aeruginosa or Lactococcus lactis as their primary host.

The latter two hosts were chosen because of they contain

unusually extreme GC3 content: 88 %GC3 for P. aeurginosa and

25 %GC3 for L. lactis, genome-wide. The extreme GC3 content of

these hosts give rise to opposing relationships between high CAI and

GC3 – as indicated schematically in Figure 6. In particular, P.

aeruginosa strongly favors GC3 in high-CAI codons (94%), and L. lactis

strongly favors AT3 in high-CAI codons (72%). Thus, these three

hosts span a large spectrum of relationships between CAI and GC3.

Since our randomization tests constrain amino acid and BCAI

exactly (the ‘green’ test), and amino acids and GC3 exactly (the

‘orange’ test), we can control for any possible conflation between

GC3 and CAI trends. Thus, the randomization tests are equally

applicable to all of the phage genomes, regardless of their host.

We performed the aqua, green, and orange randomization tests

on the 45 phages of E. coli, 12 phages of P. aeruginosa, and 17

phages of L. lactis whose genomes have been sequenced (see

Methods). In the first step of our analysis, we removed any phages

Figure 3. Observed and randomized landscapes for lambda phage. The figure shows the observed GC3 (left) and CAI (right) landscapes,
plotted in black, along with the mean61, and 62 standard deviations of randomized trials, shown in aqua (bold line, dark and light regions,
respectively). The aqua randomization test shown here draws random synonymous codons that preserve the exact amino acid sequence, according
to probabilities that preserve the global codon usage distribution of the lambda genome. For the most part, the observed landscapes lie significantly
outside the distribution of randomized landscapes–implying that the amino acid content of genes is not responsible for the observed pattern of the
CAI landscape. In the lower panel, however, genes whose GC3 (left) or CAI (right) values fall between the 0.025 and 0.975 quantile of the random trials
are shadowed in grey; the GC3/CAI values of such genes are not significantly different from random, given their amino acid sequence.
doi:10.1371/journal.pcbi.1000001.g003

Table 2. cont.

Name Host Accession Lifestyle
Number of
Genes Length

Coding
Length

Percent
GC3 Orange p-value Green p-value

r1t L. lactis NC_004302 T 50 33350 30315 25.4 9.53610201 6.03610201

bIL170 L. lactis NC_001909 T 63 31754 27663 27.1 9.91610201 8.71610201

Properties are listed for all phages included in Figure 8, in the same order based on the orange p-value. Lifestyle annotations are T (temperate), NT (non-temperate), U
(unknown). The coding length refers to the length of all coding sequences concatenated together (see Methods).
doi:10.1371/journal.pcbi.1000001.t002
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which failed either the aqua GC3 or aqua CAI tests, because the

codon usage of such genomes are influenced by their amino acid

sequence. A phage was said to pass these two control tests if its

Fisher combined p-values for both aqua GC3 and aqua CAI were

significant. The significance criterion for each test is pcombined,

5%/74, which incorporates a Bonferroni correction for multiple

tests. With this cutoff, 50 of the initial 74 phages passed the aqua

control tests.

Figure 7 shows results of these tests for several example

genomes. P2, a temperate phage, and T3, a non-temperate phage

both infect E. coli and both pass the control tests and exhibit

significant ‘orange’ and ‘green’ results, as does D3112, a temperate

phage that infects P. aeruginosa. However, not all phages that pass

the control test exhibit significant ‘orange’ and ‘green’ results – as

evidenced by bIL286, a temperate phage infecting L. lactis.

Figure 8 plots the distribution of combined Fisher p-values of

the orange and green tests, for the 50 phages that pass the control

tests. The majority of these p-values are highly significant. Using a

Bonferoni-corrected threshold of 5%/50, a total of 22 genomes

show significance in the orange test, 29 in the green test, and 17 in

both orange and green. These results indicate that non-random

patterns in codon usage are not unique to lambda phage. Indeed,

over a range of bacterial hosts and a range of phage viruses, there

is apparent pressure for non-random patterns of both GC3 content

and CAI content, independent of one another and independent of

the amino acid sequence.

Translational Selection on Phage Structural Proteins
In this section, we investigate a natural hypothesis concerning

the patterns of non-random CAI usage we have observed in phage

genomes – namely, that these patterns may be driven by selection

for translational accuracy and efficiency, which is stronger in more

highly expressed proteins [9,21].

Among all phage proteins, the structural proteins are the most

highly expressed [38]. The structural proteins form the protective

capsid that encloses the viral genome, as well as the tail, which is

often used for transmission of the phage genome to the inside of

the host [39]. These proteins must be produced in high copy

number – many tens of copies of each type of structural protein

needed to form each of hundreds of viral progeny [38]. For each

gene in a phage genome, we assigned a structural annotation of 1

if the gene was known to encode a structural protein and 0

otherwise (see Methods).

According to the standard hypothesis of translational selection,

the structural genes of phages should exhibit elevated CAI levels

compared to other phage genes, since they are translated (by the

host) in high copy numbers. To test this hypothesis, we performed

regressions between the structural annotation of phage genes and

their aqua CAI and orange BCAI p-values. In other words, we

compared the structural properties of genes against their CAI

content, controlling for amino acid sequence, and against their

BCAI content, controlling for both amino acid sequence and GC3

sequence.

In the case of lambda phage, Figure 9 shows the results of the

aqua CAI and orange BCAI randomization tests, with the

structural genes highlighted. The plot reveals a striking pattern:

the vast majority of the structural proteins lie on the left half of the

genome, exactly in the region where genes have elevated CAI

values. In order to quantify this association we performed

ANOVAs. Before regressing structural annotations against codon

usage, we first removed the non-informative genes – i.e. genes

whose codon usage are influenced by their amino acid content, as

indicated by a failure to pass the aqua CAI test.

Table 3 shows the results of the regression between aqua CAI

and orange BCAI p.-values versus structural annotations in

lambda phage. The results are highly significant: structural

annotations explain half of the variation in CAI, even when

controlling for genes’ amino acid sequences (aqua, r2 = 56%) as

well as GC3 sequences (orange test, r2 = 46%). The median p.-

value among structural genes is close to zero, whereas the median

p.-value among non-structural genes is close to one – indicating

that structural genes exhibit significantly elevated CAI values. These

highly significant results are consistent with the hypothesis of

translational selection on structural proteins.

In order to examine the relationship between structural an-

notation and CAI across all 74 phages in our study, we performed

the same ANOVA on the 1,309 informative genes (i.e. genes that

pass the aqua CAI randomization test). Once again, Table 3 shows

a highly significant relationship between structural annotation and

CAI values, controlling for amino acid content and GC3. Thus,

the tendency toward elevated CAI values in structural genes holds

across all the phages in this study, despite the fact that they infect a

diverse range of hosts with a wide variety of GC contents.

Similar to reports for other organisms [40], we find a

relationship between gene length and codon adaptation. In our

case, however, longer viral genes are associated with more

significant p.-values in the aqua and orange tests. However, the

strength of this relationship is weak, and controlling for gene

length does not affect our results on elevated CAI in structural

proteins (ANOVA p-values analogous to Table 3 are less than

1029 after controlling for gene length).

Figure 4. E. coli codon usage master table. The table of 61 codons
along with their associated w-values is shown for E. coli. The w-value of
each codon reflects its frequency in highly transcribed E. coli genes (see
main text). The Table 1 is divided into four regions: codons with high
CAI (w$0.9) ending in G or C (dark red); codons with high CAI ending in
A or T (dark blue); codons with low CAI (w,0.9) ending in G or C (light
red); codons with low CAI ending in A or T (light blue). As the table
shows, there is a slight bias for GC3 in the high-CAI codons (58%), and
slight bias away from GC3 in the low-CAI codons (48%).
doi:10.1371/journal.pcbi.1000001.g004
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Discussion

In this paper, we have developed genome landscapes as a tool

for visualizing and analyzing long-range patterns of codon usage

across a genome. In combination with a series of randomization

tests, we have applied this tool to study synonymous codon usage

in 74 fully sequenced phages that infect a diverse range of bacterial

hosts. Genome landscapes provide a convenient means to identify

long-range trends that are not apparent through conventional,

gene-by-gene or moving-window analyses. Using a statistical test

that compares codon usage to random trials, controlling for the

amino acid sequence, we found that we found that many of the

phages studied exhibit non-random variation in codon usage.

However, not all of the phages exhibit non-random variation as

exemplified by phage bIL286 (Figure 7D).

In light of long-standing [9] and recent [18] literature from

other organisms, we have focused on two aspects of phage codon

usage: variation in third-position GC/AT content (GC3) and

variation in the degree of adaptation to the ‘preferred’ codons of

the host (CAI). Almost three-quarters of the phages in our study

Figure 5. Observed and randomized landscapes for lambda phage. Observed landscapes are shown along with randomized landscapes
associated with the green and orange tests. The green randomization procedure tests the significance of the GC3 landscape controlling for the
observed CAI (actually, BCAI) variation across the genome. The orange randomization procedure tests the significance of the BCAI landscape,
controlling for the observed GC3 variation across the genome. Both tests preserve the amino-acid sequence exactly. Both observed landscapes lie
outside the distribution of random trials, indicating there is non-random GC3 content controlling for CAI, and non-random CAI content controlling for
GC3.
doi:10.1371/journal.pcbi.1000001.g005

Figure 6. Schematics of preferred codon usage tables for E. coli, P. aeruginosa, and L. lactis following the conventions of Figure 4.
Unlike E. coli, P. aeruginosa strongly favors GC3 in high-CAI codons (94%), and L. lactis strongly favors AT3 in high-CAI codons (72%).
doi:10.1371/journal.pcbi.1000001.g006
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Figure 7. Green (left) and orange (right) randomization tests for several phages. Bacteriophages P2 (A) and T3 (B) both infect E. coli. Phage
D3112 (C) infects P. aeruginosa. Phage bIL286 (D) infects L. lactis. T3 is the only non-temperate phage of this group. See Table 2 for combined Fisher
p-values for these tests. In the case of bIL286, note the lack of evidence for codon bias evident in the green and orange tests for bIL286, as confirmed
by the insignificant p-values in Table 2. In this case, we cannot rule out the possibility that the observed pattern in GC3 is determined completely by
the amino acid and CAI sequence (green), or that the observed pattern in CAI is determined by the amino acid and GC3 sequence (orange).
doi:10.1371/journal.pcbi.1000001.g007
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exhibit non-random intragenomic patterns of codon usage,

even when controlling for the amino acid sequence encoded

by the genome. Almost half of such genomes also show non-

random patterns of CAI when additionally controlling for the

GC3 sequence. In other words, there is substantial variation in

CAI above and beyond what would be expected by random

chance, given the amino acid and GC3 sequences of these

genomes.

We have also compared the CAI values of phage genes to their

annotations as structural or non-structural proteins. We have

conclusively demonstrated that phage genes encoding structural

proteins exhibit significantly elevated CAI values compared to the

non-structural proteins from the same genome. These results hold

even when controlling for the amino acid sequence and GC3

sequence of genes. Our conclusions across a diverse range of

phages are consistent with early observations on lambda’s codon

usage [34], early results for T7 [21], and with the general

hypothesis of translational selection, which predicts elevated CAI

in genes expressed at high levels [9,15,35]. The pattern of elevated

CAI in structural proteins is particularly striking the case of

lambda phage. It is also worth noting that we find no significant

relationship between a phage’s life-history (i.e. temperate versus

non-temperate) and the degree to which its structural proteins

exhibit elevated CAI (see Table 6). This observation likely reflects

the fact that at some point every phage, regardless of its life history,

must generate certain structural proteins in high abundance – and
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Figure 8. Combined Fisher p-values for the green and orange randomization tests across 50 phage genomes. Phage names are listed
on the x-axis, and are sorted by their orange p-value. A total of 29 genomes exhibit non-random GC3 content controlling for CAI (green test); and a
total of 22 genome exhibit non-random CAI content controlling for GC3 (orange test). 17 genomes pass both of these tests. The dashed horizontal
line indicates the threshold for significance after Bonfernni correction (i.e. 5%/50). Upwards arrows indicate p-values that lie beyond the limits of the
y-axis. See Table 2 for phage properties, including the p-values for these tests. Twenty four phage genomes that failed the aqua GC3 or CAI control
tests are not included in this figure.
doi:10.1371/journal.pcbi.1000001.g008

Figure 9. The relationship between codon usage and protein function in lambda phage. The figure shows the aqua (CAI, as in Figure 3)
and orange (BCAI, as in Figure 5) randomization tests overlaid with information about protein function: genes classified as structural are shown with a
white background and all other genes with a grey background. The histograms indicate a clear relationship between the structural classification of a
gene and its significance under the aqua and orange tests: structural genes typically have elevated quantiles in the aqua test, whereas other genes
typically have depressed quantiles. In other words, structural genes exhibit elevated CAI values when controlling for their amino acid sequence,
compared to codon usage in the genome as a whole. Moreover, as the orange histograms indicate, this pattern is not caused by variation in GC3
content: the structural genes exhibit elevated BCAI values after controlling for both their amino acid sequence and their GC3 sequence.
doi:10.1371/journal.pcbi.1000001.g009
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so it is beneficial to encode such protein using the host’s

translationally preferred codons.

Some of the phages examined are known to encode their own

tRNA genes. Table 5 lists the number of tRNA genes for the ten

phages in this study that encode tRNA genes. We have inspected

these examples for signs that structural genes might be

preferentially encoded by endogenous tRNAs, or the converse,

but have concluded that the data are equivocal. There are too few

informative examples to make a strong conclusion in either

direction.

Our results on translational selection in phages shed light on the

nature of selection on viruses. The standard interpretation of

elevated CAI in highly expressed bacterial proteins assumes a

fitness cost (per molecule) associated with inefficient or inaccurate

translation. We have observed a similar relationship between

expression level and CAI across a diverse range of bacteriophages,

which presumably do not incur a direct energetic cost from

inefficient translation by their hosts. Thus, our results suggest that

either there is an adaptive benefit (to the virus) of elevated CAI in

phage structural proteins, or that costs incurred by the host

bacterium also reduce the fitness of the virus.

In addition to our results on CAI, we have also observed non-

random patterns of GC3 variation across the genomes of many

phages. These patterns are highly significant even after controlling

for potential conflating factors, such as the amino acid sequences

and CAI sequences of genes. Unlike our results on CAI, there is no

clear mechanistic hypothesis underlying the non-random patterns

of GC3 in phages. It is possible that these patterns reflect selection

for efficient transcription [18] or for mRNA secondary structure.

But in the absence of independent information on such

constraints, we cannot assess the merits of these selective

hypotheses, nor rule out the possibility of variation in mutational

biases across the phage genomes. It is interesting to note that we

find these significant non-random patterns of GC3 predominantly

Table 3. Structural annotation verses codon usage.

Structure/Non-Structure/Test Lambda All Phage Genes

Number structural 7 279

Number non-structural 18 1022

Aqua CAI Randomization Test median p. structural 1.361024 8.061023

median p. non-structural 1 1

ANOVA significance p = 4.561025 p = 4.7610212

Orange BCAI Randomization Test median p. structural 2.861022 2.061021

median p. non-structural 0.98 0.73

ANOVA significance p = 1.861024 p = 1.6610215

The table shows the median p. values among structural and non-structural genes, under the aqua and orange randomization tests. Small p. values indicate
significantly elevated CAI, controlling for the amino acid sequence (aqua test) and the GC3 sequence (orange test). We also report the significance of non-parametric
ANOVAs that compare median p.-values between the structural and non-structural genes. Analyses are limited to those genes that pass the aqua test, as described in
the main text; similar results are found without this restriction.
doi:10.1371/journal.pcbi.1000001.t003

Table 4. Comparison between codon usage and refined
structural annotations.

Number/Test All Phage Genes

Number Head 145

Number Tail 134

Number non-structural (NS) 1022

CAI Randomization Test median p. head 2.061023

median p. tail 2.061022

median p. NS 1

ANOVA Head vs NS p = 6.4610219

ANOVA Tail vs NS p = 1.861021

ANOVA Head vs Tail p = 2.161028

Orange BCAI Randomization
Test median p. head 7.061022

median p. tail 4.361021

median p. NS 0.73

ANOVA Head vs NS p = 4.2610221

ANOVA Tail vs NS p = 1.761022

ANOVA Head vs Tail p = 6.061028

As in Table 3, we compare the median aqua and orange p. values among head
genes, tail genes, and non-structural genes. We report the significance of
pairwise non-parametric ANOVAs comparing head to non-structural, tail to non-
structural, and head to tail genes. These analyses are limited to genes that pass
the aqua test; similar results are found without this restriction.
doi:10.1371/journal.pcbi.1000001.t004

Table 5. The number of tRNA genes in phage genomes.

Phage Number of tRNAs in genome

T5 25

T4 8

VT2-Sa 3

933W 3

Phi 186 1

D3 4

P27 2

PaP3 4

RB69 2

For each phage genome, the GenBank entry was scanned for the presence of
tRNA genes. The number of these genes are listed beside the names of the
phages for the ten phage genomes in this study that do encode tRNAs.
doi:10.1371/journal.pcbi.1000001.t005
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in temperate phages (see Table 6).

Our study benefits from the number and breadth of phages we

have analyzed. Unlike previous studies, here we analyze phages

whose suspected hosts span a diverse range of bacteria, which

themselves differ in their genomic GC3 content and preferred

codon choice. We have calibrated CAI for each phage according

to its primary host, and nevertheless we find consistent

relationships between CAI and viral protein function. These

results therefore conclusively extend the classical theory of

translational selection to the relationship between viruses and

their hosts.

The present study also benefits from the development of

randomization tests that isolate the patterns of variation in CAI

from variation in GC content. Due to intrinsic biases in the GC

content of the preferred codons of hosts, previously studies on

codon usage in phage have conflated these two types of

synonymous variation [23–26]. The mechanisms underlying

GC3 variation and CAI variation likely differ, and so it is critically

important that we have analyzed each of these features controlling

for the other one.

There is a large literature on the structure and evolution of

phage genomes which is pertinent to our analyses of phage codon

usage. The genomes of phages that infect E. coli, L. lactis, and

Mycobacteria are known to be highly mosaic in structure [41–46]. In

other words, these genomes exhibit many similar local features

that suggest each genome was assembled from a common pool of

bacteriophage genomic regions [47]. Recently, mosaicism was

discussed in the lambdoid phages focusing specifically on the E. coli

phages lambda, HK97 and N15 [38]. We note that both HK97

and N15 have peaked landscape structures like lambda, although

not as pronounced, indicating that some degree of mosaicism can

be observed in genome landscapes among closely related phages.

The postulated mechanism for mosaicism is homologous and non-

homologus recombination between co-infecting phages or between

a phage and a prophage embedded in the host genome [42,47,48].

Some have argued that the latter mechanism occurs more

frequently, due to the large number of lysogenized prophages in

bacterial genomes [48].

Lateral gene transfers could affect the codon usage patterns of

phages, especially if recombination occurs between phages whose

preferred hosts differ. In this case, the codon usage patterns of

each phage may be expected to reflect the preferred codons of

their preferred hosts; a recent recombination may result in regions

of dramatically different codon usage from the average phage

codon usage. In particular, regions of unusual GC3 content in a

phage genome could reflect gene transfers between phages that

typically infect hosts of different GC3 content, in analogy with

lateral gene transfer amongst bacteria [49]. Morons are genes in

phage genomes that are under different transcriptional control

than the rest of the phage genes, and are often expressed when the

phage is in the lysogenic state [50]. These morons have been

observed to have very different nucleotide compositions compared

to the rest of the phage genome suggesting that they are the result

of such gene transfers [50]. Thus one interpretation for our

observations of the 29 phages exhibiting non-random GC3

patterns is that these genomes arose through recent recombination

events, and have not subsequently experienced enough time to

equilibrate their GC3 content to that of their current host. Given

the lack of reliable estimates for time scales between putative

phage recombination events, or for codon usage equilibration, this

study neither supports nor refutes this interpretation. However, the

predominance of significant non-random patterns of GC3 in the

genomes of temperate phages (see Table 6) suggest that such

recombination may occur more frequently among temperate

phage populations.

We have demonstrated that phage genes encoding structural

proteins exhibit significantly elevated CAI values compared the

non-structural phage genes. These results support the classical

translation selection hypothesis, now extended to the relationship

between viral and host codon usage. We do not find much

variation in codon usage among the structural genes themselves.

This observation has two plausible interpretations within the

literature of lateral gene transfers: either phages of different

preferred hosts rarely co-infect, or there is substantially less

recombination among the structural proteins of phages. The latter

hypothesis has been independently suggested for the capsid

proteins of phages, based on the idea that capsid proteins form a

complex with multiple physical interactions whose function would

be disrupted by individual gene transfer events [43]. Unlike capsid

genes, phage tail genes often exhibit mosaicism, and they can

include elements from diverse viruses with variable host ranges

[43,51]. To investigate this phenomenon in the context of codon

usage, we refined the structural annotation to separate head from

tail genes (see Methods). We performed three separate ANOVAs

to compare the CAI usage in these genes: comparing head versus

non-structural, tail versus non-structural, and head versus tail

(Table 4). These regressions indicate that the head genes are

primarily responsible for that pattern of elevated CAI in structural

proteins. In addition, we detect a difference in codon usage

between head and tail genes. These results have at least two

possible explanations: either the head proteins are produced in

higher copy number than the tail proteins, or lateral gene transfers

between diverse phages occur frequently enough in the tail genes

to impair their ability to optimize codon usage to their current

host. The first hypothesis is very plausible, in light of evidence on

the copy number of head and tail proteins [38]; nevertheless, we

cannot rule out the second possibility.

Finally we note that our methodologies could offer a mechanism

to analyze the recently growing amount of phage DNA sequences

gathered through metagenomic studies [52,53]. We have shown

Table 6. Phage lifestyle versus codon usage.

Phage Significance

Median p
orange
combined Temperate 1.461022

Non-temperate 2.661025

Un-identified 461022

ANOVA significance p = 0.1

Median p
green
combined Temperate 5.161029

Non-temperate 7.061022

Un-identified 561022

ANOVA significance p = 0.009

The table shows the median p
orange
combined and p

green
combined values among phages

classified as temperate, non-temperate, or un-identified for all
phages included in Figure 8 and Table 2. Small median
p

orange
combined values indicate that these phages have significantly

non-random (in either direction) BCAI, controlling for the
amino acid sequence and the GC3 sequence, while small
median p

green
combined values indicate that these phages have

significantly non-random (in either direction) GC3, controlling
for the amino acid sequence and the BCAI sequence. We also
report the significance of non-parametric ANOVAs that
compare these medians between these groups of phages.
doi:10.1371/journal.pcbi.1000001.t006
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that, especially for genes encoding structural proteins, there is a

strong host-specific signature in the viral genome – namely the

enrichment of host-preferred codons. Raw metagenomic data

seldom identify the relationship between the viral DNA segments

sequenced and the hosts they infect. We may be able to help glean

such information using a form of the randomization tests

developed here to search over all possible host master tables,

identifying potential hosts as those that maximize the statistical

significance of the randomization tests.

Materials and Methods

Bacteriophage Genomes
Bacteriophage genomes were downloaded from NCBI’s Gen-

Bank (http://www.ncbi.nlm.nih.gov/Genbank/index.html) re-

lease 156 (October, 2006) using Biopython’s [54] NCBI interface.

We only used reference sequence (refseq) phage genome records

with accessions of the form NC_00dddd in order to have the most

complete records available. Of the 396 phage refseq’s available, we

focused on the 74 genomes of phages whose primary host, as listed

in the specific_host tag in the Genbank file, were E. coli, P.

aeruginosa or L. lactis.

All phage genomes were downloaded from GenBank. Before

being used for the rest of this study, every gene within a genome

was scanned for overlaps within other genes in the same genome,

and all overlapping sequences were removed. A codon was only

retained if all three of its nucleotides occurred in a single open

reading frame. Thus the final genome sequence used was a

concatenation of all non-overlapping coding sequences, omitting

any control elements and other non-coding sequences.

Calculation of CAI Master Tables
The definition of the Codon Adaptation Index requires the

construction of a ‘master’ w-table for the host organism. Each of

the 61 sense codons is assigned a w-value based on the codon’s

frequency among the most highly expressed genes in the host

organism. In defining this set of genes, we follow Sharp [35], who

specified highly expressed genes for E. coli.

In order to calculate the CAI master w-tables for P. aeruginosa

and L. lactis, we identified the homologs of the highly expressed E.

coli genes within the other host genomes, using BLAST [55]. In

particular, we used qblast to find homologs to these E. coli genes by

inputting the gene protein sequences, and blasting (blastp) against

the nr database, restricting the database to include proteins of

the target organism. In all cases, we used the most significant

blast result as the ortholog, provided its e-value was less than

1610210.

Given the set of highly expressed genes, the CAI master w-table

was calculated as follows. For each host, the GenBank file

(GenBank release 156) was downloaded locally and transformed

into a local data structure using Biopython’s [54] GenBank parser.

The data structure was then scanned for each of the genes in the

highly translated gene set, and the collective CDS codon

sequences of these genes were concatenated together into one

long sequence. Stop codons and codons encoding for amino acids

methionine (M), and tryptophan (W) (each encoded by only one

codon) were removed from the concatenated sequence. The

frequencies of codons encoding all other amino acids were then

tabulated, and divided into groups according to which amino acid

they encode. The w-values are then calculated, according to the

procedure of Sharp [35], as these frequencies, normalized by the

maximum frequency within each group. Thus each amino acid

has a codon with a w-value of 1, representing the most commonly

used codon for that amino acid. The w-values for the stop codons

and codons for methionine and tryptophan were set to the average

w-value of the remaining codons.

Drawing Random Genomes According to Constraints
Our randomization tests require drawing randomized phage

genomes that are constrained to have specific properties. In all of

the randomization tests discussed, the random sequences were

drawn as a sequence of synonymous codons from the global codon

distribution at each position, thereby exactly preserving the amino

acid sequences of proteins. Furthermore, each test preserves the

global codon distribution in each synonymous variation of the

genome, and thus inherently controls for any mutational bias or

other source of global codon usage bias that may be present in the

phage genome nucleotide content. The tests thus isolate the

feature that we wish to interrogate which is local patterns in

synonymous codon usage.

The three randomization tests used in this work can all be

considered variants of a canonical randomization test that

preserves both the amino acid sequence and a bit mask sequence

exactly, while drawing codons from the global, genome-wide

distribution. A bit mask sequence is string of zeros and ones

corresponding to all codons in the genome. For example, GC3 is 1

if the third position of a codon is G or C, and 0 otherwise.

Using the GC3 bit mask as an example, the randomization test

procedure is initialized by calculating the global codon frequencies

that fit into categories specified by the amino acid and the bit-mask

value. Each amino acid has associated with it two distributions:

one for a bit-mask value of 1 and one for a bit-mask value of 0. For

example, alanine (A), is encoded by four codons, GCC (1), GCG

(1), GCT (0), GCA (0), where the GC3 bit-mask is shown in

parenthesis. Thus to calculate the codon distribution of alanine

GC3 codons (A1), we compute the frequency of GCC and GCG

codons across the whole phage genome. Similarly, the distribution

of A0 codons is determined from the frequency of GCT and GCA

codons across the genome. In order to produce a random genome,

random codons are drawn at each position according to the

distribution associated with the position’s amino acid and bit-mask

value.

Thus the three null tests can be specified by the definition of the

bit mask along the sequence, which determines the constraints on

the randomize trials. The aqua randomization test constrains the

amino acid sequence and nothing else, and so its bit mask consists

of all 1’s. The orange randomization test preserves the amino acid

and the GC3, and so its bit mask is the GC3 sequence mentioned

above. The green randomization test preserves the amino acid and

BCAI exactly, thus its bit mask is the thresholded BCAI (1 if

BCAI = 0.7, 0 otherwise).

In considering the power of the green and orange randomiza-

tion tests, we must ask how many synonymous families permit one

to constrain BCAI and change the last codon position from G/C

to A/T. The answer to this question depends upon the CAI master

table of the host species. For E. coli (see Figure 4), all nine the 3-,

4-, and 6-fold degenerate codon families permit one to constrain

BCAI (at 0.3) while varying G/C to A/T. However, constraining

BCAI typically determines GC3 for the 2-fold degenerate families.

As a result, roughly 60% of the codons in a phage genome are

informative for the green randomization test. Similar results hold

for P. aeriginosa and L. lactis, and for the orange test.

For both of these tests, even if few synonmous families were

informative, this feature would serve to weaken the power of

statistics, making our conclusions conservative.
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Structural Annotation
All phage genes were annotated as structural or non-structural

by inspecting the annotations of high-scoring BLAST hits among

viral proteins. This procedure is described in detail below.

Each gene was considered separately within each genome

object, although overlaps were removed in the process of creating

the genome objects. The amino acid sequence of each gene was

blasted against all known viral protein sequences using Biopy-

thon’s interface [54] to the NCBI blast utility [55]. Specifically, we

used the blastp utility specifying the nr database, with entrez query

‘Viruses [ORGN]’. We retained only those BLAST hits with e-

values below the cutoff 161024. All words in the title of these

BLAST hits were collected, using white space as a word-delimiter.

The unique words from the blast hits were then compared

against a set of structural keywords: ‘‘capsid’’, ‘‘structural’’,

‘‘head’’, ‘‘tail’’, ‘‘fiber’’, ‘‘scaffold’’, ‘‘portal’’, ‘‘coat’’, and ‘‘tape’’.

The words associated with the BLAST hits were scanned for

matches to the keywords, where each keyword was treated as a

regular expression. As a result, partial matching was counted as a

match. For example, a BLAST title containing the word ‘head-tail’

would match both keywords ‘head’ and ‘tail’. If a gene had at least

one structural keyword match in its BLAST hit title, it was

annotated as structural. Otherwise, it was annotated as non-

structural.

We further subdivided the structural annotation into two

classes: head and tail genes. Tail genes were identified with the

keywords ‘‘tail’’, ‘‘fiber’’, and ‘‘tape’’. These remaining structural

genes that did not contain any of these keywords were annotated

as head genes. Two false positives for tail identification in the

lambda phage genome were manually corrected.

Null Model: Results for Random Walk Landscapes
In the sections above we have compared the genome landscapes

calculated from real genome sequences to a null model in which

the sequences are randomly drawn from a defined distribution. In

this section, we compute several properties of genome landscapes

calculated from these random genomes.

We write the general genome landscape of length N as

F mð Þ~
Xm

i~1

g ið Þ{gð Þ, ð8Þ

where g(i) are independent, and chosen from a random

distribution with var(g(i)) = Æg(i)2æ2Æg(i)æ2 = D, and

g~
1

N

XN

i~1

g ið Þ, ð9Þ

which ensures F(0) = F(N) = 0.

The purple regions in Figure 1 represent the variance in the

genome landscapes of this null model at each m,

s mð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SF mð Þ2T{SF mð ÞT2

q
. Using the definitions above, we

have

F mð Þ~
Xm

i~1

g ið Þ{ m

N

XN

i~1

g ið Þ

~
mz N{mð Þ

N

� �Xm

i~1

g ið Þ{ m

N

XN

i~1

g ið Þ

~
N{m

N

Xm

i~1

g ið Þ{ m

N

XN

i~mz1

g ið Þ,

ð10Þ

and

SF mð ÞT~
m N{mð ÞSgT

N
{

m N{mð ÞSgT
N

~0: ð11Þ

When we use Æg(i)g(j)æ = Æg2ædi,j+(12di,j)Ægæ2, with di,j = 1 if i = j and

0 otherwise, we find

SF mð Þ2T~
m N{mð Þ

N
Sg2T{SgT2
� �

~
Dm N{mð Þ

N
,

ð12Þ

leading to s mð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SF mð Þ2T{SF mð ÞT2

q
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm N{mð Þ=N

p
. In

the case of GC3 landscapes, g(i) is either 1 or 0 with equal

probability, giving DGC3 = 1/4.

We can also calculate the full probability distribution, P(f;m,N,D)

that the genome landscape of length N has an intermediate value

F(m) = f, at point m, by considering an N-step random walk that is

constrained to start and stop at 0. This probability distribution can

be written as a product of two conditional probabilities for a walk

that starts at 0 and ends at f in m steps, and a walk that starts at f

and ends at 0 in N2m steps

P f ; m,N,Dð Þ~AG 0,f ; m,Dð ÞG f ,0; N{m,Dð Þ

~AG 0,f ; m,Dð ÞG 0,f ; N{m,Dð Þ,
ð13Þ

where A is a normalization constant, and the last step used the

inversion symmetry of the random walks. Thus we seek the form of

the conditional probability G(0,f;m,D). In the same way as in

Equation 13, we decompose this conditional probability into a

multiplication of the conditional probabilities for two walks, one

that starts at 0 and ends at y in x steps, and one that starts at y and

ends at f in m2x steps, and integrate over all possible intermediate

values y

G 0,f ; m,Dð Þ~
ð?

{?
dyG 0,y; x,Dð ÞG y,f ; m{x,Dð Þ: ð14Þ

We can continue this decomposition for each intermediate step to

give

G(0,f ; m,D)

~

ð?
{?

dy1 . . .

ð?
{?

dym{1G(0,y1; 1,D)G(y1,y2; 1,D) . . . G(ym{1,f ; 1,D):
ð15Þ

Keeping the order of integration the same, and noting that

G(y1,y2;1,D) = G(y22y1;1,D) for these random walks, we can write

yi+12yi = si+1 to give

G(0,f ; m,D)

~

ð?
{?

ds1 . . .

ð?
{?

dsmG(s1; 1,D) . . . G(s2; 1,D)G(sm; 1,D)d
Xm

i~1

sm{f

 !
,
ð16Þ

where the delta function is added to force the constraint that the

sum of all the intermediate steps must be equal to f. All of the

intermediate conditional probabilities now represent one step

walks, and so are equal to the underlying probability distribution

of drawing a step size sm, p(sm;D)
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G(0,f ; m,D)

~

ð?
{?

ds1 . . .

ð?
{?

dsmd
Xm

i~1

sm{f

 !
Pm

i~1p(si; D):
ð17Þ

Making use of the integral representation of the delta function [56]

d xð Þ~ 1

2p

ð?
{?

dke{ikx, ð18Þ

we have

G 0,f ; m,Dð Þ~ 1

2p

ð?
{?

dke{ikf ~pp k; Dð Þm, ð19Þ

where ~pp k; Dð Þ is the Fourier transform of p(s,D)

~pp k; Dð Þ~
ð?

{?
dse{iksp s; Dð Þ: ð20Þ

For the purpose of this discussion, we assume p(s,D) has a Gaussian

form p sð Þ~ 1ffiffiffiffiffiffiffiffiffi
2pD
p e

{
s2

2D, and note that the results are general. In

this case, ~pp k; Dð Þ~e
{

k2D

2 , and we have

G 0,f ; mð Þ~ 1

2p

ð?
{?

dke{mDk2=2e{ikf ~
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pmD
p e{f 2=2mD: ð21Þ

To determine A, we enforce the normalization condition

ð?
{?

dfP f ; m,N,Dð Þ~1, ð22Þ

which gives

P f ; m,N,Dð Þ~ 1

s
ffiffiffiffiffiffi
2p
p e{f 2=2s2 ð23Þ

s mð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

m N{mð Þ
N

r
: ð24Þ

Note that from the full distribution, we can immediately identify

s mð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SF mð Þ2T{SF mð ÞT2

q
, confirming the explicit calcula-

tion above.

Supporting Information

Figure S1. Orange randomization test for the lambda phage

genome with a BCAI cutoff of c = 0.5. As expected, the only

qualitative difference between this figure and Figure 5 in the paper

is the scale on the y-axis.

Found at: doi:10.1371/journal.pcbi.1000001.s001 (0.46 MB EPS)

Figure S2 Lambda Phage BCAI landscapes for different cutoff

values. Lamba phage BCAI landscapes for different cutoffs, c,

where we have assigned codons with w$c a value of BCAI = 0.7,

and w,c a value of BCAI = 0.3. Note that the landscapes are

qualitatively the same and only differ in y-scale. As we expect, the

smaller c, the more BCAI = 0.7 codons, and thus the large the y-

scale of the landscapes.

Found at: doi:10.1371/journal.pcbi.1000001.s002 (0.75 MB EPS)
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