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Abstract

A major challenge in systems biology is to understand how complex and highly connected metabolic networks are
organized. The structure of these networks is investigated here by identifying sets of metabolites that have a similar
biosynthetic potential. We measure the biosynthetic potential of a particular compound by determining all metabolites
than can be produced from it and, following a terminology introduced previously, call this set the scope of the compound.
To identify groups of compounds with similar scopes, we apply a hierarchical clustering method. We find that compounds
within the same cluster often display similar chemical structures and appear in the same metabolic pathway. For each
cluster we define a consensus scope by determining a set of metabolites that is most similar to all scopes within the cluster.
This allows for a generalization from scopes of single compounds to scopes of a chemical family. We observe that most of
the resulting consensus scopes overlap or are fully contained in others, revealing a hierarchical ordering of metabolites
according to their biosynthetic potential. Our investigations show that this hierarchy is not only determined by the chemical
complexity of the metabolites, but also strongly by their biological function. As a general tendency, metabolites which are
necessary for essential cellular processes exhibit a larger biosynthetic potential than those involved in secondary
metabolism. A central result is that chemically very similar substances with different biological functions may differ
significantly in their biosynthetic potentials. Our studies provide an important step towards understanding fundamental
design principles of metabolic networks determined by the structural and functional complexity of metabolites.
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Introduction

Cellular metabolism is mediated by highly efficient and

specialized enzymes catalyzing chemical transformations of

substrates into products. Since the products of a particular

reaction may serve as substrates for other reactions, the entirety

of the biochemical reactions forms a complex and highly

connected metabolic network. With the sequencing of whole

genomes of an ever increasing number of organisms and the

emergence of biochemical databases such as KEGG [1], Brenda

[2] or MetaCyc [3], which are based on genomic information,

large-scale metabolic networks have become accessible. The

KEGG database, for example, holds biochemical reactions of

several hundred organisms, forming a metabolic network with

over 6000 reactions connecting over 5000 metabolites. Whereas

the wiring principles of small metabolic systems such as single

biochemical pathways or a small number of interacting pathways

are generally easily comprehensible, elucidating the organization

of large-scale metabolic networks still poses a major challenge in

the field of systems biology.

While a network of 6000 reactions is large in the sense that it is

computationally challenging, this number represents only a tiny

fraction of all theoretically possible, chemically feasible reactions.

So why did enzymes evolve for these reactions but not for others?

And what were the selective pressures that lead to this particular

selection? While we are still far from answering these intriguing

questions satisfactorily, it is plausible to assume that the selection

was not random but a result of a long evolutionary process which

must have left its imprint in the structure of the contemporary

metabolic network. We use this assumption as our working

hypothesis and identify an interesting hierarchical organization

which seems to be an intrinsic property of metabolism and robust

against moderate changes in network structure and other specific

assumptions like the availability of particular chemicals. Our

results inspire some speculations on the above raised questions and

we outline some possible continuations of this work with the aim to

get further insight into the principles that guided metabolic

evolution.

Several approaches to analyze the structure of large-scale

metabolic networks have emerged in recent years. Graph

theoretical approaches have revealed characteristic global features.

It has been shown that metabolic networks exhibit a small world

character [4], possess a scale-free topology [5] and display a

hierarchical organization [6]. However, all these approaches rely

on a representation of a metabolic network as a graph. There are

many alternative ways to construct a graph from a metabolic
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network (see for example [7]). A characteristic of most of the

applied approaches is that it is in general not possible to

reconstruct the original metabolic network from the graph, since

in the simplification process important biochemical information is

lost. Moreover, graph theoretical results may strongly depend on

the particular representation. For example, the small world

property has been shown for a graph, in which the nodes

represent metabolites connected by an edge if they participate

together in a biochemical reaction. If, however, metabolites are

only connected by an edge if there exists a reaction that transfers at

least one carbon atom from one metabolite to the other, the small

world property is lost completely [8].

The concepts of flux balance analysis [9], elementary flux

modes [10] or extreme pathways [11] all aim at characterizing the

possible flux distributions through the biochemical reactions when

certain external metabolites are either provided by the environ-

ment or can be released into extracellular medium. Such an

approach is well suited for the investigation of metabolic networks

of selected organisms for which the fluxes of metabolites over the

cellular membrane have been well characterized, so that it is clear

which biochemical compounds have to be considered as external.

Based on flux balance analysis, it has been shown that

experimentally measured flux distributions in E. coli correspond

well to distributions calculated under the premise that biomass

production is maximized [12].

For the analysis of the network comprising the entirety of all

biochemical reactions, it is impossible to decide which metabolites

should be considered as external, since the role may differ greatly

among different organisms or within cells of different tissues. A

novel strategy for the analysis of large-scale metabolic network,

that is less dependent on the knowledge which particular

metabolites are external, has recently been proposed. The so-

called method of network expansion [13,14] is based on the basic

biochemical fact that only those reactions may take place which

use the available substrates and that the products of these reactions

may in turn be utilized by other reactions. With a number of given

substrates (the seed), a series of metabolic networks is constructed,

where in each step the network is expanded by those reactions that

utilize only the seed and those metabolites which are products of

reactions incorporated in previous steps. The set of metabolites

within the final network is called the scope of the seed and, by

construction, comprises all substances that the network may

produce when only the seed compounds are available as external

resources. The scope describes the biosynthetic potential carried

by the seed compounds and thus in a natural way links structural

and functional properties of metabolic networks.

In the present work, we aim at elucidating the global

organization of functional aspects of metabolism by comparing

the biosynthetic potentials of the different metabolites. For this, we

extend studies carried out by us previously [15]. There, we

observed that many compounds exhibit very similar potentials and

introduced the notion of a consensus scope, characterizing the

biosynthetic potential of a large group of metabolites. Whereas in

our previous studies [15] we focused on the technical aspects and

compared different dimensionality reduction methods, we con-

centrate in this work on the generalization of our results and in

particular on their interpretation in a biological and evolutionary

context.

We find that many compounds can be grouped into biologically

meaningful clusters, displaying a typical biosynthetic potential. We

demonstrate that these typical potentials also characterize the

combined potential of sets of metabolites. Furthermore, we

observe that a similar biosynthetic potential of metabolites can

often be connected with common chemical properties. However,

in some cases chemically similar substances may exhibit

dramatically different biosynthetic potentials and, moreover,

clearly distinct biological functions may be assigned to such

metabolites.

The paper is organized as follows: The Results section consists

of three parts in which we describe i) the results from the

hierarchical clustering as well as the construction of consensus

scopes, ii) the chemical properties of compounds belonging to the

same cluster, and the hierarchical organization of the biosynthetic

potentials, and iii) the generalization to combined biosynthetic

potentials of sets of metabolites. For readability, some results and

definitions from [15] have been included in the first two parts of

that section. In the Discussion section, our results are discussed.

And finally, in the Methods section, details about the applied

calculations are provided.

Results

Clustering Metabolites by Their Biosynthetic Potential
The aim of this work is to identify organizational principles in

the metabolic network which is spanned by the entirety of

biochemical reactions. For our analysis, we have retrieved

enzymatic reactions from over 200 organisms from the KEGG

database [1]. After curation of this information (see Methods), the

network consists of 4811 reactions involving a total of 4104

metabolites. We characterize all biochemical compounds by their

biosynthetic potential.

Definition of the biosynthetic potential (scope) of a

metabolite. By the biosynthetic potential of a particular

metabolite we understand the set of all metabolites which can in

principle be synthesized by all available enzymatic reactions when

exclusively the metabolite itself, water and oxygen are available as

substrates. This quantity is determined using the network

expansion algorithm as described in [14] and, following their

terminology, will be called the scope of the compound.

A characteristic known from previous studies [14,16] is that

most metabolites carry a small biosynthetic potential. In fact, for

almost three quarters (3027) of the metabolites, the potential is so

low that they allow for the production of less than 8 new

compounds. Also in agreement with previous results [15], we find

that several compounds carry exactly the same biosynthetic

Author Summary

Life is based on the ability of cells to convert raw materials
into complex chemicals like proteins or DNA. This ability is
obtained through the interplay of a large number of
enzymes, which are specialized proteins, each facilitating
one specific chemical transformation. Since the products
of one reaction can again be substrates for others, the
entirety of all reactions forms a large and complex network
in which important substances can be produced from
many different combinations of simple chemicals and
through a variety of pathways. The aim of our work is to
gain understanding of the structural design of these
networks and the evolutionary principles shaping them.
We propose a computational strategy which allows us to
pinpoint characteristic structural and functional properties
distinguishing networks characterizing living processes
from those that may occur in inanimate matter. Our
approach reveals an intricate and unexpected hierarchical
organization of the network, and gives rise to new
hypotheses regarding the evolutionary origins of metab-
olism.

Hierarchical Organization of Metabolism
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potential. Moreover, it is often the case that compounds possess

very similar biosynthetic potentials, meaning that many metabo-

lites may be produced from either compound, but the synthesis of

a small number of metabolites requires a specific starting

compound.

Inspired by this observation, we investigate whether metabolites

may be grouped into biologically meaningful classes characterized

by typical biosynthetic potentials. For this, we introduce a distance

measure reflecting the dissimilarities of the biosynthetic potentials

of two compounds. Such a measure should be small if a similar set

of metabolites may be produced from either of the two

compounds, and large if these sets are different, irrespective of

the total number of metabolites that may be synthesized. A

distance measure fulfilling this condition is based on the Jaccard

coefficient. For two sets A and B, this coefficient is given as the

ratio between the number of elements contained in both sets,

A\Bj j, and the number of elements appearing in at least one of

the sets, A|Bj j. If we denote by Si and Sj the sets of metabolites

defined by the scopes of two compounds i and j, respectively, we

characterize the dissimilarity of the biosynthetic potential of the

two compounds by the distance

d(Si,Sj)~1{
Si\Sj

�� ��
Si|Sj

�� �� : ð1Þ

By construction all scopes have five compounds in common,

namely those contained in the scope of water and oxygen (in

addition to the two seed compounds, the scope also includes

H2O2, H+, and the dioxygen radical O2
2). We remove these

compounds from all sets Si for the calculation of the distances. In

this way, d(Si,Sj) is zero if the biosynthetic potentials are identical,

and one if they do not have a single metabolite in common.

Based on these dissimilarities, we perform a hierarchical

clustering (see Methods) to identify clusters of compounds carrying

a similar biosynthetic potential. For a merging distance of 0.2, we

find 12 clusters with at least 10 elements (see Dataset S1 in the

supporting information for a detailed list), called cluster I to cluster

XII. Apart from these, 2433 metabolites are not assigned to any

cluster. The remaining 894 metabolites are assigned to clusters

with less than 10 elements. A closer inspection reveals that most of

the metabolites which have not been assigned to a cluster or have

been assigned to a very small cluster belong to the large group of

metabolites with a low biosynthetic potential. There exists,

however, one exceptional case among the large number of very

small clusters. This cluster contains four metabolites (APS, PAPS,

Dephospho-CoA, UDP-6-sulfoquinovose) exhibiting the largest,

identical, biosynthetic potential, allowing for the production of

2178 metabolites. To account for the outstanding role of these four

metabolites, we also consider this cluster in our detailed analysis

and denote it by the label XIII.

The quality of the clustering is assessed by a parameter b
quantifying the ratio between the cluster radius and the cluster

separation (see Methods). This value is small (,0.5) for all clusters

I-XIII (see Table 1), assuring that the clusters are well separated

and the assignment of metabolites to clusters is unambiguous.

The observation that biosynthetically potent compounds form

clearly distinguishable groups, characterized by a similar synthesiz-

ing potential, suggests that the number of significantly different

scopes is very small. Even though scopes of different compounds are

rarely completely identical, every scope is at least similar to one of a

small set of typical scopes. These thoughts lead to the following

generalization of the notion of the scope of a compound [15].

Definition of the consensus scope of a cluster. For a

cluster of compounds with similar biosynthetic potential, we define

the consensus scope as the set of metabolites which appear in the

majority of all scopes in the cluster.

Consensus scopes provide a compact characterization of

complex metabolic networks. They define a small set of typical

biosynthetic potentials with the property that the scope of any

compound is either very small or similar to exactly one of these.

In Table 1, we give a summary of the thirteen identified clusters.

The compounds within a cluster are characterized based on

Table 1. Clusters of biochemical compounds determined by a hierarchical clustering algorithm.

Label Cluster Elements and Representative sclust scons b

I Organic compounds containing nitrogen: amino acids, nucleosides, nucleobases, amino acid
derivatives (L-Glutamate)

261 423 0.33

II Organic compounds not containing nitrogen: ketoacids, diols, di- and tricarboxylic acids,
hydroxyacids (Pyruvate)

183 148 0.47

III Compounds with heterocyclic bases, sugars and phosphate groups: nucleotides,
deoxynucleotides, sugar nucleotides, cofactors, nucleotide precursors, nucleoside derivatives,
amino acid derivatives, glycolipids (ATP)

102 1549 0.09

IV Sugar phosphates, phospholipids and inositolphosphates (D-Fructose 6-phosphate) 57 109 0.23

V Sugars, glycosides (D-Glucose) 41 31 0.19

VI Deoxynucleotides and their sugars with thymine as a base, sugar phosphates (dTDP) 34 305 0.14

VII Eicosanoids (Arachidonate) 23 23 0

VIII CO, CO2, dicarboxylic acids, ketoacids, hydroxyacids, fatty acids, amino acids, flavonoids (Glyoxylate) 22 12 0.15

IX Coenzyme A compounds (Acetyl-CoA) 19 203 0.1

X Activated forms of terpenes and terpenoids (Isopentenyldiphosphate) 13 49 0

XI Indole alkaloids (Strictosidineaglycone) 12 11 0.16

XII Aromatic organic compounds with a benzene ring (Quinone) 10 9 0.19

XIII Nucleotide sulfur compounds (Adenosinephosphosulfate) 4 2178 0

For each cluster, we list structural categories characterizing the majority of the cluster members, and a cluster representative metabolite whose scope is identical to the
consensus scope. Furthermore, the cluster size sclust, the consensus scope size scons as well as the parameter b measuring quality of the clustering is given.
doi:10.1371/journal.pcbi.1000049.t001

Hierarchical Organization of Metabolism
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chemical properties. The number of compounds (cluster sizes) and

the size of their consensus scope are given, as well as the parameter

b describing the cluster separation. Additionally, a cluster

representative is given in parenthesis behind the chemical

characterization of the compounds. These representatives possess

a scope identical to the cluster’s consensus scope. Interestingly, for

every cluster such a representative exists even though the

definition of the consensus scope does not guarantee that it

actually represents a valid scope of one or several metabolites. If,

for example, consensus scopes were calculated not for clusters of

compounds with similar biosynthetic potential but for arbitrary

sets, the result will in general not correspond to a scope of a single

metabolite. Rather, the concept of consensus scopes only makes

sense in conjunction with compound clusters. And the observation

that all clusters possess representatives confirms the high quality of

the clusters.

Clusters I to XIII contain together 781 compounds. Apart from

these there are 3027 compounds with a very low biosynthetic

potential of less than 8 new compounds. The remaining 296

metabolites are distributed among 70 small clusters with less than

10 members. We do not include these in our detailed analysis. The

sizes of the consensus scopes of the clusters I-XIII range from 9 to

2178. Clearly, the consensus scope size is not correlated with the

cluster size; it can be smaller or larger. In the cases where the

consensus scope is larger than the cluster size, the majority of

metabolites within the cluster are also found in the consensus

scope. This property is not a direct consequence of the definition

of the consensus scopes, it rather demonstrates that the majority of

metabolites in such clusters are interconvertible, meaning they are

mutually contained in each other’s scope. If the consensus scope is

smaller than the cluster size, there exist necessarily compounds

within the cluster which are not contained in the consensus scope.

This characteristic of consensus scopes is fundamentally different

from the original notion of the scope of a compound, in which any

compound must by definition be included in its own scope.

In the definition of the consensus scope, an arbitrary threshold

value of 50% was introduced. To verify that the definition is robust

against variations of this value, we varied the threshold between 30

and 70% and found that the consensus scopes remain exactly

identical. The only exception is cluster VI, which consists of two

subclusters of similar size, one having a consensus scope of size

283, and the other of size 305. Because the two subclusters are of

similar size, the smaller consensus scope will be obtained if a

higher threshold value than 50% is chosen.

The Hierarchies of Biosynthetic Potentials
The extreme variation in consensus scope sizes raises the

question whether they may be ordered by increasing biosynthetic

potential. In fact, some consensus scopes are contained in others,

some are mutually disjoint and others partially overlap. We

schematically visualize the pairwise overlaps in Figure 1. The

figure shows that the immensely complex metabolic network

displays an intricate hierarchical organization with respect to the

biosynthetic potentials of the participating compounds. In the

following, we will analyze similarities and differences in the

chemical structure of metabolites belonging to the same cluster

and particularly address the question whether the identified

hierarchy may be explained by chemical structure alone or

whether the biological role of metabolites or clusters of metabolites

is also reflected in the metabolic organization.

The largest consensus scope is formed by the four compounds in

cluster XIII. It is identical to the scope of adenylyl sulfate (APS)

and contains as subsets all other consensus scopes except those of

clusters VII and XI. The second largest consensus scope is reached

by metabolites of cluster III. Eight of the remaining consensus

scopes are subsets thereof. This cluster contains organic com-

pounds consisting of heterocyclic bases, sugars and phosphate

groups, for example nucleotides, deoxynucleotides (except those

with thymine as base), nucleotide sugars, coenzymes except

coenzyme A, and second messengers such as cAMP and other

nucleotide derivatives. Many compounds contained in the cluster,

such as ATP or NADH, are involved in energy metabolism. They

are necessary for typical metabolic reactions, such as phosphate

group transfer and redox reactions. The consensus scope of cluster

III is identical to the scope of ATP. Cluster VI has the largest

consensus scope completely contained in the scope of ATP. The

cluster consists predominantly of those deoxynucleotides and

deoxynucleotide sugars with thymine as their base. Apparently,

their biosynthetic potential is smaller than that of other

deoxynucleotides. This is surprising in view of the fact that dUTP,

a member of cluster III, and dTTP, a member of cluster VI, show

very similar chemical structures. However, even though dTTP is

slightly more complex than dUTP because it possesses an

additional methyl group, its biosynthetic capacity is much lower.

While 1549 compounds may be synthesized from dUTP, dTTP

allows for the production of only 305 compounds. This finding

demonstrates that the chemical complexity of a biochemical

compound is not the only determinant for the biosynthetic

potential it carries.

The consensus scope of cluster IV, consisting mainly of sugar

phosphates, is completely contained in the consensus scope of

cluster VI. The reduced biosynthetic potential is easily explained

by the fact that sugar phosphates appear as chemical subunits in

larger metabolites contained in clusters III and VI. However,

sugar phosphates do not contain nitrogen, therefore, from them

alone, e.g. nucleotides cannot be produced. Sugars form cluster V.

Obviously, since the phosphate group is not available, their

biosynthetic potential is even smaller, and consequently the

consensus scope is completely contained in the consensus scope

of cluster IV. Most other inclusion relations can also be explained

by the presence or absence of characteristic chemical groups.

III

XIII

XII

IX

VIII

X
VI

I

II

IV

V

VII

XI

Figure 1. Consensus scope overlap for the 13 clusters obtained
with the hierarchical clustering method. Two of the consensus
scopes (VII, XI) are mutually disjoint, while others overlap (e.g., III and
IX), and some consensus scopes are fully contained in others (e.g., VI in
III).
doi:10.1371/journal.pcbi.1000049.g001
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Cluster II consists of organic acids not containing nitrogen. Its

consensus scope, identical to the scope of pyruvate, is completely

contained in that of cluster VI, but only shows a small overlap with

that of cluster IV. It completely contains the consensus scopes of

clusters VIII and XII. The composition of cluster VIII is rather

diverse, ranging from small molecules such as glyoxylate to

relatively large secondary metabolites including polyketides and

flavonoids. A common property of these metabolites is that they

can be oxidized to CO, CO2 or small carboxylic acids. These

products also form the small consensus scope (size 12) of the

cluster. Metabolites within cluster XII share the common feature

that they contain an aromatic 6-carbon ring. Its small consensus

scope (size 14) is almost identical to the cluster itself.

Interestingly, there are two clusters (VII and XI), whose

consensus scopes do not overlap with other consensus scopes.

Metabolites within cluster VII are all derived from 20-carbon

polyunsaturated essential fatty acids, known as eicosanoids. These

are highly specialized compounds functioning as signaling

molecules in mammals during inflammation and immune response

[17]. All metabolites in the cluster possess identical scopes (cluster

radius zero, see Table 1), indicating that only a very special group

of chemicals can be produced from them and conversely, those

chemicals can exclusively be produced from eicosanoids. It is

intriguing that structural considerations alone reveal such a clear

separation of this cluster from the rest of the metabolism, reflecting

the specialized role of eicosanoid metabolism.

Cluster XI represents a group of nitrogen heterocyclic

compounds with the common feature that all contain an indol

group. All of these compounds are involved in the indole and

ipecac alkaloid biosynthesis pathways. Again, it is striking that the

purely structural approach reveals a separate cluster, consisting of

metabolites that play a highly specialized role in metabolism.

Similarly to the eicosanoids mentioned above, indole alkaloids

function as signaling molecules; however, they are predominantly

present in plants.

In Figure 2, the hierarchical ordering of the consensus scopes is

displayed in a tree form. The boxes contain a cluster represen-

tative (a compound with a scope identical to the consensus scope),

the cluster label and the consensus scope size, as well as the

chemical elements present in most metabolites of the correspond-

ing cluster. In the drawing, clusters with a large biosynthetic

potential are positioned above clusters with a lower biosynthetic

Figure 2. Hierarchy of compounds based on their biosynthetic potentials. Each box denotes a distinct consensus scope. On the top-left
corner of each box, the cluster label and consensus scope size are shown. On the top-right corner, the chemical elements present in most cluster
metabolites are given. Further, a representative metabolite of the cluster, whose scope is identical to the cluster’s consensus scope, is given. Two
consensus scopes are connected by an edge if the lower one is completely contained in the upper one. If the inclusion can be explained by
differences in the chemical elements within the cluster members, the missing elements have been noted at the corresponding edge.
doi:10.1371/journal.pcbi.1000049.g002

Hierarchical Organization of Metabolism
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potential. A line between two clusters is drawn if the consensus

scope of the cluster positioned below is a subset of the consensus

scope of the cluster positioned above. For clarity, indirect

inclusions are not depicted (although the scope of glucose is

naturally contained in that of APS, a line has not been drawn).

Also partial overlaps of consensus scopes are not depicted. Because

the consensus scopes of clusters VII and XI are disjoint from all

others, they are represented by isolated nodes.

Interestingly, many inclusion relations can be associated with a

difference in the chemical elements within the metabolites. For

example, the ATP consensus scope (cluster III) is completely

contained in the consensus scope of APS (cluster XIII). ATP and

all other metabolites of cluster III contain the elements C, H, O,

N, and P. The four metabolites in the APS cluster contain

additionally sulfur. This observation indicates that the chemical

complexity plays an important role in the determination of the

biosynthetic potential of a biochemical compound. However, there

are examples in which metabolites possess a similar chemical

composition and structure, but the corresponding consensus

scopes differ greatly. For instance cluster IX, containing Acetyl-

CoA, has a consensus scope being a small subset of the consensus

scope of cluster XIII, containing APS. The members of both

clusters are, however, composed of the same chemical elements

(C,H,O,N,P,S). Thus, the obtained hierarchy of the metabolites

according to their biosynthetic potential is not only determined by

their chemical complexity.

Combined Biosynthetic Potentials
So far, we have determined a hierarchy based on the

biosynthetic potentials of single substances. However, a direct

biological interpretation is hindered by the fact that it is unrealistic

to assume that an organism will be provided with exactly one

external substance. Usually, several nutrients are available and the

exact composition may vary greatly for different organisms and

different environments. To improve the biological significance of

the developed concept, it is therefore of relevance to study the

biosynthetic potentials of combinations of metabolites. Since a

systematic analysis of seeds of a larger size is not feasible, we

perform a Monte Carlo simulation and calculate the scopes for a

large number of seeds consisting of a varying number of randomly

chosen metabolites. We call the biosynthetic potential of a seed

containing multiple compounds the combined biosynthetic potential.

The Monte Carlo approach is similar to that followed in [18].

There the authors also calculated a large number of combined

scopes for randomly selected seeds. They studied the size

distribution of the scopes and in particular the increase in scope

size when systematically central metabolites such as ATP, NADH,

Coenzyme-A or oxygen were added to the seed. Here, we address

the question whether the identified combined biosynthetic

potentials can unambiguously be assigned to the determined

consensus scopes, thus confirming that the revealed hierarchical

ordering is of a general nature.

For each seed size between 2 and 20, we generate 1000 random

seeds and calculate the corresponding scopes. Based on the

distance measure (Equation 1), we identify for each scope the most

similar consensus scope and denote the similarity by d0. To assess

the quality of the assignment to the closest consensus scope, we

also identify the second nearest consensus scope and denote the

distance by d1. The ratio a= d0/d1 quantifies the uncertainty of the

assignment, with small values a%1 reflecting unambiguous

assignments and a<1 indicating a large uncertainty, because in

such a case the scope is equally similar to at least two consensus

scopes.

The average value a is plotted against the number of metabolites

in the seed in Figure 3 (black squares). It can be seen that the

assignment to a cluster is more reliable for larger seed sizes. This is

not surprising since larger seeds tend to exhibit a larger biosynthetic

potential and, as is the case for the potentials of single metabolites,

small scopes cannot reliably be grouped into clusters. Consistent

with the choice of parameters in the hierarchical clustering process,

in which we merge two clusters if they exhibit a distance of less than

0.2, we only assign the scopes of multiple-compound seeds to a

cluster if d0,0.2. As expected from the decreasing uncertainties of

cluster assignment, the percentage of assigned clusters increases

strongly with increasing seed size (red circles in Figure 3). For a seed

size of two, less than 40% of the scopes are assigned to a cluster. For

a seed size of 20, almost all scopes are unambiguously assigned to

one of the thirteen clusters determined above.

To analyze which particular consensus scopes can be reached

from a combination of metabolites, we plot in Figure 4 the fraction

of scopes that are assigned to a particular consensus scope in

dependence of the seed size. Shown are the values for the five

clusters with the largest consensus scopes (XIII2APS, III2ATP,

I2L-Glutamate, VI2dTTP, IX2Acetyl-CoA), all other clusters

are assigned with negligible frequency. The frequency of

assignment to the largest consensus scope increases strongly with

increasing seed size. This is expected because the addition of new

metabolites to the seed may only increase the biosynthetic

potential, so that a randomly chosen large set of metabolites is

more likely to display the full potential of metabolites from cluster

XIII than a small set. However, the numbers provide further

insight into the structural design of metabolism. For 20 randomly

selected compounds, the chance that one of them belongs to the

four compounds forming cluster XIII is still below 2%. On the

other hand, more than half of the scopes for this seed size get

assigned to the corresponding consensus scope. This indicates that

the particular, chemically very rich, compounds from cluster XIII

are not necessary to obtain the full biosynthetic potential
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Figure 3. Uncertainty of cluster assignment and fraction of
combined biosynthetic potentials assigned to a cluster. Shown
are the average uncertainty a of the assignment to clusters (squares),
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assigned to one of the clusters I-XIII (circles) as a function of the seed
size s.
doi:10.1371/journal.pcbi.1000049.g003

Hierarchical Organization of Metabolism

PLoS Computational Biology | www.ploscompbiol.org 6 April 2008 | Volume 4 | Issue 4 | e1000049



characterized by the scope of APS. Instead, the same potential is

contained in many combinations of smaller substances. This result

generalizes the observation made in [14] that the scope of APS

may also be reached if, for instance, CO2, NH3, phosphate,

sulfate, water and oxygen are used as seed. The frequency of

assignment to the second largest consensus scope also increases

with increasing seed size, however, it does not change considerably

for seed sizes larger than 10. For the assignment to the consensus

scope of cluster I, and in fact for the other clusters as well, the

frequency also increases for small seed sizes but tends to decrease

when the seed sizes become large. The reason is that for larger sets

of seed compounds it becomes increasingly difficult to find such

combinations which do not exhibit a large biosynthetic potential.

Therefore, for larger seed sizes, the frequency of assignment is

shifted towards the larger consensus scopes.

These investigations demonstrate that the notion of consensus

scopes is also meaningful in the context of combined biosynthetic

potentials. Moreover, the larger the set of metabolites for which the

combined biosynthetic potential is considered, the more combina-

tions are assigned to one cluster. In fact, larger sets of metabolites

tend to display a potential characterized by the largest consensus

scopes. For large seed sizes (s.20), this is true for more than half of

all combinations. As a consequence, large sets of metabolites may

not be distinguished by their combined potential, reflecting the fact

that central metabolites such as nucleotide phosphates, amino acids

and coenzymes may be built flexibly from many different resource

combinations. We conclude that the hierarchical ordering of

biosynthetic potentials which was determined for single metabolites

is of a general nature and its significance even increases when

combined biosynthetic potentials are studied.

Discussion

The aim of this article is to identify organizational principles in

metabolic networks. For this, we compared the biosynthetic

potentials of biochemical compounds in the KEGG database. A

potential is given by the set of all metabolites that can be produced

from a compound. This set is called the scope of the compound

[14]. We performed a hierarchical clustering to identify clusters of

compounds with similar scopes. The analysis resulted in 12 clusters

with a reasonable size (at least 10 metabolites) and one special

cluster containing four metabolites with the largest biosynthetic

potential. Within each cluster, the metabolites are chemically

similar in the sense that from each of the cluster members a similar

set of biochemical compounds can be produced. These findings

inspired the definition of a consensus scope which describes an

average set of metabolites which can in principle be produced

from biochemical compounds found in one cluster. A detailed

analysis of the compounds which are contained in each cluster

showed that the similarity in biosynthetic potential can be related

to particular chemical properties.

Chemical Versus Functional Complexity
By calculation of the overlap of the consensus scopes we derived

a hierarchy of metabolites, providing a novel view on the global

organization of metabolism. Some compounds (as those of cluster

III) possess a high chemical complexity in the sense that they are

composed of many distinct functional groups that are essential for

the synthesis of a large number of chemical compounds. Other

metabolites possess a less complex chemical structure, and

therefore the cellular metabolism can produce only a small

number of compounds from them. For some of these cases, the

lower biosynthetic potential can easily be explained by the

presence or absence of chemical groups. For example, it is

intuitive that from sugars (cluster V) less can be synthesized than

from sugar phosphates (cluster IV).

In other cases, however, it is not immediately evident from the

chemical structure alone why the biosynthetic potential of some

metabolites is smaller than for others. For example, from

deoxynucleotides with thymine as base (cluster VI), the metabo-

lism can produce only a small subset from those which can be

produced from deoxynucleotides with other bases (cluster III).

This is surprising in view of the fact that thymine is structurally

similar to, for example, uracil. In fact, the chemical structure of

thymin is even slightly more complex since it possesses an

additional methyl group. The different scope sizes of dTTP and

dUTP result from the fact that dTTP is included in the scope of

dUTP, whereas the opposite is not true. Because in our analysis all

reactions are considered to be reversible, this asymmetry does not

arise from thermodynamic constraints, but is rather an intrinsic

structural property of the metabolic network. The issue of

interconvertibility is discussed in detail in [14].

We hypothesize that the differences in scope size are a

consequence of different biological functions of these compounds.

In particular, synthesis of DNA in the presence of high levels of

dUTP promotes incorporation of uracil into DNA, since

polymerases cannot discriminate between the deoxynucleotides

dUTP and dTTP [19]. Uracil misincorporation compromises the

stability of DNA, resulting in DNA damage and cytotoxicity [20].

In normal cells, accumulation of dUTP by phosphorylation from

dUMP via dUDP is avoided by rapid reductive methylation of

dUMP to dTMP. Because a direct conversion of dTMP to dUMP

is not possible, the concentration of dUMP is kept at a low level.

Our hypothesis concerning the asymmetry of interconvertibility

of dTTP and dUTP is supported by experimental findings, in

which the amoebozoa Physarum Polycephalum was grown on 14C-

labeled nucleosides [21]. There, the authors observed that the 14C

from thymidine only enters dTTP, whereas the 14C from other

nucleosides was found in other ribonucleoside and deoxyribonu-
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cleoside triphosphates. In our analysis this is reflected by the

presence of dTTP in the scopes of dATP, dGTP, dUTP, and

dCTP, whereas the scope of dTTP does not contain any of these

nucleoside triphosphates.

This example demonstrates that chemically very similar

substances may differ significantly in their biosynthetic potentials

and that these differences may only be explained by consideration

of the biological functions of the metabolites. Apparently, the

complexity of a chemical substance may be described in two

different ways. The structural complexity of a metabolite is

determined by the types and numbers of chemical groups and

elements and the bonds between them. Another determinant is the

oxidation number of a metabolite since oxidation/reduction

reactions play an important role in metabolism. In contrast, the

functional complexity of a metabolite is determined by its

biological role within cellular metabolism. It may depend on the

availability of appropriate enzymes, the subcellular and tissue-level

localization of metabolites and enzymes, and the kinetics and

thermodynamics of biochemical reactions. In this work, we

invoked the concept of scopes, characterizing the biosynthetic

potential of a metabolite, to provide a quantification for the

functional complexity. Our results have indicated that both types

of complexity are in many cases correlated, however, this

correlation is not strict and we identified chemically very similar

metabolites exhibiting a drastically different functional complexity.

It will be interesting to study the relation between structural and

functional complexity of metabolites in further detail.

Primary and Secondary Metabolites
The analysis of the consensus scopes revealed a hierarchical

setting in which some consensus scopes are contained in others.

Two clusters are not included in this hierarchy, namely clusters

VII and XI, which display a disjoint consensus scope from all

others. Both clusters are composed of compounds with particular

chemical features exhibiting a specific biological function. The

compounds in cluster VII (eicosanoids), function as autocrine and

paracrine mediators. Compounds in cluster XI, characterized by

an indole group, act as signaling molecules in plants.

As a general tendency, we found that compounds belonging to

clusters with a large consensus scopes are primary metabolites, i.e.

metabolites necessary for essential cellular functions and present in

the metabolism of most organisms. In contrast, compounds within

clusters with a small biosynthetic potential are often secondary

metabolites, for example alkaloids, terpenoids or fatty acids. Such

metabolites are species specific and are not directly involved in

essential cellular processes.

The chemical structure of many secondary metabolites is more

complex than that of primary metabolites. Our investigations

revealed that secondary metabolites within one cluster are

structurally very similar and can be obtained from other members

of the cluster through small chemical modifications such as

methylation, hydroxylation or isomerization. In contrast, primary

metabolites clustered in the same group often display large

chemical differences. Despite this, the structure of the metabolic

network ensures that such metabolites are still interconvertible,

however, the pathway leading from one substrate to a product

may require a large number of enzymatic reactions.

Robustness and Universality of Metabolism Organization
In the first part of this work, we focused on the calculation of

single scopes, i.e. sets of metabolites which can be produced if

exactly one metabolite plus water and oxygen is available. We then

asked whether our results are of a general nature and still hold true

for combined scopes (sets of metabolites which can be produced

from a larger number of initial substrates, i.e. a larger seed size).

We applied a Monte-Carlo approach, randomly selecting seeds of

varying sizes, and measured the distance between the scopes of the

multiple-compound seeds to the consensus scopes of the clusters I-

XIII. We found that the larger the seed sizes, the more combined

biosynthetic potentials can be assigned to the 13 clusters previously

identified. Since larger seeds tend to exhibit a larger biosynthetic

potential, the frequency of assignment to the largest consensus

scope (cluster XIII) increases strongly with increasing seed size.

Thus, many combinations of smaller substances can exhibit the

same biosynthetic potential as the chemically complex compounds

from cluster XIII. This hints at a redundancy principle in the

design of the global metabolic network. Our findings demonstrate

that the hierarchical ordering of biosynthetic potentials, originally

determined for single metabolites, is of a general nature, and also

meaningful for larger sets of nutrient seeds.

Another study based on the Monte-Carlo approach [18] has

shown that the sizes of the resulting scopes are concentrated in

four disjoint regions, the largest scopes being produced only if

oxygen is contained in the initial set of substrates. In the results

presented above, we have always assumed that oxygen is present.

We have tested whether our findings are dependent on this

assumption and repeated our calculations for anaerobic conditions

(see Methods, Effect of Oxygen; and Table S3 and Dataset S2 in

the supporting information). In agreement with the results of

Raymond and Segrè [18], we also observe that many metabolites

possess a strongly reduced biosynthetic potential under anaerobic

conditions, demonstrating that they can only deploy their full

potential when oxygen is available. As a consequence, the clusters

tend to be of a smaller size, but pairs of corresponding clusters can

clearly be identified. In contrast, the consensus scopes, character-

izing the typical biosynthetic potentials of the clusters, remain

almost completely unchanged. It is remarkable that, while oxygen

naturally has a strong impact on metabolism and possible synthesis

routes, its absence or presence is not decisive for the hierarchical

organization of the global metabolic network comprising enzy-

matic reactions from aerobic as well as anaerobic organisms. This

fact supports the hypothesis that the computationally derived

hierarchy is indeed of general nature and does not depend on

specific assumptions.

Interestingly, clusters I, II and VIII which exhibit a considerable

reduction under anaerobic conditions, have consensus scopes

containing metabolites with a higher oxidation state than

compared to consensus scopes of other clusters. Thus, many

compounds contained in these consensus scopes are obtained from

oxidation reactions, which in many cases require oxygen. The fact

that many oxidation reactions take place using NAD+ or FAD as

oxidant provides an explanation that the consensus scopes can still

be reached, however by a smaller number of compounds. We

expect that a more detailed investigation of the effect of the

average oxidation number within clusters and their consensus

scopes on the cluster reduction under anaerobic conditions will

provide new insight into the role of oxygen and alternative

oxidants in cellular metabolism.

Summarizing, by grouping metabolites with respect to their

biosynthetic potential, the huge variability of biochemical

compounds involved in metabolism can be represented in a

relatively concise form. Apparently, there exist only a small

number of typical sets of metabolites (the consensus scopes) which

can be produced from one single precursor. These sets display a

hierarchy which in some cases can be explained by the chemical

groups contained in the precursors. In other cases, the underlying

reasons for the hierarchical structuring have their origin in

different biological functions of the compounds. Our results have
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been obtained from a computational study which is based on a

database with necessarily incomplete and constantly changing

content. Moreover, there is some degree of arbitrariness in the

curation process used to derive the metabolic network. Despite

these uncertainties, we could demonstrate that our results are only

marginally different when based on database releases between

which over two years have passed (see Methods, Robustness

Against Changes in Network Structure; and Dataset S2 in the

supporting information). More importantly, the derived hierar-

chical structure proved stable. We thus assume that the hierarchy

is indeed an intrinsic characteristic of the metabolic network itself.

Metabolism Hierarchy and Biological Evolution
The catalyzing enzymes are a product of a long evolutionary

process which was governed by selection and mutation principles.

In total, they catalyze only a small fraction of all theoretically

possible chemical transformations. The nature of the evolutionary

driving forces which resulted in the selection of the particular set of

enzymatic reactions found in contemporary organisms remains

subject to speculation. Our analyses show that the network is

extremely flexible in its resource requirements, exhibited by the

fact that central metabolites (e.g. ATP, NADH, Coenzyme-A,

amino acids) may be synthesized from many different combina-

tions of substrates. Nevertheless, certain metabolic routes involving

chemically similar compounds are to some degree separated. This

indicates that for the chemically feasible reactions that could

provide the link, enzymes have not evolved. Of course, it is

possible that such enzymes do exist but have not been discovered

yet and are therefore not yet included in the KEGG database.

However, database versions almost three years apart did show the

same cluster separations. With the present rate of increase of

biochemical knowledge, this is a hint that such enzymes do indeed

not exist in contemporary organisms or are extremely rare.

Assuming that the observed separation of metabolism is a real

feature of the contemporary metabolic network, what could have

been a selective advantage that hindered the evolution of enzymes

for connecting reactions? Of course, under physiological condi-

tions many similar chemicals, also such displaying an identical

scope, may exhibit different biological functions. This is possible

by mechanisms such as allosteric regulation and gene regulation to

adjust production rates to the present demand, so a structural

separation of metabolic routes does not seem necessary from a

present-day view. However, it can be assumed that early during

metabolic evolution, primitive precursors of contemporary en-

zymes have catalyzed biological reactions. Common mechanistical

themes in diverse enzyme superfamilies [22] suggest that early

enzymes displayed a significantly lower substrate specificity, and

the modular structure separating catalyzing from regulatory

domains in proteins [23] allows to speculate that domains for

functional control have been less elaborated or non-existent in

early enzymes. In such a scenario, a separation of the metabolic

network on the structural level does indeed make sense, since in

this way certain chemical conversion routes are principally

excluded, providing a selective advantage by avoiding undesired

interactions. It is remarkable that the clearest separation involves

nucleotide phosphates, which, as prerequisite for the genetic code,

assumably have acquired a central role early during metabolic

evolution. Moreover, the particularly similar nucleotides with

strikingly different potentials, uracil and thymin, are exactly those

structural elements which distinguish the related, information

coding macromolecules DNA and RNA. We therefore hypothe-

size that the observed separation of clusters of similar compound is

a relict of the early phase of metabolic evolution, when regulatory

mechanisms had not yet evolved to their present-day elaboration.

Under such conditions, it might have provided a selective

advantage to fundamentally separate metabolic routes, which is

most drastically achieved by a separation on a structural level.

One aspect poorly understood is how a large chemical diversity

of more than 200.000 secondary species-specific metabolites has

evolved from primary metabolic pathways [24]. The high

plasticity of secondary metabolism involving enzymes with broad

substrate specificity might have enabled organisms to adapt easily

to environmental changes. A model has been proposed to explain

the increased generation of chemical diversity after a mutational

event assuming a broad substrate specificity of the enzymes [25].

In this model, a substrate A is sequentially converted by a series of

distinct enzymes into other compounds B, C, D and E. A

mutational event could give rise to a new variant of the organism,

producing a compound A’ that is structurally similar to A. The

same enzymes acting on the pathway ARE could generate the

new compounds B’, C’, D’ and E’. Our results are consistent with

such a model; secondary metabolites are confined to small clusters

and the majority of these metabolites are interconvertible, being

also found in the consensus scopes. Likely, most enzymes that

might have catalyzed the transition from B to B’ have not evolved,

which explains the disjoint consensus scopes of these clusters. We

expect that a clustering analysis of organism-specific networks may

bring some insight in our understanding of the evolutionary

transition from primary to secondary metabolism. We hypothesize

that in early-evolved organisms some secondary metabolites or

related compounds will be found in larger clusters functioning as

primary metabolites.

While the presence or absence of oxygen is not influencing the

hierarchical organization of the global network discussed here, we

expect that the effect of oxygen on organism-specific hierarchies is

more pronounced. Metabolism under aerobic and anaerobic

conditions may differ considerably between organisms. For

example, earlier organisms, which appeared before oxygen was

present at a high concentration in the atmosphere, prefer

fermentation (anaerobic) to oxidative phosphorylation (aerobic).

We expect that i) the organism specific hierarchies will reflect the

growth conditions (aerobic versus anaerobic) and ii) the effect of

oxygen will stronger influence the structure of the metabolism for

aerobic than for anaerobic organisms. From such comparative

studies we expect to gain further clues about which underlying

principles may have guided the evolution of metabolic networks.

Methods

Data Import
We have retrieved the global metabolic network from the

KEGG database in the following way. From the LIGAND

subdivision, the complete list of reactions has been imported. The

reactions have been checked for consistency and those were

rejected which showed an erroneous stoichiometry, by which we

mean that some atomic species occurred in different numbers on

both sides of the reaction. The inclusion of such erroneous

reactions could result in absurd events such as the creation of

chemical elements or groups. We identified compounds possessing

ambiguous structure information, such as chains of chemical

groups of unspecified length (e.g. Ubiquinol, KEGGID: C00390,

C14H20O4[C5H8]n) or compounds with unspecified residues

(e.g. Amino acid, KEGGID: C00045, C2H4NO2R). We rejected

all reactions involving such metabolites. Further, we did not

include reactions involved in glycan synthesis because the focus of

our investigation lies on the metabolism of small chemical species,

which also does not include the formation of complex structures

such as proteins or RNA and DNA molecules.
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This curation process has been applied to two different database

releases, one dating back to January 2005, and a recent version

from December 2007. The older release resulted in a network

comprising a set of 4811 enzymatic reactions connecting 4104

biochemical compounds. Results presented in the main text have

been obtained for this network. To ensure that our results are not

critically influenced due to changes in the database, calculations

have been repeated for the network derived from the recent

database release, comprising 5529 reactions with 4668 reactants

(see below).

We have also tested whether the curation process applied to

extract the metabolic network from the database is critical for our

results. For this purpose, we built two more networks from the

recent database version, one with relaxed and one with stringent

criteria. For the former, all 6003 reactions were included, even

those showing erroneous stoichiometry. For the latter we

demanded absolute correctness, risking the exclusion of valid

reactions, leaving 4257 reactions in the network. For all networks,

the complete reaction lists are provided in the supporting

information (Dataset S2).

It is possible that by removing reactions during curation the

resulting network contains parts not connected to the rest of the

network. This was indeed observed; however, in most cases this

concerns single or groups of a small number of reactions. We did

not put any effort in deriving a fully connected network, since

small disconnected components are unproblematic for the kind of

analysis presented here.

In principle, the KEGG database also provides information on

the reversibility of biochemical reactions. This information is

contained in XML files which define the organism-specific

pathways. We found, however, that for many reactions (over

200), this information is ambiguous. Further, the direction in

which a reaction actually proceeds under physiological conditions

is strongly dependent on the metabolite concentrations and

therefore may vary for different organisms, tissues or environ-

mental conditions. To account for this and considering that in

principle every enzymatic reaction may also proceed in the reverse

direction, we have considered all reactions to be reversible.

Network Expansion and Scope Calculation
To assess the synthesizing capacities of a metabolic network

when it is provided with a particular substrate, we apply the

method of network expansion which is in detail described in [14].

We give here a short outline of the algorithm:

1. A particular metabolite, X, for which the scope shall be

calculated, is selected. We define a set M = {X, H2O, O2}

containing this metabolite, water, and oxygen.

2. All reactions within the metabolic network are identified for

which all substrates are present in the set M. These reactions

can in principle operate when the metabolites contained in M

are present.

3. For each of the reactions identified in the previous step, the

products are added to the set M, leading to an expanded set of

metabolites.

4. Steps 2 and 3 are repeated until in step 3 no new metabolite

can be added to the set M.

The resulting set M is called the scope of compound X. We use the

scope as a measure for the biosynthetic potential carried by

metabolite X. Naturally, this algorithm can be initialized with any

combination of seed compounds. For the analysis of combined

biosynthetic potentials, we randomly select several metabolites as

seeds and apply the described algorithm.

Hierarchical Clustering
We apply a hierarchical clustering with the distance measure

(Equation 1). The advantage of hierarchical clustering methods is

that they provide information about clustering of the data at all

scales, from fine to coarse. The disadvantage is the computation

time which scales with O(n2), because the distance between every

pair of data has to be computed.

We choose a nearest neighbor group-average clustering

algorithm [26]. Nearest neighbor clustering is a bottom up

clustering method where iteratively the elements or clusters with

the smallest distance are joined. Group-averaging refers to the

method of defining the distance between two clusters as the

average over all distances between pairs of the corresponding

cluster elements. We denote the elements (scopes) of cluster i by Si
k

and of cluster j by S
j
l , and the sizes of clusters i and j by si and sj

respectively. The distance dij between the two clusters i and j is

then defined as the group-average of the distances between all

elements Si
k and S

j
l , for k = 1, 2,…si and l = 1, 2,…sj,

dij~Sd Si
k,S

j
l

� �
T ð2Þ

where the average is over all k and l. The algorithm is

implemented as follows:

1. The distances between all pairs of scopes are computed and

stored in a matrix DistSc. To every data point we assign a

cluster label, i.e. initially every data point is itself a cluster.

2. In the first step we find the smallest element of the matrix

DistSc(i, j) = min(DistSc) and assign the same cluster label to both

of them, say m.

3. For the group-averaging, we then modify the matrix DistSc by

removing one row and column (say i). Row j and column j are

replaced by the distances between the newly formed cluster m,

consisting of the former scopes i and j, to the remaining

clusters, according to Equation 2.

4. Steps 2 and 3 are then repeated until all scopes are merged into

the same cluster. Furthermore, for every iteration we store the

current minimum element of DistSc.

The result obtained in this procedure is a clustering of the data

on various scales. At the first iterations only very similar elements

obtain the same cluster label and the clustering is very fine.

Towards the end elements or clusters with large distances are joint,

resulting in a coarse clustering with a smaller number of clusters.

Figure 5A shows the increasing distances at which elements or

clusters are merged at subsequent iterations of the nearest

neighbors clustering. In the beginning elements are clustered at

very small distances, in fact there is quite a large number of

identical scopes. In the next region the distances increase linearly

to the maximum value. The following iterations then join elements

that do not have even a single common substance in their scopes.

All the very small scopes of compounds with zero synthesizing

capacity are assigned to clusters in this last phase.

After the clustering is finished, the next step is to decide which

scale of the clustering is reasonable for analysis. Our choice is

based on the distances themselves on one hand, and on the

robustness of the clusters on the other. Naturally, elements of the

same cluster should be very similar, therefore the coarse scale,

where clusters are joined although the distance between them is

large (let’s say, dml.0.5) is not feasible.

The robustness of the clusters is measured as the variation in the

amount of larger clusters when varying the joining distances. In

Figure 5B we plot the number of clusters of a given minimum size
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k for various k as a function of the distance at the current iteration

of clustering. The length of a plateau in one of the curves then

gives the robustness of the clustering for clusters of size larger than

k. We are interested in larger clusters and therefore consider only

the three lower curves. There is a smaller plateau for distance

values between 0.1–0.2 and a long one between 0.3–0.7. Because

of the requirement that the distances should be rather small, we

focus on the first plateau, and therefore choose the clustering level

where elements are joint with a distance of at most 0.2.

Finally, we measure the quality of the clustering to assure that

the elements within the same cluster are similar and the clusters

well distinguishable. Generally, a clustering is considered good, if

the distances of the elements within a cluster are small, and the

distances between elements of distinct clusters large. To quantify

the quality of the clustering we compute for every cluster (I-XIII)

the distance between all scopes contained in the cluster to the

consensus scope. The maximum of these distances can be

regarded as a cluster radius, denoted by dmax
0 . Furthermore, we

compute the distance between all scopes in the cluster to the

second nearest consensus scope. The minimum of these, dmin
1 ,

provides a measure of the cluster separation. Since the distance is

based on the Jaccard coefficient, dmax
0 and dmin

1 #1. A cluster is

well defined if dmax
0 is small and dmin

1 large. Figure 6 shows that for

all clusters dmax
0 is much smaller than dmin

1 , except for cluster II.

This can be regarded as a consequence of the similarity between

the clusters II and IX. Cluster II is fully embedded in cluster IX,

while their consensus scopes differ only by about 25%.

To obtain a single parameter quantifying the uncertainty of the

assignment of metabolites to a cluster, we compute the ratio

b~dmax
0

�
dmin

1 . The quality of the clustering is good for b%1. For

b<1, the assignment is uncertain, as in this case the scope is

equally similar to at least two consensus scopes.

Robustness Against Changes in Network Structure
The results presented in this work have been obtained for a

metabolic network reconstructed from a KEGG database version

dating back to the year 2005. Due to our rapidly increasing

biochemical knowledge, it lies in the nature of databases as KEGG

that their content is constantly changing. It is therefore a crucial

question whether our results, and therefore our biological

conclusions presented here, are still valid if new reactions enter

the database or erroneous reactions are removed. An indication

that the results should not be drastically influenced is given by the

robustness studies of single scopes in [14]. Here it was shown that

deletions of single reactions from the network alter the scopes only

in rare cases considerably.

Since it is unclear how the clusters and the consensus scopes are

affected when the network structure is altered by several hundreds

of reactions, we have repeated our calculations for a network

derived using a database version from December 2007 (for the

detailed results, see Dataset S2 in the supporting information). For

the new network we compared the obtained clusters, consensus

scopes and resulting hierarchies to the results above.

For all the clusters I2XIII, corresponding clusters can easily be

identified for the new network (see Tables S1 and S2, and Figure

S1). The similarity between the clusters I2XIII and the

Figure 5. Hierarchical clustering method: choice of clustering level. (A) Increasing distances at which clusters are merged at successive
iterations of the nearest neighbors clustering. (B) Number of clusters of a given minimum size versus the joining distance at each iteration.
doi:10.1371/journal.pcbi.1000049.g005
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Figure 6. Cluster radius and cluster separation. Maximum
distance between compounds of a cluster to their corresponding
consensus scope d0 (cluster radius), and the minimum distance of the
compounds to the second nearest consensus scope d1 (cluster
separation). The assignment to a cluster is good if d0%d1.
doi:10.1371/journal.pcbi.1000049.g006
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corresponding new clusters is very high. The Jaccard coefficients

of pairs of corresponding clusters have in most cases values above

0.7. The corresponding consensus scopes are even more similar,

Jaccard coefficients of pairs of corresponding consensus scopes

have values of 0.8 or higher. As expected from the increase in

network size, the cluster sizes as well as the consensus scopes have

a tendency to increase in size. Apart from identifying correspond-

ing clusters, we also obtained new clusters from the recent

database version. Two clusters are formed by carotenes and

oxylipins derived from linolenic acid, containing 18 and 10

metabolites, respectively. Their consensus scopes (sizes 28 and 20,

respectively) do not overlap with other consensus scopes. Again we

see that compounds contained in isolated clusters are secondary

metabolites.

The effect of the specific network curation strategy has been

tested with two more networks derived from the recent KEGG

database version (see above), termed relaxed and stringent. Not

surprisingly, we found that for the relaxed network our results

change considerably. Erroneous stoichiometries lead to absurd

events, like the creation of new chemical elements. One example is

that for this network the scopes of ATP and APS are identical even

though APS possesses a sulfate group while ATP does not. Due to

such obviously meaningless results, we do not consider the relaxed

network further. However, such observations demonstrate how

important the process of database curation is to derive consistent

network models. For the stringent network the scope sizes–and

therefore consensus scope sizes–are sometimes drastically reduced,

however, most of the previously identified clusters are again

present, and the obtained hierarchy is still structurally conserved

(see Figure S3). The major exception is that cluster III, represented

by ATP, splits into two clusters exhibiting consensus scopes

identical to the scopes of ATP and UTP, respectively. Moreover,

some of the smaller clusters disappear. We explain these changes

by the fact that some important reactions are missing due to the

very harsh criteria. The detailed results can be found in the

supporting information (Dataset S2).

Effect of Oxygen on the Hierarchical Structure
We have performed our calculation assuming that oxygen is

always available. This assumption is motivated by the fact that

atmospheric oxygen, a highly reactive chemical, has been

abundant for approximately 2.8 billion years and therefore the

metabolic network that we see today has to a large extent evolved

under aerobic conditions. However, there is a certain arbitrar-

iness in our assumption, since for similar reasons other

compounds, such as CO2, could be included in the seed. To

verify whether our calculations critically depend on the

availability of oxygen, we repeated the cluster analysis based on

biosynthetic potentials of all metabolites under the premise that

only water is additionally available. Corresponding clusters with a

high overlap can easily be identified between the results obtained

with and without oxygen. The results are summarized in Tables

S2 and S3, details are found in Dataset S2 and Figures S2 and

S4. Some clusters remain completely unchanged (IV, X, and

XIII), whereas others are slightly reduced in size. Interestingly,

while absence of oxygen does alter the cluster composition, most

consensus scopes remain completely identical. A significant

change in size is observed for cluster VII, which is almost halved

in the absence of oxygen, while the corresponding consensus

scope is unaffected. A closer inspection reveals that this cluster is

in fact split into two subclusters, a smaller one formed by

prostaglandins and thromboxanes whose consensus scope is

completely contained in that of the larger subcluster formed by

lipid hydroperoxides, leukotrienes and oxilins. The reduced

biosynthetic capacity of prostaglandins and thromboxanes is

due to an oxidation reaction of prostaglandin H2 yielding

prostaglandin G2, which does not occur under anaerobic

conditions. The most dramatic change is observed for cluster

VIII, which collapses completely. The metabolites within this

cluster are very diverse but possess the common property that

they can be oxidized to CO, CO2 or small carboxylic acids. The

collapse of this cluster can be accounted to the fact that these

oxidizing reactions cannot take place in the absence of oxygen,

which also explains the strong reduction of the size of the

corresponding consensus scope.

Supporting Information

Figure S1 Hierarchy of metabolites for the network derived

from the recent KEGG version.

Found at: doi:10.1371/journal.pcbi.1000049.s001 (0.03 MB PDF)

Figure S2 Hierarchy of metabolites for the network derived

from the recent KEGG version under anaerobic conditions (no

oxygen in the seed).

Found at: doi:10.1371/journal.pcbi.1000049.s002 (0.02 MB PDF)

Figure S3 Hierarchy of metabolites for the network derived with

stringent curation strategy.

Found at: doi:10.1371/journal.pcbi.1000049.s003 (0.02 MB PDF)

Figure S4 Hierarchy of metabolites for the network derived with

stringent curation strategy under anaerobic conditions.

Found at: doi:10.1371/journal.pcbi.1000049.s004 (0.02 MB PDF)

Table S1 Mapping from the cluster labels I-XIII to the

identifiers of the corresponding clusters found in the recent

network, both for aerobic and anaerobic conditions (directories

‘semiStrict’ and ‘semiStrict_no_o2’ in Dataset S2).

Found at: doi:10.1371/journal.pcbi.1000049.s005 (0.01 MB PDF)

Table S2 Comparison of the clustering results for networks

derived from two different versions of the KEGG database.

Found at: doi:10.1371/journal.pcbi.1000049.s006 (0.01 MB PDF)

Table S3 The effect of oxygen on the clustering results and the

consensus scopes.

Found at: doi:10.1371/journal.pcbi.1000049.s007 (0.01 MB PDF)

Dataset S1 Definition, clusters, and consensus scopes of the

network discussed in the text. The metabolic network which was

retrieved from the KEGG database and subsequently curated is

available as a list of KEGG reaction IDs (file ‘reaction_list.txt’). A

full list of the hierarchical clusters (‘hierarchical_clusters.txt’) is

provided along with a list of all corresponding consensus scopes

(‘consensus_scopes.txt’). In total, 350 clusters and their consensus

scopes are presented; clusters 1–12 correspond to clusters I-XII in

the text, and cluster 63 is cluster XIII.

Found at: doi:10.1371/journal.pcbi.1000049.s008 (0.33 MB TAR)

Dataset S2 Results for three networks obtained with different

curation strategies. The dataset consists of five subdirectories, each

containing three files corresponding to Dataset S1. All networks

have been extracted from a recent KEGG database version as of

December 2007. The three networks were obtained using very

relaxed criteria for the exclusion of reactions (directory ‘relaxed’),

identical criteria as was used for Dataset S1 (‘semiStrict’) and

extremely stringent criteria (‘strict’). For the latter two, also results

for anaerobic conditions are presented (‘semiStrict_no_o2’ and

‘strict_no_o2’).

Found at: doi:10.1371/journal.pcbi.1000049.s009 (1.08 MB TAR)
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