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Abstract

The response behaviors in many two-alternative choice tasks are well described by so-called sequential sampling models. In
these models, the evidence for each one of the two alternatives accumulates over time until it reaches a threshold, at which
point a response is made. At the neurophysiological level, single neuron data recorded while monkeys are engaged in two-
alternative choice tasks are well described by winner-take-all network models in which the two choices are represented in
the firing rates of separate populations of neurons. Here, we show that such nonlinear network models can generally be
reduced to a one-dimensional nonlinear diffusion equation, which bears functional resemblance to standard sequential
sampling models of behavior. This reduction gives the functional dependence of performance and reaction-times on
external inputs in the original system, irrespective of the system details. What is more, the nonlinear diffusion equation can
provide excellent fits to behavioral data from two-choice decision making tasks by varying these external inputs. This
suggests that changes in behavior under various experimental conditions, e.g. changes in stimulus coherence or response
deadline, are driven by internal modulation of afferent inputs to putative decision making circuits in the brain. For certain
model systems one can analytically derive the nonlinear diffusion equation, thereby mapping the original system
parameters onto the diffusion equation coefficients. Here, we illustrate this with three model systems including coupled rate
equations and a network of spiking neurons.
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Introduction

In perceptual two-choice decision making experiments one

studies how sensory information influences response behavior. In

each trial the experimental subject is presented with a stimulus and

must use the information thus provided to choose one of two

possible responses. The response behavior in these tasks, as defined

by reaction times and performance, has been studied for over a

hundred years [1–3] leading to a wealth of data and modeling

results [4]. The reaction times are typically long compared to what

would be expected based only on neuronal conduction times and

vary considerably from trial to trial. Mean reaction times for error

and correct trials are also, in general, found to be different.

Moreover, subjects can be instructed to trade speed for accuracy.

These facts are believed to reflect, at least in part, the decision

making aspects of the tasks as opposed to sensory or motor aspects

[1–5].

The aim of the work presented here is to account for the

response behavior in two-choice decision making tasks in terms of

the underlying neurobiology. In the remaining part of this section

we will first describe one prominent family of behavioral models of

response behavior, the sequential sampling models. Subsequently

we will describe some neurophysiological findings, and models

thereof, pertinent to our modeling framework.

Behavioral Models of Two-Choice Decision Making
The response behavior in two-choice decision making tasks is

well described by so-called sequential sampling models [6], of

which Ratcliff’s Diffusion model [7,8] is a particularly successful

variant. According to the Diffusion model there is a decision

variable X, the evolution in time of which is given by the linear

diffusion equation

_XX~gLzsj tð Þ, ð1Þ

where j is zero-mean Gaussian white noise with unit variance, s is

the noise strength and gL is a constant drift term. On each trial, X

evolves from an initial condition until it reaches one of two fixed

thresholds corresponding to the two decisions. The value of gL

depends on the strength of the task-relevant information in the

stimulus and is typically taken to be constant within a trial but

allowed to vary between trials according to some distribution. The

Diffusion model can account for many of the observed phenomena

in reaction time tasks (e.g. [6,9]). In particular, making the task

easier corresponds to increasing the value of gL which leads to

faster and more accurate decisions, e.g. [8]. The ability of a subject

to trade speed for accuracy can be accounted for by changing the

boundaries: by moving them closer to the starting points decisions
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become faster but less accurate [10]. Longer reaction times on

error trials can be accounted for by introducing between-trial

variability in the drift term, whereas shorter reaction times on

error trials can be accounted for by considering a distribution of

initial conditions [9].

The Diffusion model can be related to other behavioral models

of decision making. It can be conceived of as a continuous-time

version of random walk models (e.g., [11]). Usher and McClelland

demonstrated how a two-dimensional connectionist model, with

piecewise linear activation functions, can be reduced to a one

dimensional diffusion equation [12]. The general form of the

resulting diffusion equation differs from Equation 1 in that it

includes a term linear in the decision variable and hence the

resulting diffusion process is the so-called Ornstein-Uhlenbeck

process. More recently Brown, Bogacz and co-workers have

demonstrated that the linear diffusion equation can be derived

from a range of different linear and piecewise linear connectionist

and related models [13,14].

Neurophysiology of Two-Choice Decision Making and
Models Thereof

Recently, neuroscientists have begun to investigate the single-

cell neurophysiology of the decision making process in two-choice

tasks (e.g., [15–19]). In many of the tasks used by neuroscientists

the subject is presented a visual stimulus and the behavioral

response is indicated by a rapid eye-movement (saccade) to one of

two pre-specified targets. Decision making related neuronal

activity in these tasks has been described in a number of brain

areas that are known to be involved in the planning and control of

eye-movements: lateral intraparietal area (LIP) [20,21], dorsolat-

eral prefrontal cortex [22], the frontal eye fields (FEF) [22], and

the superior colliculi [23,24]. There are several key features of the

neuronal activity observed in these experiments that are important

for our work: i) The average firing rate of cells in these areas is

correlated to the response behavior of the animals. This indicates

that the firing rate ‘‘represents […] the information on which the

developing decision is made’’ [21]. Further support for this

interpretation comes from a study showing a direct correspon-

dence between the time-evolution of trial-averaged firing rates in

the superior colliculus and the dynamics of the decision variable in

the Diffusion model [25]. ii) The time-evolution of the trial-

average firing rates is consistent with there being a competition

between groups of cells associated with the two different decisions.

The firing rate in the group associated with the correct decision

shows, on average, an increase with time whereas the firing rate of

the other group shows a decrease with time (e.g., [21]). Further

evidence of a competition comes from microstimulation experi-

ments [26]. iii) The neurons in many of the involved areas show

evidence of nonlinear interactions. In particular, many cells

continue to fire at an elevated rate after the stimulus indicating

where to move the eyes to is removed [20]. This so-called

persistent activity can be accounted for by models of recurrent

networks of spiking neurons [27]. Indeed, in a series of papers,

Wang and co-workers have shown that biophysically motivated

cortical network models of a two-choice decision making task can

qualitatively replicate some salient aspects of both behavioral and

neurophysiological data [28–31]. Such models posit two popula-

tions of recurrently coupled excitatory neurons each of which

receives input proportional to the relative evidence in favor of the

choice which it encodes. The populations compete through

interneuron-mediated inhibition leading to winner-take-all behav-

ior. On each ‘trial’ the state of the system evolves until the activity

of one of the two populations exceeds a fixed threshold indicating

a decision for that choice. In this model, making the task easier

corresponds to increasing the input to one of the populations

relative to the other [28] whereas the speed-accuracy trade-off has

been accounted for by adjusting the threshold [30].

Relating Neurobiological Models to Behavioral Models
Assuming that the brain regions involved in the decision making

process implement a winner-take-all strategy, as suggested by

computational models, it remains unclear how this might lead to a

response behavior best described by a one-dimensional diffusion

processes. In other words, what is the relationship between the

neuronal activity in putative decision making circuits and decision

variables in behavioral models such as X in Equation 1 [32]?

Recent theoretical work exploring the dynamics of winner-take-all

models for decision-making has shown that several models can, in

fact, be reduced to a one-dimensional diffusion process provided

that the models themselves are linear. Usher and McClelland [12]

studied a two variable connectionist model with inhibitory cross-

coupling and linear-threshold activation functions. While the

thresholding is nonlinear and leads to bistable behavior, the

reduction to a one-dimensional diffusion process is possible only in

the region where the argument of the linear-threshold function is

the same for both variables and the dynamics, therefore, are

linear. Brown et al. [13] study both linear and piecewise linear

systems, while Bogacz et al. [14] study the relationships between a

number of linear connectionist models and show under which

conditions these models can be formally reduced to a one-

dimensional linear diffusion equation. It remains however, unclear

how the dynamics of such linear systems might be related to that of

more biologically realistic neural models, which exhibit strong

nonlinearities. A first step towards resolving this issue was taken by

Wong and Wang [29] in which they derive a reduced system of

coupled nonlinear equations from a full spiking network via a

semi-analytical approach. They then show that the linearization of

the reduced system in the unbiased case can be reduced to a one-

dimensional diffusion equation at the point where the spontaneous

state destabilizes ([29], Text S1). However, we may ask if the

notion of a linear diffusion process is still valid once one takes into

account nonlinear effects present in the system.

Author Summary

The brain holds a central position in scientific theories of
rational behavior. For example, brain activity is thought to
stand in a causal relation to the decision making behavior
observed in two-choice perceptual discrimination tasks.
Although a lot is known about both the brain activity and
the response behavior during these tasks, the relationships
between the two are not fully understood. In particular,
how can one relate the high-dimensional dynamic activity
of the brain to the low-dimensional descriptions of
response behavior such as performance and reaction-
times? Our approach to this question is to relate existing
neurobiological models of brain activity to existing models
of response behavior. In this paper we establish a formal
link between standard, winner-take-all models of brain
activity during two-choice tasks and a family of one-
dimensional behavioral models known as diffusion models.
Our analysis demonstrates a universal functional depen-
dence between the external inputs to the neural
populations in the neurobiological model on the one
hand, and reaction times and performance in the one-
dimensional model on the other. Importantly, we show
that experimentally measured performance and reaction-
times can be predicted through changes in these external
inputs alone.

A Nonlinear Diffusion Equation for Decision Making
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Here we show how one can go beyond linearizations to take into

account nonlinear effects in neural winner-take-all models. In

particular, we will show how models of neuronal dynamics in two-

choice decision making tasks can be formally reduced to a one-

dimensional nonlinear diffusion equation. Instead of focusing on a

particular model system we consider a generic model of the

neuronal dynamics with two key features: nonlinearity and

competition. One obvious advantage of using such a general

framework is that the extent of validity of the reduction is

potentially very large. Moreover, most detailed models of the

neuronal underpinnings of decision making do include nonline-

arity and competition as important ingredients (e.g., [28,33,34]).

Unlike in linear systems, a proper reduction of the dynamics to one

dimension in nonlinear winner-take-all models leads to a nonlinear

diffusion equation. The nonlinear diffusion equation takes the

form of a stochastically driven normal form for an imperfect

pitchfork bifurcation. The nonlinear diffusion equation not only

provides the correct qualitative description of the dynamics in

neural winner-take-all models in general, but can also be derived

from model systems if they are analytically tractable. This allows

one, in the context of two-choice decision making, to determine

how the coefficients of this diffusion equation functionally depend

on neurobiologically meaningful quantities.

Results

Here we show how a winner-take-all model can be reduced to a

nonlinear diffusion equation through general symmetry arguments

alone. Despite the generality of the derivation, the resulting

coefficients are directly related to biological meaningful parame-

ters. We furthermore illustrate the correspondence of the

nonlinear diffusion equation with neural winner-take-all models

by deriving it directly from a system of coupled rate equations.

Further examples, including a network of spiking neurons, are

provided in the supporting material (Text S1). In using the

nonlinear diffusion equation to calculate behaviorally meaningful

quantities such as reaction-times and performance we must

furthermore discuss the effect of initial conditions and the

placement of thresholds. We will see that these are largely dictated

by the type of dynamics seen in the actual winner-take-all models

for which the nonlinear diffusion equation represents the correct

asymptotic reduction. Finally, we show that the nonlinear diffusion

equation can provide an excellent fit to behavioral data from the

so-called random moving dot experiment.

Derivation of the Nonlinear Diffusion Equation
We begin on a fairly technical note in order to provide some

sense of the generality of the result. We will then make use of, for

illustrative purposes, a simple model which nonetheless retains

some biophysical plausibility . While the method we use may seem

complicated and the algebra is, in general, involved, the idea

behind the reduction is simple. We take advantage of the dramatic

reduction in dimensionality which occurs spontaneously in

dynamical systems near a point where the qualitative behavior

of the system changes, i.e. stationary states appear, disappear or

change in nature. Such transition points or bifurcations, are

ubiquitous in physical and biological systems, e.g. see [35–37].

Here we make use of the fact that winner-take-all models for two-

choice decision making, irrespective of their dimensionality or

complexity, generically undergo such a bifurcation when two new

stationary states appear, corresponding to the two potential

‘winner/loser’ pairs.

To emphasize the reduction in dimensionality we first consider

a system of n nonlinear equations of the form

_xx1~f x1,x2,x3, . . . ,xn; IzI1ð Þ ð2Þ

_xx2~f x2,x1,x3, . . . ,xn; IzI2ð Þ ð3Þ

_xx3~f3(x1zx2,x1x2,x3, . . . ,xn; I3)

..

.
~..

. ð4Þ

_xxn~fn x1zx2,x1x2,x3, . . . ,xn; Inð Þ ð5Þ

where the Is are external inputs and xi represents the activity of the

ith neuronal population, and _xx represents the time derivative of x.

Here x1 and x2 are populations whose activity correlates with the

two possible developing choices while the remaining populations

are non-selective given the particular task. We note that for I1 = I2

the equations are invariant under the transformation

(x1,x2)R(x2,x1), a property known as reflection symmetry. We see

from this symmetry that the existence of the fixed point

(x1,x2,…) = (xhigh,xlow,…) implies the existence of the fixed point

(x1, x2,…) = (xlow, xhigh,…). That is, if there is state in which

population 1 exhibits a high level of activity and population 2 a

low level of activity, then we are assured the existence of the

opposite state. If these are the only possible stable states at long

times then Equations 2–5 constitute a so-called ‘winner-take-all’

system. Since we want the system to behave in a winner-take-all

fashion only when provided with sufficient input, we further-

more assume the existence of a fixed point

(x1,x2,x3,…,xn) = (x,x,x̂3,…,x̂n), representing the spontaneous state.

The derivation of the correct one-dimensional reduction of this

system begins with the evaluation of the linear stability of this fixed

point. We thus consider small perturbations of this state with the

ansatz x~xsszdx tð Þ where xSS are the steady state values and

perturbations with growth rate l have the form dx tð Þ~dxelt.

Plugging this ansatz into Equations 2–5 yields

l{a {b {Lx3
f � � � {Lxn

f

{b l{a {Lx3
f � � � {Lxn

f

{c3 {c3 l{Lx3
f3 � � � {Lxn

f3

..

. ..
. ..

.
P

..

.

{cn {cn {Lx3
f3 l{Lxn

fn

0
BBBBBBB@

1
CCCCCCCA

dx1

dx2

dx3

..

.

dx5

0
BBBBBBB@

1
CCCCCCCA

~0, ð6Þ

where a is the derivative of f with respect to x1 in Equation 2 and

x2 in Equation 3, b is the derivative of f with respect to x2 in

Equation 2 and x1 in Equation 3, the cs are derivatives with

respect to x1 and x2 and all derivatives are evaluated at the fixed

point. It is clear that for a = b, which will occur only for a special

parameter set, the first two rows cease to be linearly independent

implying a zero eigenvalue with eigenvector xcr = (1,21,0,…,0)

which corresponds to a mode for which either x1 or x2 increases

while the other decreases, i.e. the winner-take-all dynamics we are

interested in. If we wish our system to exhibit winner-take-all

behavior then it must also be that the real part of the remaining

n21 eigenvalues is negative to avoid unwanted instabilities

unrelated to the dynamics of interest and sufficiently distant from

zero. This implies that perturbations along the eigenvector

A Nonlinear Diffusion Equation for Decision Making
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corresponding to the ‘winner-take-all’ instability neither decay nor

grow linearly, while perturbations in any other direction quickly

decay to zero. This is precisely the scenario in which a reduction to

a one-dimensional dynamics is appropriate, as noted elsewhere,

e.g [14,29]. Specifically, the dynamics along n21 of the n

dimensions will rapidly converge from an initial state to a one-

dimensional manifold along which the dynamics are slow. This

separation of time-scales, where the time-scales are inversely

related to the eigenvalues of the linearized system, is what gives us

the reduction in dimensionality.

We now wish to derive an equation for the dynamics of the

‘winner-take-all’ instability. To do so we express the dynamical

variables as x = xSS+xcrY(T )+---, where Y represents the slow

dynamics along the critical eigenvector and T is a slow time scale.

Note that the reflection symmetry of the system implies that the

dynamics of Y should be invariant under the transformation

YR2Y since this switches the identity of x1 and x2. We assume that

the increase in input, I, common to both x1 and x2 leads to the

developing decision in the winner-take-all system and is thus the

bifurcation parameter. This means that the linear growth rate of

the spontaneous state must be proportional to the difference

between the presynaptic input and the value of the input at the

bifurcation although with an unknown prefactor, i.e. m(I2Icr). The

difference in inputs, I12I2, breaks the reflection symmetry thereby

introducing a constant term which, to first approximation, must be

proportional to that difference although with an unknown

prefactor, i.e. g I1{I2ð Þ. These two facts, coupled with the

reflection symmetry, lead to the form of the equation describing

the time evolution of Y

LT Y~g I1{I2ð Þzm I{Icrð ÞYzcY 3, ð7Þ

where I = Icr only when a = b identically, i.e. at point of instability,

and hT is a time derivative with respect to the slow time T. Note

that for I12I2 the equation is invariant under YR2Y as it should

be (indeed, Y3 is the lowest order nonlinearity which obeys

reflection symmetry). The coefficients g, m and c can be calculated

analytically from Equations 2–5. This line of argumentation can

be made more exact mathematically, see Materials and Methods

and the supporting material (Text S1) for examples from several

systems, and is a standard technique in nonlinear dynamics known

as multiple-scale analysis, see e.g., [38,39]. For more complex

systems which exhibit winner-take-all behavior, Equation 7 still

captures the qualitative dynamics of the system near the

bifurcation in general, although it may not be possible to calculate

the coefficients. In addition, we are interested in the case of

stochastically driven dynamics, which will lead, to leading order, to

an additive noise term whose amplitude can also be calculated

analytically for Equations 2–5, see Materials and Methods and

supporting material (Text S1) for details. Finally, we arrive at the

equation

LT X~gDnzmnX+X 3zsj tð Þ, ð8Þ

where Dv = I12I2, nn~I{Icr, X = |c|1/2Y, g~jcj1=2g and the sign

of c determines the sign of the cubic term. We note here that

although we have not derived Equation 8 from any particular

system (and thus we do not know the functional dependence of

g,m, and s on relevant physiological parameters), we nonetheless

do know the leading order dependence on changes in external

inputs to the two ‘competing’ populations. Thus the constant drift

term is linear proportional to differences in these inputs while the

linear term is proportional to the common input to both

populations and is exactly equal to zero at the critical value. We

also note that the evolution of X in Equation 8 can be thought of as

the motion of an noise-driven, overdamped particle in a potential, or

LT X~{
dE Xð Þ

dX
zsj tð Þ, ð9Þ

E Xð Þ~{gDnX{mnX 2
�

2+X 4
�

4 ð10Þ

The use of an analogy to an ‘energy landscape’ as an intuitive

explanation for the dynamics in neural winner-take-all models is not

new, e.g. [29]. However, here we have gone beyond analogy to show

the actual form of the potential.

The framework we chose above for illustration, Equations 2–5,

is a system of coupled nonlinear ordinary differential equations.

However, the derivation of the nonlinear diffusion equation

Equation 8 is not contingent on the original system having this

particular form. For this reason we have chosen to illustrate the

derivation of the nonlinear diffusion equation from three distinct

model systems. Below we study a system of three coupled rate

equations. In the supporting material (Text S1) we consider a

system of three populations of integrate-and-fire neurons.

Following the work of Brunel and Hakim [40] we recast the

network as a system of coupled partial differential equations

(Fokker-Planck equations) describing the evolution of the proba-

bility densities for the voltages. The nonlinear diffusion equation

can then be derived from the system of partial differential

equations. Finally, in the supporting material (Text S1) we also

include a derivation from two coupled rate equations which Wong

and Wang derived via semi-analytical arguments from a full

spiking network [29].

An Illustrative Example
We consider a simple model describing the activity of two

excitatory populations of neurons which compete via a population

of inhibitory interneurons. The equations are

_rr1~{r1zW sr1{crIzIzI1ð ÞzsEj1 tð Þ, ð11Þ

_rr2~{r2zW sr2{crIzIzI2ð ÞzsEj2 tð Þ, ð12Þ

t_rrI~{rIzWI g r1zr2ð ÞzIIð ÞzsI jI tð Þ, ð13Þ

where rI, r1 and r2 are the activity of the inhibitory and two

excitatory populations respectively. The input to each population

consists of a combination of recurrent and external inputs. For

each excitatory population there is a recurrent excitatory coupling

of strength s, an inhibition term with strength c and an input made

up of a common and population specific parts, I and Ii where

i = 1,2. The inhibitory population receives excitatory drive from

both populations with a strength g and input II and we have

neglected any self-inhibition term. The Ws are nonlinear

transformations of the input. Fluctuations in the activity variables

are expressed via unit variance Gaussian white noise terms j(t)

with strength sE and sI for the excitatory and inhibitory

populations respectively. Additionally, we have normalized time

by the time constant of the excitatory populations and t thus

represents the ratio of the inhibitory to the excitatory time

constant. For this system a ‘winner-take-all’ instability occurs for

A Nonlinear Diffusion Equation for Decision Making
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sW9(I = Icr) = 1. Following the general framework outlined above

one carries out a multiple-scale analysis (see Materials and

Methods) to arrive at Equation 8 with

g~
W0

2
cj j1=2, ð14Þ

m~
s2W00

2cgW0I
, ð15Þ

s~
sEffiffiffi

2
p cj j1=2, ð16Þ

c~
W00ð Þ2s3

4cgW0W0I
s{2cgW0I
� �

z
W000s3

6
ð17Þ

where all derivatives of W are evaluated at I = Icr. Note that here

the slow dynamics at the point of instability (bifurcation) are not

dominated by the time constant t (nor by 1) but rather by the

near-zero eigenvalue of the critical mode. Thus extremely slow

dynamics can thus be achieved in the vicinity of the bifurcation

even in the absence of an intrinsic slow time constant such as that

due to the activation of recurrent NMDA receptors, e.g. [28]. The

presence of slow intrinsic time constants is, however, beneficial in

eliminating oscillations and for obtaining realistic firing rates for

working memory states, e.g. [28,41].

Generically, two qualitatively different scenarios for winner-

take-all dynamics can occur in nonlinear systems.

Supercritical. In the first scenario, the two ‘decision’ fixed

points bifurcate continuously from the spontaneous state and

therefore with small amplitude. Such a supercritical bifurcation

can be seen in Figure 1A for Equations 11–13. The actual fixed

points (black) as well as the prediction from Equation 8 with

coefficients Equations 14–17 (red) are shown. Note that this

scenario corresponds to a negative cubic coefficient in Equation 8.

Systems of this type have been studied in the context of decision

making, e.g. [42], by making linear and piecewise linear

approximations. Figure 1B shows r1 and r2 (black) during a

typical simulation in the supercritical case, as well as the rates

predicted by Equation 8 (red), see the figure caption for parameter

values. In comparing the original system and the nonlinear

diffusion equation we must choose appropriate initial conditions.

The derivation of the nonlinear diffusion equation itself assumes

strongly attracting dynamics in all directions except along the slow

manifold whose dynamics are described precisely by Equation 8.

Assuming symmetric initial conditions in the original system (pre-

stimulus), an infinitely fast approach to the slow manifold with

stimulus onset would lead to X(0),0. The further from the

bifurcation one is the worse this approximation will be.

Nonetheless, assuming a fast transient after stimulus onset, the

choice of X(0) = 0 is the weakest assumption possible. As an

example of the insensitivity of the system response on initial

conditions, see the fast oscillatory transient in Figure 1B (black)

after stimulus onset (here r1 = r2 = rI = 0) after which the dynamics

converges rapidly to that predicted by the nonlinear diffusion

equation (red). If we wish to treat the system as a model of decision

making in the supercritical regime we must choose the appropriate

placement for the thresholds. This has been studied elsewhere, e.g.

[42]. We would only note here that in the regime where the system

dynamics behave locally as a linear diffusion process, i.e. at the

bifurcation point, the thresholds must be placed very near the

spontaneous state. This is reflected in the U-shaped potential

(Figure 1B, righthand inset) which strongly constrains the

dynamics. For larger values of the common input the potential

is a double-well and the dynamics near the spontaneous state are

strongly repelling.

Subcritical. A positive cubic coefficient in Equation 8

indicates a subcritical bifurcation. In this case, the fixed points

corresponding to a decision appear in a saddle-node bifurcation

already below the critical input at the pitchfork bifurcation. These

solution branches therefore already have finite amplitude at this

point. Such a situation is shown in Figure 1C. In models

representing the activity of neuronal populations a crucial

variable in determining the criticality of the bifurcation is the

recurrent excitation [27]. Indeed, this can be clearly seen in

Equation 17, the sign of which clearly switches at a critical value of

the recurrent excitatory coupling s. (For s near this critical value,

the coefficient of the cubic term can be considered asymptotically

small, justifying the addition of a quintic term, see Text S1 for

details.) Strong recurrent excitation therefore naturally leads to a

subcritical bifurcation and hence hysteresis. Network models

describing the activity of neuronal populations in two-choice

decision-making tasks have made use of this working-memory

property which allows for a decision to be made and then ‘held in

mind’, e.g. [28,29]. This is additionally consistent with single-unit

recordings of cells in area LIP of monkeys which exhibit delay

activity [20,21]. The subcritical case is therefore a more likely

candidate for a neuronal instantiation of winner-take-all dynamics

for this two-choice decision making task in LIP than the

supercritical one. The dynamics in this case are qualitatively

different from the supercritical case as can be seen in Figure 1D

(initial conditions are as before). Here the firing rates (black)

initially separate over a slow time scale. At some point this

separation speeds up and the system quickly approaches a

‘decision’ fixed point. This acceleration of the separation is

captured by a positive cubic coefficient in Equation 8, leading

again to a rapid rise in the predicted rates (red). Unlike in the

supercritical case, it is clear that reaction-times calculated by

simulation of Equations 11–13 in the subcritical case will be

relatively insensitive to the exact placement of a threshold as long

as it is not too close to the spontaneous state. This is illustrated by

the ‘thresholds’ shown by dotted lines in the left inset of Figure 1D.

Here a twofold increase in the threshold leads to less than a 10%

increase in the reaction-time. This difference clearly becomes

more negligible the higher the thresholds are taken to be. This

insensitivity to the threshold placement is captured in the

nonlinear diffusion equation by the positive cubic coefficient

which causes X to go to infinity in finite time, a consequence of an

inverted-U potential, see right inset Figure 1D. It is interesting to

note that the linear diffusion equation with fixed thresholds can

also be expressed as the motion of an overdamped particle in a

potential. In this case the potential also has an inverted-U shape

although the sides of the potential have infinite slope as illustrated

by the hypothetical potential shown by the dotted lines in the right

inset of Figure 1D. Therefore the dynamics of nonlinear winner-

take-all models near a subcritical bifurcation although qualitatively

different than that of a linear diffusion process, nonetheless share

some qualitative features. In particular, the same nonlinearities

which lead to delay activity act to shape an effective inverted-U

potential, thereby endowing the system with an intrinsic ‘soft’

threshold. This would eliminate the need for fine-tuning in the

threshold-setting mechanism used by any downstream ‘readout’

neurons [30,43]. We note, however, that one could choose to set

thresholds near the spontaneous state, in which case the exact
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Figure 1. The bifurcation structure (A,C), typical dynamics (B,D) and behavioral measures (E) for the system of three coupled rate

equations, Equations 11–13. For all panels shown, t = g = c = 1 and II = 0.2. The nonlinear transfer function is taken as W xð Þ~WI xð Þ~ a

1ze{b x{x0ð Þ
with a = 1.5, b = 2.5. (A) Below a critical value of the recurrent excitation the system exhibits a supercritical bifurcation. Shown are the fixed points of
Equations 11–13 without noise using a Newton-Raphson solver, in black. Also shown are approximations of the fixed points given by Equations 8
with coefficients Equations 14–17, in red. Here s = 1.5 and I1 = I2 = 0. (B) Typical dynamics for a single trial given a supercritical bifurcation. Shown are
the time-dependent variables r1 and r2 from integrating Equations 11–13 in black and the approximation obtained by integrating the nonlinear
diffusion equation Equation 8 with coefficients Equations 14–17, in red. Left inset: the same trial shown for a longer time. Right inset: The energy
function given the parameter values used for this trial. Here s = 1.5, I = Icr = 0.6502, I1 = 0.0025, I2 = 20.0025, sE =sI = 0.01. Initial conditions for rate
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placement will strongly affect reaction-times and performance, as

in for example [30]. Finally, Figure 1E shows a comparison of

relevant behavioral measures calculated from simulations of

Equations 11–13 and from the nonlinear diffusion equation

Equation 8 with coefficients Equations 14–17. We will discuss the

dependence of performance and reaction-times on the coefficients

of the nonlinear diffusion equation in the next section.

Performance and Reaction Time in the Nonlinear
Diffusion Equation

The explicit dependence of the coefficients in Equation 8 on the

inputs to the two populations allows us to directly relate

modulations in these inputs to changes in reaction-times and

performance. In doing so we will make use of the formulation of a

nonlinear diffusion equation as the motion of a particle in a

potential, Equations 9–10, see Figure 2. An increase in the

difference of the two external inputs tilts the potential in favor of

the population with the greatest input, an effect also seen in linear,

connectionist models, e.g. [12]. Modulations of the input common

to both populations affect the curvature of the potential. For

common inputs below the bifurcation, the potential exhibits a

dimple, reflecting an attracting spontaneous state, while above the

bifurcation the spontaneous state is repelling. This modulation of

the potential via changes in the common input is a consequence of

the nonlinearity of the system. In linear systems, changes in the

mean input, given a fixed threshold, shift the position of the

effective threshold for the decision making process, e.g.[14].

Below, we discuss these effects in greater detail, making use of

exact expressions for reaction times RT(X0) and performance P(X0)

as a function of the initial condition X0. See supporting material

(Text S1) for the expressions.

How Changes in the Difference in Inputs, Dn, Affect
Reaction-Times and Performance

When both populations receive the same mean input, i.e.

Dn = 0, the energy function, Equation 10, is symmetric, leading to

an equal probability of escape through either boundary, i.e.

performance P(0) = 0.5, see Figure 2A green. If one population

receives more input than the other, i.e. its activity encodes the

‘correct’ choice, Dn?0 and the probability of making the

corresponding choice will be greater than chance, P(0).0.5. This

is reflected in the asymmetry of the energy function, which is now

tilted towards the correct choice, see Figure 2A black. Reaction-

times for the correct choice decrease monotonically with

increasing Dn. Reaction-times are, in general, different for the

error choice with respect to the correct choice for a fixed value of

Dn and can exhibit non-monotonic dependence on Dn, see

supporting material (Text S1). Mean reaction-times for error trials

can, in fact, be slower or faster than those for correct trials

depending on the value of the common input nn. Performance

increases with increasing Dn, owing to a more pronounced

asymmetry in the energy. Indeed, it can be shown analytically that
LP 0ð Þ
LDn

w0, see supporting material (Text S1). An analogous effect

is obtained in the linear diffusion equation, Equation 1, by

changing the constant drift term.

How Changes in the Input Common to Both Populations,
nn, Affect Reaction-Times and Performance

Changes in the input common to both populations affect the

quadratic term in E(X) through n. For nv0 the spontaneous state

is stable, reflected in the local minimum of the energy shown in

Figure 2B red. As the common inputs are increased, n increases,

destabilizing the spontaneous state and thus converting the local

minimum to a local maximum for nw0, Figure 2B blue. For n
identically equal to zero, the spontaneous state is marginally stable,

resulting in an energy function with zero curvature locally,

Figure 2B green. Indeed, in this regime the dynamics in the

vicinity of the spontaneous state behave similarly to those seen in

the linear diffusion equation Equation 1, whose energy function is

given by E(X) = 2gLX with absorbing boundaries. Since reaction-

equations, r1(0) = r2(0) = rI(0) = 0. Initial condition for nonlinear diffusion equation, X(0) = 0. (C) Above a critical value of recurrent excitation s the
system exhibits a subcritical bifurcation. Lines are as in (A). Symbols show the value of the common inputs used in the four cases shown in (E). Here
s = 1.9 and I1 = I2 = 0. (D) Typical dynamics for a single trial given a subcritical bifurcation. Lines and insets are as in (C). Here s = 1.9, I = Icr = 0.3679,
I1 = 0.001, I2 = 20.001. Initial conditions as for (B). (E) A comparison of the fraction of ‘correct decisions’ and mean reaction-times calculated by
conducting simulations in the full system, Equations 11–13 (symbols), and with the nonlinear diffusion equation, Equation 8, with coefficients,
Equations 14–17 (lines). The parameter values correspond to the bifurcation structure shown in (C). Different symbols indicate different values for the
common input I and correspond to symbols in panel C. Specifically, I2Icr = 20.001 (triangles), 0 (squares), 0.0012 (circles), and 0.0321 (diamonds).
Initial conditions for rate equations: I = 0.2 for t = 2100 to t = 0 with appropriate steady state solutions. Initial condition for nonlinear diffusion
equation X(0) = 0. Thresholds were 0.7 for the rate equation.
doi:10.1371/journal.pcbi.1000046.g001

Figure 2. Diagram of the energy E(X) as a function of the
difference in inputs Dn and the mean input n to two
populations in a winner-take-all network. The populations are
shown schematically as circles and the respective inputs as arrows. The
relative level of input to the populations is represented by the spike
trains ‘‘recorded’’ from the input arrows. (A) The energy E(X) as a
function of the difference in inputs Dn shown for n~0. Two cases are
shown. Case 1, in green: both populations receive the same average
input. This results in a symmetric energy function. Case 2, in black:
population B receives more input than population A. This tilts the
energy function, biasing the probability of choosing population B over
A. (B) The energy E(X) as a function of the mean input n shown for Dn = 0
(both populations receive the same mean input). Three cases are
shown. Case 1, in green: n~0. This results in a relatively flat energy
function with zero curvature at zero. Case 2, in red: nv0. This results in
a local minimum in the energy function. The system must escape over
one of the two barriers for a decision to be made. Case 3, in blue: nw0.
Here the inputs are large enough to transform the local minimum to a
local maximum in the energy, making decisions faster and less accurate.
doi:10.1371/journal.pcbi.1000046.g002
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times are given by the time it takes for the system to escape from

the spontaneous state, it is clear that reaction-times decrease with

increasing nn as the spontaneous state changes from attracting (local

minimum) to repelling (local maximum). In fact, it can be shown

analytically that
LRT 0ð Þ

Ln
v0 for Dn = 0, showing that reaction-

times strictly decrease with increasing common input. Numerical

investigation show that this holds also for Dn?0 (not shown).

Furthermore, it can be shown analytically that
LP 0ð Þ

Ln
ƒ0 for any

value of Dn, see supporting material (Text S1). The fact that both

reaction-times and performance decrease monotonically with

increasing common input suggests a novel mechanism to explain

the physiological underpinnings of the speed-accuracy trade-off.

That is, Equation 8 predicts that increases in common input to the

two populations will lead to faster reactions and poorer

performance while decreases in input will lead to slower reactions

and better performance.

We note that increasing the noise amplitude s in Equation 8

leads to decreasing performance. Increasing noise amplitude also

tends to reduce reaction-times given initial conditions in the

vicinity of the spontaneous state.

Fits to Behavioral Data
To reiterate, Figure 2 shows how the energy landscape and

hence the system dynamics in two-population winner-take-all

networks is affected by changes in afferent inputs alone. This is

important since the dependence on the input holds for all models

irrespective of the details, while changes in the coefficients g, m,

and s imply changes in single-cell and network properties specific

to the model chosen.

We now show that such changes in input are sufficient to describe

behavioral data in two-choice decision making tasks. Specifically, we

consider data from two separate studies using the so-called random

moving dots task, namely from Roitman and Shadlen [21] and

Palmer et al. [10]. The coherence of the stimulus in these

experiments is defined as the fraction of dots moving in one of two

possible directions, the remaining dots moving randomly. The

subject must indicate the direction of the coherent motion with a

saccade. We choose this particular task as behavior and electro-

physiologal activity have been well characterized [10,20,21], and

biologically motivated two-population winner-take-all models have

been evoked to describe the decision making process [28–30]. In

particular, it has been shown that the stimulus coherence is encoded

approximately linearly in the firing rates of direction-selective cells in

area MT [44]. Evidence suggests that output from MT cells then

drives neurons in area LIP whose trial-averaged activity is consistent

both with the notion of a linear integrator (ramping activity with

increasing slope for increasing coherence) and with that of

competing populations of neurons (activity ramps up or down

depending on whether the receptive field is in the preferred or anti-

preferred direction of motion respectively) [20,21].

In light of these experimental observations, it is reasonable to

assume that the difference in inputs from MT cells to the putative

neuronal populations in LIP which encode the two possible

directions, increases linearly with increasing coherence. Therefore,

we assume a linear dependence of Dv on the stimulus coherence in

Equation 8. Doing so provides an excellent fit to behavioral data,

capturing performance as well as both correct and error reaction

times, without having to vary any additional parameters, see

Figures 3 and 4, solid line fit to symbols with error bars. Note that

the difference in reaction-times for correct and error trials comes

about due to the nonlinearity of the energy function which sits

along the slow manifold (mean correct and error reaction times are

identical given a linear energy function). This is in contrast to the

mechanism evoked in [29] to explain longer error reaction times

using a two-component system of rate equations. There they

argued that asymmetries in the phase plane lead to trajectories for

error trials which stayed closer to the stable manifold as they

approached the unstable manifold. The trajectories therefore

came closer to the saddle-point leading to long residence times

before escaping. This mechanism relies on the full two-

dimensionality of the system coming into play. It is likely that

the mechanism we describe here is dominant near the bifurcation,

while far from the bifurcation the full dimensionality of the system

being studied must be taken into account in order to explain

longer error reaction times.

We now show that the trade-off between speed and accuracy,

commonly observed in reaction-time experiments [4], can be

explained through changes in the common input to the two

populations. The data shown in Figure 4 are from three sets of

experiments in which human subjects are told to respond within

0.5, 1 and 2 seconds, and are shown in blue, red and black

symbols respectively [10]. These data clearly exhibit precisely the

Figure 3. Fit to data from Roitman and Shadlen ([21], Table 2)
with the nonlinear diffusion equation (Equation 8) and
subsequent match with system of rate equations. Black symbols:
experimental data. Error bars represent approximate 95% confidence
intervals. Lines: solution of Equation 8. Red symbols: simulated data
from a system of rate equations (Equations 11–13). (A) Reaction times
on correct and error trials as a function of coherence. Circles (solid line)
and diamonds (dotted line) are for correct and error trials respectively.
(B) Fraction of correct responses as a function of coherence.
Experimental data are shown as crosses. Parameter values for Equation
8: gDn = coherence66.6667e26, mn~0:003, and s= 0.00135. A fixed
offset of 230 ms is added to the reaction times. We choose parameter
values in the system of rate equations to yield precisely these
parameters in Equation 8. See Materials and Methods for values.
doi:10.1371/journal.pcbi.1000046.g003
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speed-accuracy trade-off. As mentioned in the previous section,

changes in nn may potentially capture this effect. Indeed, decreasing

the input common to both populations increases reaction-times

and performance, while increasing the input has the opposite

effects. As seen in Figure 4, changes in the input common to both

populations, i.e. nn do in fact capture the speed-accuracy trade-off.

Since Equation 8 can be derived analytically from more

complex model systems, we can map the values of the coefficients

obtained from fits to behavioral data back to more physiologically

meaningful parameters. An example of this is shown in Figures 3

and 4 (red symbols) where we have conducted simulations of the

rate equations Equations 11–13 with parameter values chosen to

match the coefficients from the fit, using Equations 14–17. Thus

one can trivially fit higher dimensional models to data once

Equation 8 has been derived.

The fits of the nonlinear diffusion equation Equation 8 to

behavioral data suggest not only that the putative decision making

circuit behaves in a way consistent with a winner-take-all

framework, but that changes in inputs to this circuit alone are

sufficient to account for performance and mean reaction-times. In

addition, the best fits to the data were found for |gDn|, mnj jvv1,

i.e. in the vicinity of the bifurcation. This provides an a posteriori

validation of the use of Equation 8 to describe these data since it

represents, after all, a reduction of the dynamics near the

bifurcation. Moreover, it is precisely in this regime that the

dynamics of Equation 8 most closely resembles that of the linear

diffusion equation.

Discussion

One-dimensional diffusion equations have long been used to

model behavior in two-choice reaction-time tasks. Recently,

researchers discovered that the trial-averaged single-unit activity

recorded in areas of the brain which are implicated in generating

this behavior closely resemble the dynamics of a linear diffusion

process [21]. This suggests a correspondence between the neural

activity in these areas and the decision making variable X in the

linear diffusion equation. However, it remained unclear how the

cortical activity might actually conspire to generate such a linear

diffusion. On the other hand, it was soon demonstrated that some

aspects of the neural activity could be captured in biophysically

motivated winner-take-all network models [28–30]. Here we have

shown, through the use of standard tools from nonlinear dynamics

theory, that the dynamics in winner-take-all models relevant for

two-choice decision making can be captured in a one-dimensional

nonlinear diffusion equation, Equation 8. This suggests that the

cortical circuits involved in decision making generically generate

an effective nonlinear diffusion which in a limited parameter

regime leads to behavior very similar to that predicted by the

linear diffusion equation.

The dependence of the coefficients in Equation 8 on external

inputs is explicit and independent of the details of the underlying

model. This suggests that the functional dependence of behavioral

measures in two-choice decision making on changes in inputs is

universal. In particular, we predict that modulations of the input

common to both populations can account for the speed-accuracy

trade-off. This mechanism differs from that evoked by others

previously, which consists of varying the threshold for detection of

the decision (e.g. a higher threshold increases reaction times and

increases performance), [6,30]. The novel mechanism proposed

here of speed-accuracy trade-off through modulations in the mean

input predicts that pre-stimulus activity in LIP should be higher,

on average, when the subject must respond more rapidly. Support

for this comes from the observation that the baseline neuronal

activity in monkeys varies in a task-dependent manner, see Figure

16 from [20], a phenomenon which has been interpreted as

anticipatory activity. Indeed, increases in the baseline activity were

found to correlate with more rapidly evolving post-stimulus

activity. Equation 8 now provides us with an explanation for the

functional role of this activity. This phenomenon could be further

confirmed through comparison of the relative changes in the

BOLD signal in fMRI studies of activity in brain areas in humans

homologous to LIP during the pre-stimulus period in a task where

the speed-accuracy trade-off is observed behaviorally.

While Equation 8 appears similar in form to other diffusion

models which have been used to describe behavior in two-choice

decision making [9,12–14,45], it is important to distinguish

between their very distinct mathematical pedigrees. In particular,

we have not evoked the nonlinear diffusion equation as a

phenomenological model of behavior for two-choice decision

making. Rather, it represents the correct asymptotic description of

the dynamics in nonlinear winner-take-all models near the

bifurcation to winner-take-all behavior. This observation has two

consequences. Firstly, in as far as nonlinear winner-take-all models

can successfully reproduce some qualitative features of the

neuronal activity in brain areas implicated in the decision making

Figure 4. Fit to data from Figure 7 in Palmer, Huk, and Shadlen
[10] with Equation 8 and subsequent match with system of rate
equations. Filled circles: experimental data. Lines: solution of
nonlinear diffusion equation, Equation 8. Open squares: system of rate
equations. Error bars represents approximate 95% confidence intervals.
Data are from three sets of experiments in which subjects are instructed
to respond with 0.5 s (blue) 1 s (red) and 2 s (black). (A) Reaction times
on correct trials as a function of coherence for subject 1. (B): Fraction of
correct responses as a function of coherence for subject 1. Parameter
values from Equation 8 for subject 1: gDn = coherence61.25e25,
s= 0.00135, mn~{0:00075, 0:0015, and 0.012 for 2 s, 1 s, and 0.5 s
trials, respectively. (C) Reaction times on correct trials as a function of
coherence for subject 2. (D) Fraction of correct responses as a function
of coherence for subject 2. Parameter values from Equation 8 for
subject 2: gDn = coherence61.25e25, s= 0.00135, mn~{0:0011, 0:001,
and 0.008 for 2 s, 1 s, and 0.5 s trials, respectively. A fixed offset of
260 ms and 220 ms was added to RT for subjects 1 and 2, respectively.
We choose parameter values in the system of rate equations to yield
precisely these parameters in Equation 8. See Materials and Methods for
values.
doi:10.1371/journal.pcbi.1000046.g004
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process for two-choice decision making [28], i.e. LIP, the

nonlinear diffusion equation also provides an approximate

description of this activity. Secondly, if an actual nonlinear

winner-take-all process is at work in the brain during such tasks,

then this process will behave as an approximately one-dimensional

diffusion process in the vicinity of the bifurcation to winner-take-all

behavior. This process is described by the nonlinear diffusion

equation Equation 8. Note also that the effective reduction in

dimension of the dynamics in nonlinear systems in general only

occurs at bifurcations. Thus nonlinear normal forms for

bifurcations such as Equation 8 represent the only proper one-

dimensional reduction of such a system.

As in the linear diffusion equations, bias in external inputs in the

nonlinear diffusion equation appears to leading order as a constant

drift term. In contrast, while reductions of linear connectionist

models to the linear diffusion equation lead to a linear (Ornstein-

Uhlenbeck) term proportional to the difference between intrinsic

‘leak’ and the effective cross inhibition, this is not the case in

nonlinear systems. Rather, this term reflects the linear growth rate of

the spontaneous state which, given that the input is the bifurcation

parameter, is simply proportional to the distance of the common

external input from the critical value at the bifurcation. Thus this

term varies with modulations of the external input, unlike in the

linear case. Finally, the cubic nonlinearity, which is the lowest order

nonlinearity consistent with the reflection symmetry of the original

system, leads to an inverted-U potential. This drives the activity to

infinity in finite time, reflecting the escape from the spontaneous state

to the ‘decision’ state. As illustrated in Figure 1, this renders the

measurement of reaction-times and performance insensitive to the

exact placement of a threshold as long as it is high enough. Setting

relatively high thresholds therefore effectively eliminates one free

parameter from the model, namely the threshold placement.

Nonetheless, one could set low thresholds in the nonlinear system,

i.e. very close to the spontaneous state [30]. It has been hypothesized

that the threshold for detection of a decision in the brain may be set

by downstream areas including superior colliculus [30] or the basal

ganglia [46]

As it turns out, Equation 8 can account for behavioral data for

the random moving dot task in monkeys and humans, c.f. Figures 3

and 4. As such Equation 8 seems to provide a correct description

of both the neuronal activity and the behavior in this task, thereby

linking the two. This, however, in no way contradicts the success of

connectionist and linear diffusion models in fitting behavioral data.

Indeed, a comparison of the nonlinear diffusion equation and the

linear one, Equation 1, shows approximately equally good fits for

correct reaction-times and performance for the data in Figures 3

and 4, see supporting material (Text S1). On the other hand error

reaction-times in Figure 3, which are longer than correct ones,

cannot be fit by the linear diffusion model unless variability in the

initial condition and drift term across trials is introduced [9]. They

are, however, correctly captured by the nonlinear diffusion

equation. We note, furthermore, that several groups have derived

reduced models for two-choice decision making. Wong and Wang

performed a heuristic reduction of a spiking network model to a

system of two coupled rate equations [29], and showed that it gave

similar qualitative behavior. As a canonical model, Equation 8

qualitatively captures the dynamics of both the network and the

rate models, also see fit in supporting material (Text S1). We note,

however, that far from the bifurcation the full dimensionality of

the system being studied will come into play and the dynamics will

not be captured by Equation 8. Much of the phenomenology in

[29] appears to occur in this regime. Once this is the case, the

dynamics may depend crucially on the details and dimensionality

of the system and, if so, cannot be generalized. Wong et al. have

recently used their reduced model to explain the experimentally

observed violation of time-shift invariance in the behavior of

monkeys doing the random moving dot task [47], lending further

support for the nonlinear, attractor network framework for LIP

activity [31]. They also note that the inclusion of target inputs,

which more faithfully reproduces the experimental paradigm,

‘renders the model behavior closer to a one-dimensional model in

the decision process’ [31]. Interestingly, the presence of the

unstable cubic term in the 1D nonlinear diffusion equation

Equation 8 should lead to the experimentally observed violation of

time-shift invariance for which perturbations arriving later in time

have a lesser effect due to the nonlinear acceleration away from

the spontaneous state. This remains to be tested quantitatively.

Usher and McClelland derived a one-dimensional diffusion

equation equivalent to an Ornstein-Uhlenbeck process from a

neurobiologically motivated system of two coupled, threshold-

linear equations [12]. This and other similar systems of linear

equations were studied by Bogacz, Brown and collaborators

[13,14]. The linearity of the system in these studies allowed for an

in-depth analytical characterization of the dynamics. Indeed, it has

been argued that neurobiologically motivated models might,

within certain parameter regimes, be reducible to an equivalent

linear diffusion equation [14]. However, as we have shown here, if

the underlying winner-take-all system exhibits any generic

nonlinearities, as seems to be the case in neural systems, the

correct dynamics are given by Equation 8.

Soltani and Wang [48] and Fusi et al. [49] have both

investigated how synaptic plasticity might shape the response in

winner-take-all decision making circuits. Soltani and Wang

introduced a reward-dependent stochastic Hebbian rule for

updated synaptic strengths which successfully reproduces the so-

called ‘matching behavior’ while Fusi et al. have presented a

model of flexible sensorimotor mapping in which reward-

dependent synaptic plasticity shapes the output of a winner-take-

all decision making circuit. In both cases, the performance

depends on the difference in the fraction of potentiated synapses

between the two populations Dc, i.e. the symmetry breaking occurs

due to plastic changes in synaptic strength. In the context of

Equation 8 this would lead to an additional term ĝgDc which is

functionally equivalent to the symmetry-breaking term propor-

tional to the difference in inputs. The effect of synaptic plasticity in

two-choice decision making could therefore be studied by means

of Equation 8 coupled with an appropriate learning rule.

The reduction to Equation 8 is strictly valid only in the

immediate vicinity of the bifurcation. For this reason it might be

argued that the current scenario is tantamount to fine-tuning and

may not be biologically relevant. Three facts indicate this is not the

case. (I) As we have shown here Equation 8 can be rigorously

derived from model systems and can provide a quantitative match

even away from the bifurcation. (II) Equation 8 can be fit to

behavioral data, previously published model networks [28] and

models in regimes far from the bifurcation where a quantitative

match is no longer found. It thus provides a correct qualitative

description of the dynamics. Furthermore these fits are made by

varying physiologically meaningful parameters in ways that are

either consistent with experimental findings or which lead to

experimentally testable predictions. (III) Lastly, a large literature

exists showing that human behavior in 2-choice decision making is

well-described by one-dimensional sequential sampling models. A

deep question is how such low-dimensional dynamics might arise

from high-dimensional neuronal dynamics. We believe the most

parsimonious explanation is that the neuronal circuits involved

operate near the low dimensional manifold which arises naturally

within a certain parameter range, i.e. near the bifurcation.
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Materials and Methods

Derivation of the Nonlinear Diffusion Equation from
Equations 11–13

Here we derive the nonlinear diffusion equation (noise driven

amplitude equation for an imperfect pitchfork bifurcation) from

Equations 11–13. We first study the linear stability of the

spontaneous fixed point, analogously to Equation 6 and then

extend this analysis to take into account nonlinear effects in a so-

called weakly nonlinear analysis using a multiple-scales approach.

Linear Stability
We assume that IA = IB = I and consider an ansatz of the form

(rA, rB, rI) = (R,R,RI)+(DrA,drB,drI)e
lt, where R =W(sR2cRI+I) and

RI =WI(2gR+II). This leads to an eigenvalue problem of the form

lz1{sW0 0 cW0

0 lz1{sW0 cW0

{gW0I {gW0I lz1

0
B@

1
CA

drA

drB

drI

0
B@

1
CA~0, ð18Þ

where the derivatives of the transfer functions are evaluated at the

fixed point.

The eigenvalue corresponding to the eigenvector (1,21,0) is

equal to zero for s~
1

W0
.

Weakly Nonlinear Dynamics
We expand the input current and the rates around the steady

instability found above. We take

IA~Ize2�IIzêe�IIA, ð19Þ

IB~Ize2�IIzêe�IIB, ð20Þ

rA,rB,rIð Þ~ R,R,RIð Þze 1,{1,0ð ÞY Tð Þze2 rA2,rB2,rI2ð Þz � � � , ð21Þ

where e and ê are small parameters which measure the distance

from the bifurcation and the difference in inputs to the two

excitatory populations respectively. Near the bifurcation, the mode

corresponding to the critical eigenvector Y(T) evolves on the slow

time scale T = e2t. The expansions given above are plugged into

Equations 11–13 and terms are collected order by order. We

assume that ê~O e3
� �

, i.e. weak symmetry breaking. The scaling of

input currents in e is dictated by the reflection symmetry of the

original system, i.e. we expect a pitchfork bifurcation. Were we to

not use the knowledge of this symmetry, a more general expansion

of the currents, including all orders of e could be used, leading to

the same result. That is, we would find for example that the term

proportional to e is identically equal to zero, etc.

O(e). We recover the linear stability problem

Lr1~0 ð22Þ

where

L~

0 0 cW0

0 0 cW0

{gW0I {gW0I 1

0
B@

1
CA ð23Þ

and r1 = (1,21,0)Y(T).

O(e2).

Lr2~N2 ð24Þ

N2~
W00

2
s2Y 2zW0�II

� � 1

1

0

0
B@

1
CA: ð25Þ

The matrix L cannot be inverted to solve for r2. A solution

therefore only exists if the vector N2 is in the left-null eigenspace of

the linear operator. This can be expressed as Ær{,N2æ = 0 where

r{ = (1,21,0) and the inner product Æx,yæ is here equivalent to the dot

product xT?y. This condition is met upon inspection. The solution

r2 can then be found by projecting onto the eigenspace orthogonal

to the left-null eigenvector, i.e. Æ(1,1,1),Lr22N2æ = 0 and

Æ(1,1,22),Lr22N2æ = 0. Doing so yields

r2~

P1

P2

P3

0
B@

1
CA~

1

4cgW0W
0
I

W00s2Y 2z2W0�II
� �

1

4cgW0W
0
I

W00s2Y 2z2W0�II
� �

1
2cW0

W00s2Y 2z2W0�II
� �

0
BBB@

1
CCCA: ð26Þ

O(e3). We have

Lr3zL2r1~N3 ð27Þ

where

L2~

LT{sW00�II 0 cW00�II

0 LT{sW00�II cW00�II

0 0 LT

0
B@

1
CA, ð28Þ

N3~

sW00Y sP1{cP2ð Þz W000

6
s3Y 3zW0�IIAzsEj1

{sW00Y sP1{cP2ð Þ{ W000

6
s3Y 3zW0�IIBzsEj2

sI jI

0
B@

1
CA ð29Þ

Again, Equation 27 only has a solution if Ær{,L2r12N3æ = 0. This

leads to the equation

LTY~
W0

2
Dnz

s2W00

2cgW0I
�nnYz

W00ð Þ2s3

4cgW0W0I
s{2cgW0ð ÞzW000s3

6

 !
Y 3

z
sEffiffiffi

2
p j tð Þ,

ð30Þ

where Dn = IA2IB and nn~II . By rescaling the amplitude as

Y = |c|1/2X, we arrive at Equation 8 with coefficients given by

Equations 14–17.

Fits from Nonlinear Diffusion Equation
We solve for the performance and reaction time in Equation 8

(solid lines in Figures 3 and 4) by numerically evaluating RT(0) and

P(0), Equations S2 and S4, using Romberg integration [50], with

limits of integration of 60.21 and 60.19 for Figures 3 and 4

respectively. The value of RT and P are relatively insensitive to

increases in the limits of integration, related to the fact that in

Equation 8, X approaches 6‘ in finite time. We have also fit the
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data from Figures 3 and 4 using direct numerical simulation of

Equation 8 with a threshold of 61, obtaining results for RT which

vary by no more than a constant shift of 10 ms. Fits in Figures 3

and 4 are made by eye.

Parameters for Rate Equations: Equations 11–13
Once the fits have been made using the nonlinear diffusion

equation, we must choose parameters in the rate equations which

give the proper values for the coefficients, using the expressions

Equations 14–17. Various parameter combinations are possible,

indicative of the reduction in dimensionality of the system and a

potential mechanism for robustness in functionality.

For the simulations in Figure 3 we took

W xð Þ~WI xð Þ~ a

1ze{b x{x0ð Þ with a = 1.5, b = 2.5 and x0 = 1,

s = 1.9, c = 1, g = 1, II = 0.2, I = 0.3695, sE =sI = 0.001634

I12I2 = 2.168e2056coherence.

For the simulations for subject 1 in Figure 4 we took

W xð Þ~WI xð Þ~ a

1ze{b x{x0ð Þ with a = 1.5, b = 2.5 and x0 = 1,

s = 1.9, c = 1, g = 1, II = 0.2, I = 0.3675,0.3687,0.3742,

sE =sI = 0.001634 I12I2 = 4.066e2056coherence.

For the simulations for subject 2 in Figure 4 we took

W xð Þ~WI xð Þ~ a

1ze{b x{x0ð Þ with a = 1.5, b = 2.5 and x0 = 1,

s = 1.9, c = 1, g = 1, II = 0.2, I = 0.3673,0.3684,0.3721,

sE =sI = 0.001634 I12I2 = 4.228e2056coherence.

In all cases, a trial ends once one of the rates crosses a fixed

threshold of 0.7. Initial condition was rA = rB = 0.16, rI = 0.35

where the values at the bifurcation are rA = rB = 0.253 and

rI = 0.486. Changing the initial condition did not alter the results

significantly (not shown). We conducted 10,000 runs for each

value of the coherence.

Supporting Information

Text S1 Detailed description of nonlinear diffusion equation:

closed-form expressions for RT and P and derivations from three

model systems. Comparison between nonlinear and linear

diffusion models.

Found at: doi:10.1371/journal.pcbi.1000046.s001 (0.51 MB PDF)
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