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Abstract

Recent experimental and theoretical efforts have highlighted the fact that binding of transcription factors to DNA can be
more accurately described by continuous measures of their binding affinities, rather than a discrete description in terms of
binding sites. While the binding affinities can be predicted from a physical model, it is often desirable to know the
distribution of binding affinities for specific sequence backgrounds. In this paper, we present a statistical approach to derive
the exact distribution for sequence models with fixed GC content. We demonstrate that the affinity distribution of almost all
known transcription factors can be effectively parametrized by a class of generalized extreme value distributions. Moreover,
this parameterization also describes the affinity distribution for sequence backgrounds with variable GC content, such as
human promoter sequences. Our approach is applicable to arbitrary sequences and all transcription factors with known
binding preferences that can be described in terms of a motif matrix. The statistical treatment also provides a proper
framework to directly compare transcription factors with very different affinity distributions. This is illustrated by our analysis
of human promoters with known binding sites, for many of which we could identify the known regulators as those with the
highest affinity. The combination of physical model and statistical normalization provides a quantitative measure which
ranks transcription factors for a given sequence, and which can be compared directly with large-scale binding data. Its
successful application to human promoter sequences serves as an encouraging example of how the method can be applied
to other sequences.
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Introduction

Several experimental advances in the study of gene regulation

have highlighted the fact that transcription factors have a certain

affinity to all DNA regions, as evidenced by many experimental

techniques, such as DNAse footprinting [1], gel-shift assays [2],

SELEX [3], and more recently genome-wide chromatin-immu-

noprecipiation (ChIP-chip) [4]. Traditionally, such binding data

has been subjected to a threshold, in order to distinguish binding

sites from non-binding sites. Sequence-based binding models often

rely on a collection of such binding sites and aim to generalize the

available information in terms of a ‘‘regulatory code.’’ The most

common approach seeks a statistical description of the binding

preferences in terms of a motif matrix, which records the observed

nucleotide frequencies at each position in an alignment of known

binding sites. The classical work of Berg and von Hippel [5]

provides a simple biophysical model to convert the motif matrix

into a matrix of mismatch energies, which contribute indepen-

dently to the overall binding energy of a protein-DNA complex.

With this model, it is possible to assign binding energies to any

sequence site of width W. While it is common practise to classify

also novel sites as binding or non-binding, there is nothing

fundamental about such a distinction, which depends on a

threshold of the binding energy or a related score.

We have recently shown that such a threshold is not necessary

to understand and to quantitatively model a large amount of

binding data from ChIP-chip experiments in yeast [6]. In fact, the

imposition of a threshold on both the experimental data and in-

silico predictions hinders the direct comparison of the theoretical

model with experimental observations. Therefore we have

introduced a new method, called TRAP for TRanscription factor

Affinity Prediction, which has shifted the focus from the prediction

of right or wrong binding sites to quantifying the differences

between weak and strong binding. In our earlier work [6], we

provided a parametrization of the TRAP-model which can be

applied to any motif matrix, even in the absence of large-scale

data, such as ChIP-chip screens.

While the TRAP-model allows to rank sequence regions

according to their different affinities for a given transcription

factor, it cannot always be applied to compare different

transcription factors for a given sequence. This is because different

transcription factors can have very different specificities, i.e.

different distributions of affinities. In this paper we aim to remedy

this situation by providing a proper normalisation, such that the

binding affinity of different factors can be directly compared with

each other. To this end we define a statistical score (p-value),

which assigns the probability of observing a certain affinity or

higher in a given sequence background. Here the goal is not to set

some significance threshold, but rather to normalise an observed

affinity in the light of a random sequence model, and to give a

statistical meaning to the statement that one factor binds stronger

than another.
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In Section (2), we briefly review the TRAP model and introduce

our notation. In Section (3) we derive the exact affinity distribution

for an arbitrary motif matrix and for sequence backgrounds where

all nucleotides are drawn independently from the same distribu-

tion (iid). We then show that this distribution can, to a large extent,

be parametrized by an extreme value distribution, and that this

effective characterisation can also account for the affinity

distribution in non-iid sequences with variable GC-content. We

also compiled a complete parametrization for 762 TRANSFAC

matrices which can be used for promoter regions of variable

length, and without having to repeat the statistical modeling. To

highlight the biological relevance of our approach, we present a

realistic application of our method to human promoter regions.

We show that many known regulatory interactions can be infered

based on the high affinity of the associated transcription factor to

the relevant promoter region.

Materials and Methods

Binding Site Descriptions
For many transcription factors, motif matrices have been

constructed from alignments of known binding sites. Here we rely

on the curated results and matrix descriptions provided by the

TRANSFAC database [7]. A motif matrix M = (Mw,a) records how

frequently a nucleotide a has been observed at position w within

the alignment. We take all 762 matrices which were derived from

small-scale experiments and dedicated in vitro studies in several

different species. In order to set a maximal mismatch energy, we

added a pseudo-count of p = 1 to each element in the count

matrices.

The TRAP model
In our earlier work [6] we were primarily interested in

comparing different promoter sequences with respect to their

binding affinities for a fixed transcription factor. This has been

successfully applied to account for much of the observed variation

of binding strength in ChIP-chip experiments. Here we will briefly

review the TRAP model and its biophysical background. The key

concepts are also illustrated in Figure 1. First consider many copies

of some DNA site, Sl, which extends from sequence position l to

Author Summary

The binding of proteins to DNA is a key molecular
mechanism, which can regulate the expression of genes
in response to different cellular and environmental
conditions. The extensive research on gene regulation
has generated binding models for many transcription
factors, but the prediction of new binding sites is still
challenging and difficult to improve in any systematic way.
Recent experimental advances, notably high throughput
binding assays, have shifted the theoretical focus from the
prediction of new binding sites towards more quantitative
models for the binding affinities of transcription factors,
which can now be measured across whole genomes.
Therefore we have developed a biophysical model which
accounts for much of the observed variation in binding
strength. Here we extend this framework to model not just
the binding affinity, but also its distribution in various
sequence backgrounds. This enables us to compare
predicted affinities from different transcription factors,
and to rank them according to their normalized affinity.
What are the biological implications of such a ranking? We
have demonstrated that many known associations be-
tween transcription factors and their respective targets
appear as strong interactions. This provides a rationale to
predict, for any given promoter region, those transcription
factors which are most likely to be involved in its
regulation.
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Figure 1. TRAP approach. The left-hand side illustrates how a given motif matrix (W = 5) is scanned against a longer DNA sequence region of
length L. At each position the binding energy for the adjacent site is calculated as in Eq. (3), which assumes independence of all positions within a
site. The binding energy is converted into a local affinity using Eq. (1) and the parametrization from [6]. This results in the schematized red curve of
position-dependent binding affinities. Two selected sites are shown as red boxes, because they correspond to relatively high affinities in this toy
example. In our framework we do not annotate them as ‘‘hits,’’ but rather sum the different contributions from all possible positions (and strand
orientations) – see Eq. (4). This gives rise to a total affinity of the sequence region with length L. Initially this approach was developed to rationalize
the ChIP-chip data, where L corresponds to the experimental fragment length [6]. On the other hand, the summation in Eq. (4) also amounts to a
smoothing of the noisy binding signal over larger sequence regions. This is shown on the right-hand side, where the affinity of transcription factor
SRF (W = 15) is calculated around its own promoter region. Here the red line denotes the local affinities which fluctuate strongly, and the black curve
denotes the combined affinities for longer regions of length L = 500.
doi:10.1371/journal.pcbi.1000039.g001
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l+W21. In the following we assume that the fraction of such sites,

which are bound to a given transcription factor, T, can be

calculated using an equilibrium approach. We call this fraction the

local affinity, al,

al~
T :Sl½ �

Sl½ �z T :Sl½ �~
R0e{bEl

1zR0e{bEl
: ð1Þ

Here R0 is a positive, sequence-independent parameter, and El

is a site-dependent mismatch energy. The latter is chosen such that

El = 0 for the site with the highest possible affinity (consensus site)

and El.0 for sites that deviate from the consensus. Following the

model of Berg and von Hippel [5], the mismatch energy for many

transcription factors can be calculated as follows. Let M = (Mw,a) be

a W64 motif matrix from an alignment of known binding sites,

where w = (1…W) are the positions within the alignment, and a
denotes one of the four nucleotides, a = (A, C, G, T). The matrix

entries are the nucleotide counts in this alignment. Now one can

match this motif matrix against any other site of width W and

define the position-specific contributions to the mismatch energy

as

ew~
1

l
log

Mw,max

Mw,a

� �
: ð2Þ

Here a refers to the actual nucleotide of the sequence at position

w within the current site, Mw,max is the maximal entry in column w

of the matrix, and l is a scale-parameter. The key assumption of

the model by Berg and von Hippel is that all ew contribute

independently to the overall mismatch energy at site Sl [8]

bEl~
XW
w~1

ew: ð3Þ

From the above ingredients we determine the expected number

of transcription factors bound to a longer DNA sequence region of

length L. We call this number the total affinity, A, which can be

obtained by summing up all contributions from both strand, al,

and anti-strand sequences, a�ll

A~
XL

l~1

alzal
�ð Þ: ð4Þ

For a more detailed exposition we refer the reader to our earlier

work [6], where we have also included a correction term for

palindromic motifs. The reader should be aware that the TRAP-

parameters, l and R0, were determined from large-scale ChIP-

chip data with many different factors and cellular conditions.

Importantly, our earlier work also revealed, that they could be

determined simultaneously for all transcription factors, and need

not be tuned individually. The general TRAP model is then

defined by l = 0.7, and ln(R0) = 0.585*W25.66. Notice that ln(R0)

also depends logarithmically on the transcription factor concen-

tration, but this dependence is much weaker than the linear

dependence on the motif width, W. We want to emphazise that

our simple model does not provide the most accurate description

for each individual factor and every cellular condition. If large-

scale binding data is available, the TRAP model could be

improved by further tuning the parameters for each specific

setting, but here we aim for generality.

Derivation of the Exact Distribution of Affinities from a
Motif Matrix

Given the general TRAP-model with fixed parameters, the

affinity of a transcription factor to a specified sequence region

depends only depends only on the sequence composition and the

matrix description of the factor. For simple sequence models, it

should therefore be possible to calculate the affinity distribution

for any matrix exactely. For simplicity we assume a sequence

background with a given GC-content, i.e. a given single-

nucleotide distribution (pA, pC, pG, pT). According to Eq. (2), the

distribution of nucleotides induces a discrete distribution of

mismatch energies, pew
. Next we determine the probability

distribution of the overall energy, which is determined by

independent contributions of ew (Eq.(3)). Therefore the probability

probability distribution pE can be calculated by convolution of pew

over all positions w within the motif of width W. It is a standard

procedure and technically simple to calculate this convolution

using Fourier transformation

pew
xð Þ?wew

tð Þ:
ð

e{2pitxpew
xð Þdx : ð5Þ

It follows from the convolution theorem that the Fourier

transformation of pE can be written as a simple product of Fourier

transformations [9]

wE tð Þ~ P
W

w~1
wew

tð Þ?pE xð Þ~
ð

ez2pitxwE tð Þdt : ð6Þ

Here the final step denotes the inverse Fourier transformation

to revert back to the orginal representation This derivation is

completely analogous to the approach by Staden [10], who

calculated the score distribution using moment-generating

functions. Our biophysical model has the added advantage that

all energies, E, can be directly converted into local affinities

(Eq.(1)). Accordingly, the probability of observing a certain

energy E is identical to the probability of observing the

corresponding affinity a = a(E). We denote this simple map by

pERpa.

As before we consider the Fourier representation of pa

wa tð Þ:
ð

e{2pitxpa xð Þdt : ð7Þ

Now it is straightforward to derive also the distribution of total

affinities for a sequence region with length L, as defined in Eq. (4).

Here we assume that the local affinities of neighbouring sites are

independent from each other and identically distributed. This

reduces the analysis to a repetition of the above approach in terms

of Fourier transformations

wA tð Þ~P
L

l~1
wal

tð Þ P
L

�ll~1
wa�ll

tð Þ~w2L
a tð Þ?pA xð Þ~

ð
ez2pitxwA tð Þdt :ð8Þ

In practice we utilize a Fast Fourier Transformation (FFT), to

evaluate all the above integrals numerically.

Statistical Modeling of Binding Affinities
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Results

The Exact Distribution of Affinities from a Motif Matrix
For a simple sequence model of identical and independently

distributed nucleotides (iid), it is possible to calculate the exact

distribution of affinities as described in the Methods section.

In Figure 2, we show the cumulative distribution,

Pr A§x½ �:
ð?

x

pA zð Þdz, for two particular matrices and a region

of L = 100 basepairs. For ease of presentation, we choose a double-

logarithmic scale for this plot. Also in the remainder of the paper

we will always work with logarithmic affinities, log (A).

Notice that our theoretical results completely agree with the

empirical distribution of calculated affinities for a random

background sequence with fixed GC-content. The figure also

illustrates that, in general, the distribution is not easily parame-

trized and certainly not normally distributed. A similar point has

been made previously in the context of score distributions [11].

The step-like behaviour of many cumulative distributions is a

reflection of the discrete nature of binding energies which are

derived from discrete count matrices.

The reader should be reminded that for the above derivation we

have assumed that all contributions to the total affinity are

independent of each other. This is consistent with the assumptions

of the physical model, Eq. (3) and Eq. (4). There are several

matrices, for which this assumption does not hold as they possess a

high degree of self-similarity, e.g. CF2II with consensus motif

GTATATATA. Nevertheless we find only small deviations of the

predicted distribution from the empirical data, which is negligible

for practical purposes. One may try to define more complicated

statistical models to account for such self-similarities, but

fundamentally, this issue should already be addressed at the level

of Eq.(4), which requires correction terms to account for

preclusion and competition of factors for binding sites. This

question has been addressed in our earlier work [6]. In the

following, we do not pursue any more complicated models, but

rather aim to find a simpler and effective description of the

distribution function with only a few parameters.

Parametrization for iid Background Sequences
While it is satisfying to obtain a theoretical expression for the

exact distribution of affinities, this is not particularly convenient for

practical purposes as the full distribution function would have to be

stored for different region sizes, L, and different GC-contents.

Moreover, ultimately we will seek to model promoter sequences

which are not iid, but tend to have highly variable GC-content.

Therefore we are now searching for a convenient parametrization,

which can be used efficiently in practice. We recall the explicit goal

of this project, which is to provide a proper normalization of binding

affinities, such that different binding factors can directly be

compared with each other. From the previous section is is apparent

that a simple parametrization will not be possible in general. The

best one can hope to achieve is an effective parametrization, which

is indistinguishable from the empirical distribution, at some level of

accuracy. In this section we will compare the ability of several

standard parametrizations to model the distribution of 1000

affinities for several different sequence backgrounds.

To quantify the overall ‘‘failure rate’’ of a parametrization, we

determined the number of matrices for which the Kolmogorov-

Smirnov test discriminates between the parametrization and the

empirical distribution at the level of pKS,0.05. Notice that this

choice of threshold is arbitrary and that we do not consider pKS to

be proper p-values, as the parametrization was obtained from a

best fit to the data. However, we applied the same procedure

consistently to all setups, which still allows us to compare the

relative performance of different parametric models for different

sequence backgrounds.

First, we generated 1000 random sequences (L = 2000) and

systematically tested the empirical affinity distributions of all 762

TRANSFAC matrices against the log-normal distribution. However in

Figure 2. Empirical affinity distribution and theoretical prediction. Here we compare the empirical distribution (blue circles) of affinities
calculated on 100,000 random sequences of length L = 100 and the predicted cumulative distribution (red line) derived from Eq. (8). Due to the wide
range of affinities and corresponding probabilities, we present the distributions on a double-logarithmic scale. The left plot is for transcription factor
E2F. It illustrates that, in general, we cannot expect to find a simple parametrization of the affinity distribution, although it can be understood from
first principles. On the other hand, the affinity distribution for SRF (right plot) is better behaved and can be well described by a generalized extreme
value distribution.
doi:10.1371/journal.pcbi.1000039.g002
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553/762 cases the fitted distribution model was significantly different

from the empirical distribution, as assessed by the Kolmogorov-

Smirnov test (pKS,0.05). This indicates that for most matrices the log-

normal parametrization P(x = log(A)|m, s) is not appropriate.

Next we tested the same random data against a generalized

extreme value (GEV) distribution with 3 parameters (a = shape,

b = scale, c = location) [12]

P xja,b,cð Þ~exp { 1za
x{c

b

h i{1=a
� �

ð9Þ

This parametrization is motivated by the fact that the total

affinity A is often dominated by the highest affinities in the region

under consideration, or only a few terms in Eq. (4).

Indeed, the GEV distribution accounts for the bulk of the

empirical data very accurately. Only for 61/762 matrices this

parametrization is not compatible with the actual distribution of

1000 simulated affinities (pKS,0.05). Such failures can be

exemplified by the case of E2F, for which we did not find any

suitable parametrization, left plot of Figure 2. However, for the

majority of all matrices the GEV distribution presents a very

appropriate model, as illustrated by the example for Gal4 in

Figure 3 and summarized in Table 1.

While the addition of one extra parameter seems like a small

prize to pay for the much better coverage, one should remember

that all parameters depend on the length, L, of the region. Now we

will show that the L-dependence can also be parametrized. Let

(a(L),b(L),c(L)) denote a given parameter configuration. For the

mean of the distribution we can write

m Lð Þ~SlogA Lð ÞT~c0zc1logL ð10Þ

~c Lð Þz b Lð Þ
a Lð Þ C 1{a Lð Þð Þ{1½ � : ð11Þ

Here the first line follows from ÆA/Læ = constant, while the

second line is a specific property of the GEV distribution, where C
denotes the Gamma function [12]. Furthermore, we observe that

a%1 for all our fits, or C(12a)<1. This motivates the following

regression for the location parameter c(L)

c Lð Þ~c0zc1logL ð12Þ

The coefficients (c0,c1) need to be determined for each matrix

separately. To this end we extended our numerical simulations

to a range of different region sizes, L = 100–1000, and

determined the best parameters by linear regression against

log L. This is shown for one matrix, GAL4_01, in Figure 4,

where we also present the analogue behaviour for the other

parameters (scale b(L) and shape a(L)). We find a good regression

also for all other matrices. Notice that a(L) is almost flat (a1<0)

and close to zero for most matrices. In the light of this

observation we also considered fits to a Gumbel distribution with

one less parameter (aR0). This resulted in many (.200)

unacceptable parametrizations, see Table 1. Therefore we

disregarded this possibility.

To summarize this section, we succeeded in deriving an efficient

parametrization of the affinity distribution for sequences with fixed

GC-content and for different region sizes, L.

Parametrization for Non-iid and Genomic Sequences
The above results indicate that for a simple background model

one can predict the exact distribution of affinities and, to a large
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Figure 3. The GEV distribution provides a better fit to empirical data than a log-normal distribution. The left figure shows the QQ-plot
of the numerical data against the fit to a generalized extreme value distribution, Eq. 9. This example is for one matrix (GAL4_01), for which we
calculated affinities for 1000 random background sequences of length L = 1000. The GC-content was fixed at 50%. In this case we obtain a = 20.07(2),
b = 1.15(3), c = 27.36(4) which is an appropriate parametrization given the data, pKS = 0.85. It should be contrasted to the best log-normal fit (right),
which gives (m = 26.77(4), s= 1.35(3)), but this parametrized distribution is significantly different from the empirical data, pKS = 0.0003.
doi:10.1371/journal.pcbi.1000039.g003

Statistical Modeling of Binding Affinities

PLoS Computational Biology | www.ploscompbiol.org 5 March 2008 | Volume 4 | Issue 3 | e1000039



extent, find a relatively simple parametrization in terms of a GEV

distribution (Eq. 9). The more relevant question for possible

biological applications is, of course, whether the same is possible

for genomic DNA with variable GC-content. To answer this

question we repeated the above analysis for three non-iid

background models:

N randomly generated sequences with variable GC-content,

N genomic sequences (from human chromosome 1).

N human promoter sequences of 2000 bp centered around the

transcription start site

The last choice was motivated by the specific application

discussed in a subsequent section. From now on, we will always

consider regions of fixed size L = 2000 basepairs, unless stated

otherwise. While the coverage of the GEV-model does not depend

on the size of the region, a variable GC-content significantly

increases the number of matrices for which the parametrization

cannot be considered appropriate. This is shown in Table 1, where

we give the failure rate for different parametrizations and

backgrounds. For the GEV model, the discrepancy is most

apparent in a rather extreme background of 1000 random

sequences, where the variable GC-content was chosen from a

uniform distribution over [0.2,0.8]. Unsurprisingly, the GEV

distribution does not properly account for such extreme

variability, as many matrices (and their affinities) are very sensitive

to changes in GC-content.

For the second background we considered a 2 Mbp region from

human chromosome 1, which also has variable GC-content with

an average of GC&0:48. The fluctuations in GC are however

much less severe than in the previous model and the GEV-model

is again appropriate for the majority of matrices.

Finally, we consider a background of 1000 human promoters

(2000 bp centered around randomly chosen transcription start

sites). Their average GC&0:50, is close to our iid background

model, but with large deviations from the average due to specific

promoter properties and CpG islands. While the GEV distribution

cannot reliably account for the promoter-specific distribution of

178 TRANSFAC matrices, the remainder of 584 matrices can be

modeled quite accurately by GEV, at the given level of significance

(pKS = 0.05). This is much better than any other class of

distributions we have tested. We provide a complete list of the

parameters for 762 TRANSFAC matrices as supplementary

material (Text S1) [13].

Parametrization of the Tails of the Distribution
So far we focused on the derivation and parametrization of the

whole distribution for small and large affinities. However, in

practice we are hardly ever interested in affinities which are small

in the context of some background model. Therefore the more

crucial question is whether the tails can be modeled appropriately.

To this end we invoke a theorem from Extreme Value Theory

which states that under very general assumptions the tails of the

Table 1. Failure rates of different parametrizations and several sequence background models.

Model Logn(m, s) Gumbel(b,c) GEV(a,b,c) GPD(a,b,u)

Rand(GC = 0.5,L = 100) 644 197 49 41

Rand(GC = 0.5,L = 1000) 614 213 60 36

Rand(GC = 0.5,L = 2000) 553 272 61 30

Rand(GC = 0.5,L = 10000) 364 447 44 14

Rand(GC = 0.4,L = 2000) 558 275 60 30

Rand(GC = 0.2–0.8,L = 2000) 608 697 460 30

Genomic (GC&0:48,L = 2000) 445 553 157 27

Promoters (GC&0:50, L = 2000) 467 608 178 24

Here we summarize the performance of the parametrizations in terms of the number of TRANSFAC matrices (out of 762) for which the Kolmogorov-Smirnov test can
discriminate between the empirical distribution and its parametrization. This Table illustrates that the GEV distribution with 3 parameters has far greater explanatory
power (a lower ‘‘failure rate’’) than simpler distributions with only two parameters (log-normal, Gumbel). If only the upper tails of the distribution are to be modeled,
then the location parameter, c, can be traded for a threshold, u, above which a generalized Pareto distribution (GPD) applies. These observations are largely
independent of the length, L, of the region for which the affinities are calculated, although the parameter values do change, as shown in Figure 4. Although the power
of the GEV parametrization deteriorates for non-iid backgrounds, it is still much better than the other parametrizations. This is shown in the last three rows of the table
for random sequences with simulated GC-variability M[0.2, 0.8], genomic DNA, and human promoter regions.
doi:10.1371/journal.pcbi.1000039.t001
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Figure 4. Regression of GEV parameters. Based on our analysis of
Eq. (12), we were led to a regression analysis for the parameters of the
generalized extreme value distribution against the logarithm of the
region size, log L. As in Figure 3 we use the example of GAL4, but the
analysis was done for the complete set of 762 TRANSFAC matrices. The
regression for the three parameters gives: (a0, a1) = (20.14, 0.04), black
line with pF = 0.04, (b0, b1) = (3.03, 20.64), red line with pF = 2610210, (c0,
c1) = (220.8, 4.46), blue line with pF = 4610215. As was mentioned in the
main text, the shape a of the GEV is almost independent of L and small
and negative. This holds true for all TRANSFAC matrices.
doi:10.1371/journal.pcbi.1000039.g004
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distribution, above some threshold u, follow a generalized Pareto

distribution (GPD)

Pr Xwuzx Xwuj½ �~P x a,~bb,u
��� �

~1{
1za x{uð Þ

~bb

� �{1=a

: ð13Þ

Of course, the threshold u is somewhat arbitrary, but should be

chosen large enough for the limit theorem to be applicable. In this

regime the GPD reduces to two parameters, which can be

determined by fitting the tails of the empirical distribution. Here

we defined the threshold u, such that the upper tails contain 5% of

the distribution. As can be seen from Table 1, the GPD-model

accounts for the distribution of a large fraction of all matrices.

While we have manually inspected the threshold dependence for

selected matrices, we did not optimize the threshold for each

matrix separately. Such a procedure, may further improve the

observed coverage, but it would be very cumbersome to do for 762

matrices.

Application
Now we show how to apply our results in a realistic setting.

Consider, as an example, the promoter region of SRF, which we

take to be a 2000 bp region centered at the transcription start site.

The biologically relevant question is to decide which transcription

factors are most likely to regulate the activity of SRF. We want to

stress that our approach, as well as any other sequence-based

approach, cannot answer this question in any fundamental way, as

we only characterize the binding strength of a factor, but not its

regulatory potential. For this more refined question one ultimately

needs to invoke additional information, such as expression data

[14,15] or evolutionary conservation [16,17].

In the absence of such functional data, information on the

binding strength may still guide biological investigations – an

approach which is also taken for the analysis and interpretation of

ChIP-chip data. However, a simple ranking of all known

transcription factors according to their predicted binding affinity

would not be very meaningful either. In our example, those factors

with the highest calculated affinity are DFD, MINI20 and others,

all of which have very high base affinities, but which are not

specific to the promoter region of SRF.

In order to discriminate those factors which have high affinity

specifically for the SRF promoter but not the background, we

invoke the statistical approach and the background model defined

above by the set of human promoters. In Table 2 we list the top

scoring matrices along with their normalized scores. As can be

seen, many of them relate to the same transcription factor SRF,

which is well-known for its autoregulatory capacity. Clearly the

motif descriptions are not independent, but here we do not aim to

resolve such redundancy and leave it as a postprocessing step of

our analysis.

As a further example, we also considered the promoter region of

another transcription factor, E2F, which is a known auto-regulator

[18]. We use an identical setup as described above and determined

those transcription factors with the highest affinity to the E2F-

promoter after normalization. Also for this gene we find a strong

binding of the transcription factor E2F to its own promoter

(Table 3). As a final example, we turn to a gene which has a strong

tissue-specific expression domain. The serine protease inhibitor A1

(a1-antitrypsin) is part of the larger serpin cluster of genes which is

almost exclusively expressed in liver, for both human and mouse.

Our analysis reveals a particularly strong binding of the liver-

specific factor HNF1, which has indeed been known to be involved

in the regulation of a1-antitrypsin [19].

While the regulatory mechanisms for all those genes are likely to

involve additional sequence elements and transcription factors, it is

encouraging that some of the known key players can be detected

by our method. We should also point out that we have assumed a

scenario of maximal ignorance. Frequently one may already have

a list of transcription factors among which to choose the one with

the highest relative affinity. For example, in the case studies above,

one may have excluded all non-vertebrate factors, or further

restricted them to those which share an expression domain with

the gene in question, if this information is known. Here this was

not even necessary and it bodes well for the applicability of our

framework to other promoters.

To assess this point more quantitatively, we retrieved from

ENSEMBL (version 45 [20]) the promoter sequences (2000 bp

around the TSS) of 567 human genes, which have known binding

sites according to the TRANSFAC database v11.1 [7]. We also

required that at least one of the associated transcription factors has

a matrix description which enables a treatment by our affinity

analysis and normalization, as described above. For each of the

567 promoters, we compare and rank all 554 vertebrate motif

matrices, and determine the rank of the matrix for the known

binding factor. In cases where known factors are represented by

multiple matrices, we take the one with the best rank. In Figure 5

we show that there is indeed a large fraction of promoters, for

which the associated transcription factors rank highly according to

their normalized affinity. Specifically, we find that for 50 out of

567 promoters the top-ranking matrix corresponds to a known

regulator, as exemplified by the earlier examples. To the extent

that experimentally known binding sites are functional, our

analysis also illustrates that in many cases binding strength is

suggestive of functionality.

Next we want to assess the significance of these findings. One

might expect a shift towards higher ranks, simply because we

always use the best matching factor, if more than one is known to

regulate a certain gene. To account for this effect we reshuffled the

associations between factors and promoters, while retaining the

precise distribution of factors per promoter. Then we repeated our

analysis on 100 such randomized sets and obtain 100 correspond-

ing histograms. From this we determine the average histogram and

the standard deviation, which are shown as red circles with error

bars. While there is indeed a slight increase towards higher ranks,

Table 2. Ranked TRANSFAC matrices based on their affinity
to the SRF promoter (L = 2000).

Not Normalized Normalized

Matrix-ID Affinity Matrix-ID 2log[pGEV(Affinity)]

I$DFD_01 51.53 V$SRF_Q5_02 3.02

V$MINI20_B 10.07 V$SRF_C 2.89

V$MINI19_B 9.40 V$SRF_Q4 2.77

I$ADF1_Q6 8.18 V$SRF_Q5_01 2.72

V$AP2ALPHA_01 4.85 F$CAT8_Q6 2.48

V$ETF_Q6 3.94 V$SRF_Q6 2.18

V$MUSCLE_INI_B 3.60 F$REB1_B 1.95

F$FACBALL_Q2 3.53 V$OCT_C 1.89

On the left site we give the top matrices, which are naively ranked according to
their calculated affinity. On the right site we show the same number of top-
ranking matrices, ranked according to the corresponding p-value from the GEV-
parametrization.
doi:10.1371/journal.pcbi.1000039.t002
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it is also clear from Figure 5 that the observed increase is highly

significant.

Now we want to compare these results with what one would

obtain from a traditional hit-based analysis. To this end we employ

the annotation method which was introduced by Rahmann et al

[11]. In this approach one defines a score threshold such as to

balance the rate of false positive and false negative hits. In doing so

we assign to each of the 567 promoters and every vertebrate

TRANSFAC matrix the number of significant hits, which are

observed above the ‘‘balanced’’ threshold. Notice that many

factors can have the same number of hits, and some may have

none. This makes the hit-based ranking somewhat ambiguous – in

contrast to our affinity-based ranking, which assigns a positive and

real number to each combination of promoter and transcription

factor. Here we take a favourable approach to the hit-based

predictions, and assign to a known regulator always the best

possible rank. Consider, as an example, the 2 kb promoter region

around the transcription start of the Nod1 gene. This gene

encodes a protein which can sense invasive bacteria and initiate an

inflammatory response [21]. It is also known to be regulated by

IRF1 [22]. In fact, the corresponding motif ranks highest

according to the normalized affinity, and the matrix has 5 hits

in the promoter region. However, there are many other factors

which have also five or more significant hits. According to the hit-

based method the IRF1 transcription factor would rank between

68 and 87. For our conservative comparison we would assign the

higher rank: 68. The results from a systematic analysis over all

promoters with known regulators are shown in Figure 5 (histogram

shaded in grey). While the hit-based method also recovers many

known regulatory links, it is apparent that our quantitative

approach predicts more biologically meaningful associations.

In our earlier study [6] we had already observed that the

affinity-based ranking of sequences for a given factor is only little

affected by changes in the global TRAP parameters (l, R0). In the

current context, we have repeated such an analysis also for the

ranking of transcription factors. We find that the results from

Figure 5 are almost identical if l is changed from l = 0.7 to 1.0, or

if ln(R0) is artificially increased by 20% (Figure S1). This indicates

that our ranking scheme provides a robust approach to quantify

the binding strength and to discriminate transcription factor from

each other.

Discussion

In this paper we adopted a novel approach to the modelling of

protein-DNA interactions. Rather than identifying transcription

factor binding sites, we quantify the affinity of a transcription

factor to any given sequence region. In contrast to the traditional

approach, we do not seek a specific threshold, and we do not study

‘‘hits’’ of transcription factors. Instead, we are seeking an

appropriate normalisation, which allows us to compare the

affinities of different transcription factors directly with each other.

This is similar in spirit to the different normalisation procedures

which are currently applied to experimental ChIP-chip data

[23,24], for which the TRAP-model was originally designed [6].

In our earlier work we were mostly concerned with the ranking

of different sequences for a given factor and we derived an optimal

model to achieve just this. Here we addressed the more

challenging task to compare the affinities of different factors for

a given sequence. This requires an understanding of the affinity

distribution, which can be used to define a comparable score (a p-

Table 3. E2F-promoter and A1A-promoter.

E2F a1-antitrypsin

Matrix-ID 2log[pGEV(Affinity)] Matrix-ID 2log[pGEV(Affinity)]

V$E2F_03 2.87 V$HNF1_01 2.97

F$REPCAR1_01 2.70 V$HP1SITEFACTOR_Q6 2.77

V$E2F1_Q3_01 2.36 V$AP1_Q4 2.31

V$E2F_Q3_01 2.35 V$HNF1_Q6 2.24

V$E2F_Q4_01 2.31 V$AP1_Q2 2.24

V$E2F_01 2.29 V$AP1_Q6 2.18

As in Table 2 we list those matrices with the strongest normalized binding affinity to two well-known promoters. E2F is a known auto-regulator [18], while a1-antitrypsin
is a liver-specific gene, which is known to be regulated by HNF1.
doi:10.1371/journal.pcbi.1000039.t003
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Figure 5. High affinities predict known regulatory interactions.
For each of 567 human promoters we determine the ranks of the
transcription factors which are known to bind this promoter, based on
our affinity ranking. The red histogram shows the distribution of these
ranks. For example, 136 of 567 promoters have a known regulator
assigned within the top 5 of 554 vertebrate Transfac matrices. For 50
promoters a known regulator is also the top candidate within our
ranking scheme. This should be compared to the red circles, which have
been obtained from the same analysis, but with reshuffled promoter
regions. The reshuffling was done 100 times to determine the standard
deviation, which is shown as error bars. Finally we also ranked the
prediction from a traditional approach which assigns a number of
binding sites to each promoter region. Notice that many transcription
factors can have an identical number of binding sites, which leads to
ambiguous ranking schemes. To be conservative, we always assign the
best possible rank (histogram shaded in grey). Compared to the
traditional approach our method identifies a larger number of known
regulatory interactions.
doi:10.1371/journal.pcbi.1000039.g005
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value). We have shown that, for a simple background model, the

exact distribution of affinities can be predicted directly for any

matrix. For a given sequence, all transcription factors with matrix

descriptions can be ranked according to how strongly their affinity

deviates from its expected value.

While the exact analysis can in principle be repeated for

uniform sequences of all lengths, we also provide a relatively

simple parametrization (GEV-model), which is applicable for more

than 90% of all matrices, and in which the length dependence can

also be accounted for, through a regression analysis. Moreover, the

GEV parametrization can also account for the distribution of

affinities from sequences with variable GC-content, as long as the

variability is not too strong. To demonstrate our approach in a

realistic stetting, we have applied this normalization to human

promoters with known binding sites. We find that matrices of

known transcription factors tend to rank highly according to their

normalized affinity. This has been illustrated by the example of the

SRF promoter, which yielded a clear suggestion for a known auto-

regulatory loop, i.e. a strong relative binding of SRF to its own

promoter. Remarkably this link could be established without

invoking any prior knowledge on the set of relevant transcription

factors, and without sequence conservation.

We want to stress that even the best parametrizations used in

our work leave room for improvement. While we have made an

extensive effort to derive a simple characterization which is

appropriate for most matrices, we clearly traded accuracy for

efficiency (small number of parameters). More specifically, the

GEV-model should not be used to estimate p-values very

accurately. Instead, it represents an effective distribution which

is appropriate at a certain level of granularity. As the distribution

models in our study were derived from the empirical distribution

of 1000 measured affinities, we do not expect accuracies better

than /1023, even for those matrices for which we consider the

GEV-model appropriate. Further improvements will likely come

from a better description of the tails of the distribution, for which

certain limit theorems ensure a universal behaviour, which may

indeed be parametrised more accurately.

Alternatively, if one does not require a simple functional form,

we have shown how to derive the exact affinity distribution using a

characteristic function approach. In this context, further improve-

ments will have to take into account higher order background

models and positional dependencies. Here we have considered a

zeroth order background model to derive the distribution pe, and

we assumed identically distributed affinities, al, to simplify Eq. (8).

Both approximations can, in principle, be replaced by a more

complicated model, but the characteristic function approach

would still apply.

On the numerical side, it would be worthwhile to consider a

better implementation of the Fourier transformation (and its

inverse) over unevenly discretized domains. Our simple FFT

implementation is straightforward, but it cannot accurately

account for the region of small affinities, where the cumulative

distribution Pr[x.A]<1. This is because small overall affinities

derive from many terms, ai<0, which are not well resolved in our

discretisation. The conventional FFT algorithms use an equi-

distant discretisation of both the distribution function and its

Fourier transform. This puts a lower limit on the achievable

granularity and therefore we generally loose information from sites

with very small ai<0. Fortunately, from a practical point of view,

this region is also not very interesting, as one is mostly concerned

about the regions with relatively high affinities.

Notice that we took the matrices provided by TRANSFAC at

face value, and did not pre-process them in any way. Clearly,

many matrices are rather unspecific with low information content

and correspondingly high baselevel affinities. In a more refined

analysis one would probably want to remove them prior to the

analysis, for example by invoking a quality measure as in [11].

Moreover, there is a large redundancy which needs to be resolved

at the end of the analysis. It would certainly be helpful to start with

a non-redundant set of matrices, but any such derivation maybe

more challenging than a simple post-processing.

In summary, the combination of the physical binding model

and the statistical normalization brings our theoretical predictions

a step closer to the real world. To our knowledge, this is the first

attempt to provide a quantitative measure which ranks transcrip-

tion factors for a given sequence, and which can be compared

directly with large-scale binding data. Its successful application to

human promoter sequences, serves as an encouraging example of

how the method can be applied to other sequences.

Supporting Information

Text S1 Supplementary material.

Found at: doi:10.1371/journal.pcbi.1000039.s001 (0.00 MB TEX)

Figure S1 Number of promoters with rank r.

Found at: doi:10.1371/journal.pcbi.1000039.s002 (1.24 MB EPS)
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