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Abstract

Recently, a number of advanced screening technologies have allowed for the comprehensive quantification of aggravating
and alleviating genetic interactions among gene pairs. In parallel, TAP-MS studies (tandem affinity purification followed by
mass spectroscopy) have been successful at identifying physical protein interactions that can indicate proteins participating
in the same molecular complex. Here, we propose a method for the joint learning of protein complexes and their functional
relationships by integration of quantitative genetic interactions and TAP-MS data. Using 3 independent benchmark
datasets, we demonstrate that this method is .50% more accurate at identifying functionally related protein pairs than
previous approaches. Application to genes involved in yeast chromosome organization identifies a functional map of 91
multimeric complexes, a number of which are novel or have been substantially expanded by addition of new subunits.
Interestingly, we find that complexes that are enriched for aggravating genetic interactions (i.e., synthetic lethality) are more
likely to contain essential genes, linking each of these interactions to an underlying mechanism. These results demonstrate
the importance of both large-scale genetic and physical interaction data in mapping pathway architecture and function.
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Introduction

Genetic interactions are logical relationships between genes that

occur when mutating two or more genes in combination produces

an unexpected phenotype [1–3]. Recently, rapid screening of

genetic interactions has become feasible using Synthetic Genetic

Arrays (SGA) or diploid Synthetic Lethality Analysis by Micro-

array (dSLAM) [4,5]. SGA pairs a gene deletion of interest against

a deletion to every other gene in the genome (in turn). The

growth/no growth phenotype measured over all pairings defines a

genetic interaction profile for that gene, with no growth indicating a

synthetic-lethal genetic interaction. Alternatively, all combinations

of double deletions can be analyzed among a functionally-related

group of genes [6–8]. A recent variant of SGA termed E-MAP [9]

has made it possible to measure continuous rates of growth with

varying degrees of epistasis (based on imaging of colony sizes).

‘‘Aggravating’’ interactions are indicated if the growth rate of the

double gene deletion is slower than expected, while for

‘‘alleviating’’ interactions the opposite is true [10,11].

One popular method to analyze genetic interaction data has

been to hierarchically cluster genes using the distance between

their genetic interaction profiles. Clusters of genes with similar

profiles are manually searched to identify the known pathways and

complexes they contain as well as any genetic interactions between

these complexes. This approach has been applied to several large-

scale genetic interaction screens in yeast including genes involved

in the secretory pathway [8] and chromosome organization [6].

Segré et al. [12] extended basic hierarchical clustering with the

concept of ‘‘monochromaticity’’, in which genes were merged into

the same cluster based on minimizing the number of interactions

with other clusters that do not share the same classification

(aggravating or alleviating).

Another set of methods has sought to interpret genetic

relationships using physical protein-protein interactions [13].

Among these, Kelley and Ideker [14] used physical interactions

to identify both ‘‘within-module’’ and ‘‘between-module’’ expla-

nations for genetic interactions. In both cases, modules were

detected as clusters of proteins that physically interact with each

other more often than expected by chance. The ‘‘within-module’’

model predicts that these clusters directly overlap with clusters of

genetic interactions. The ‘‘between-module’’ model predicts that

genetic interactions run between two physical clusters that are

functionally related. This approach was improved by Ulitsky et al.

[15] using a relaxed definition of physical modules. In related

work, Zhang et al. [16] screened known complexes annotated by

the Munich Information Center for Protein Sequences (MIPS) to

identify pairs of complexes with dense genetic interactions between

them.

One concern with the above approaches, and the works by

Kelley and Ulitsky in particular, is that they make assumptions

about the density of interactions within and between modules

which have not been justified biologically. Ideally, such parameters

should be learned directly from the data. Second, between-module

relationships are identified by separate, independent searches of

the network seeded from each genetic interaction. This ‘‘local’’

search strategy can lead to a set of modules that are highly
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overlapping or even completely redundant with one another.

Finally, genetic interactions are assumed to be binary growth/no

growth events while E-MAP technology has now made it possible

to measure continuous values of genetic interaction with varying

degrees of epistasis. Here, we present a new approach for

integrating quantitative genetic and physical interaction data

which addresses several of these shortcomings. Interactions are

analyzed to infer a set of modules and a set of inter-module links,

in which a module represents a protein complex with a coherent

cellular function, and inter-module links capture functional

relationships between modules which can vary quantitatively in

strength and sign. Our approach is supervised, in that the

appropriate pattern of physical and genetic interactions is not

predetermined but learned from examples of known complexes.

Rather than identify each module in independent searches, all

modules are identified simultaneously within a single unified map

of modules and inter-module functional relationships. We show

that this method outperforms a number of alternative approaches

and that, when applied to analyze a recent EMAP study of yeast

chromosome function, it identifies numerous new protein

complexes and protein functional relationships.

Results

Characterization of Genetic and Physical Networks
We first sought to quantitatively confirm whether, and to what

degree, physical and genetic interactions could indicate common

membership in a protein complex. To provide genetic data for

analysis, we obtained the previously-published results from a large

E-MAP of yeast chromosomal biology [6]. This study consisted of

genetic interactions measured among 743 genes (including 74

essential genes), yielding quantitative values for 182,669 gene pairs

(66% of all possible pair-wise measurements). Each gene pair was

assigned an S-score, where positive scores indicate protein pairs for

which the double mutant grows better than expected (i.e., an

alleviating interaction) and negative scores indicate pairs for which

the double mutant grows worse than expected (i.e., a synthetic

sick/lethal or aggravating interaction) where the expectation is

that the double-deletion of unrelated proteins will have a growth

rate equivalent to the multiplicative product of the two individual

growth rates [17]. In all, 14,237 gene pairs (8%) showed strong

genetic interactions with |S|.2.5. Physical interactions were

taken from a recent computational integration of two large

datasets measured by co-immunoprecipitation followed by mass

spectrometry [18]. This study assigned to each pairwise interaction

a Purification Enrichment (PE) score, with larger values repre-

senting a greater likelihood of true binding.

Figure 1A confirms that protein pairs with higher PE-scores are

more likely to operate in a known small-scale protein complex

recorded in the MIPS database [19] (versus protein pairs chosen at

Author Summary

Biologists are currently producing large amounts of data
focused on physical and genetic protein interactions.
Physical interactions dictate the architecture of the cell in
terms of how direct associations between molecules
constitute protein complexes, while genetic interactions
define functional relationships through cause-and-effect
relationships between genes. Both of these types of
interactions can indicate shared protein functions; how-
ever, these two types of interactions are commonly non-
overlapping, making their interpretation difficult. Along
these lines, it has been noted that genetic interactions
commonly occur between members of the same protein
complex as well as between functionally related complex-
es. Here, we present an integrated framework that
incorporates both types of interactions to generate large
maps of protein complexes as well as highlight connec-
tions between related complexes. The ability to rapidly
integrate these two types of data in an automated fashion
can accelerate the discovery of new members of protein
complexes as well as identify functionally related cellular
components.
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Figure 1. Combining physical and genetic interactions to define protein complexes. Correspondence of the physical interaction score (A)
and the genetic interaction score (B) with the known small-scale, manually annotated protein complexes in MIPS. To compute the enrichment over
random (y-axis), one first computes the fraction f of interactions at each score x that fall inside a MIPS small-scale complex (bin size of 1.5). The
enrichment is the ratio f/r, where r is the fraction of random protein pairs within MIPS complexes. (C) Proteins are grouped into physically interacting
sets called modules (gray ovals; m1–m6). Pairs of modules may be linked to indicate a functional relationship (dotted lines; b1–b6). The assignment of
proteins to modules along with the list of inter-module links comprises the state of the system.
doi:10.1371/journal.pcbi.1000065.g001
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random). This result is expected considering that PE-scores were

trained based on these complexes [18]. Figure 1B shows that

protein pairs with both positive and negative S-scores are more

likely to operate within a known complex. Positive (alleviating)

interactions are well-known to occur between subunits of a

complex [6]. Negative (aggravating) interactions are to a lesser

degree so, although the mechanism has not been as clear as for the

alleviating case [20]. By comparing the magnitudes of enrichment

between Figures 1A and 1B, it is apparent that extreme S-scores

are at least as indicative of co-complex membership as strong PE-

scores, if not more so (,100-fold enrichment versus ,50-fold

enrichment, respectively). Together, these exploratory findings

suggest that the physical and genetic information can indeed

provide a basis for the identification of protein pairs involved in

the same complex.

Functional Maps of Protein Complexes Involved in Yeast
Chromosomal Biology

To capture these trends, we formulated an approach to classify

a protein pair as operating either within the same module or

between functionally related modules given its genetic and physical

interaction scores. This approach seeks to categorize interactions

supported by both strong genetic and physical evidence as

operating within a module (i.e., complex). Interactions with a

strong genetic but weak physical signal are better characterized as

operating between two functionally related modules. Given within-

module and between-module likelihoods for individual interac-

tions, an agglomerative clustering procedure seeks to merge these

interactions into increasingly larger modules and to identify pairs

of modules interconnected by bundles of many strong genetic

interactions (Figure 1C). Full details are provided in Methods.

Applying this method, we identified 91 distinct modules with an

average size of 4.1 proteins per module. Figure 2 gives an overview

of a subset of the identified modules and inter-module links.

Complete results are catalogued at http://www.cellcircuits.org/

Bandyopadhyay2008/html/. Overall, these results suggest ten

novel complexes not recorded in either the small-scale or high-

throughput MIPS compendium, covering 23 proteins in total. The

results also identify 84 new subunits of known complexes (Dataset

S1). Through permutation testing, 19 versus 9 of the identified

modules could be categorized as enriched for alleviating or

aggravating genetic interactions, respectively. A total of 313

significant genetic relationships were identified between modules,

94 versus 219 of which were enriched for alleviating or

aggravating interactions.

Comparison to Related Approaches
The method of choice for interpreting quantitative genetic

interactions has been hierarchical clustering (HCL) of genes based

on pair-wise distances between their genetic interaction profiles

[6,8]. We compared the clusters obtained using HCL to the

modules obtained with our present approach (Bandyopadhyay et

al.) using three gold-standard metrics: gene co-expression

(Figure 3A), co-functional annotation (Figure 3B), or membership

in the same previously-identified complex (Figure 3C). To ensure a

fair comparison between the two approaches, HCL and

Bandyopadhyay et al. were evaluated across a range of coverages

(number of gold-standard gene pairs recovered by the predicted
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clusters/modules; see Methods). For all three benchmarks, our

performance was substantially higher than that of the HCL-based

approach at most levels of coverage (and at a level of coverage

corresponding to the 91 modules reported above; dotted vertical

line in Figure 3).

We considered that one reason why HCL performed less

favorably might be that it was not given access to the same

information (i.e., the physical network). This is especially true for

the metric based on previously identified complexes, in which

complexes were annotated based on the same high-throughput

protein interactions used here. To investigate this possibility, we

extended HCL to incorporate physical interactions in a straight-

forward fashion, by merging only those clusters which share a

physical interaction between them (HCL-PE). Although this

approach outperformed hierarchical clustering without physical

interactions, it was outperformed by the present approach by at

least 50% across the three metrics. Finally, our method also shows

improvement over the previous approach of Kelley and Ideker

[14] for integrating genetic and physical interactions (Figure 3).

Aggravating Complexes Tend to be Essential
Nineteen versus nine of the learned modules had significant

enrichment for alleviating versus aggravating genetic interactions,

respectively. Identification of ‘‘alleviating’’ modules is expected,

since subunits of a complex operate together and the phenotypic

effect of removing any pair of proteins in a complex should be no

worse than removing any single protein individually. The presence

of aggravating interactions within modules was more intriguing.

One way in which aggravating interactions could occur among the

subunits of a complex is if its function is essential, i.e., the loss of

the complex’s function causes a lethal phenotype. In these cases,

some protein subunits should be encoded by essential genes, while

other subunits might be redundant and thus essential in pairwise

combinations [20].

To test the hypothesis that essential genes are more likely in

aggravating modules, we analyzed both MIPS small-scale

complexes and our learned modules for the presence of essential

genes (Figure 4). We found that 80% of aggravating MIPS

complexes contained an essential gene, compared to only 20% of

alleviating MIPS complexes (a four-fold increase). Similarly, of the

aggravating modules determined by our approach, 55% contained

an essential gene compared to only 21% of alleviating modules (a

2.6-fold increase). These results are not correlated with module

size, as the median size of aggravating learned modules is less than

the median size of alleviating learned modules. They suggest that,

regardless of the technique for identifying complexes, those

containing essential genes tend to be composed of primarily

aggravating genetic interactions. Mechanistically, this might occur

through a variety of means, including proteins with separate but

functionally redundant roles in maintaining complex integrity, or

subunit substitution by paralogous proteins.

Discussion

Figure 5 presents detailed diagrams of example functional

relationships elucidated by our module mapping method.

Figure 5A shows the alleviating relationship between the

RTT109-VPS75 histone acetyltransferase complex [6,21,22] and

Elongator, a complex that is associated with RNA Polymerase II

and is involved in transcriptional elongation [23]. Since several

subunits both of Elongator and RTT109/VPS75 have been shown

to be involved in histone acetylation levels [22,24], these two

complexes may operate together to effectively clear histones from

actively transcribed regions. To identify further mechanisms of

their cooperation, future studies may search for specific residues of

histone H3 whose acetylation levels are modulated by both

complexes. This example highlights the utility of an integrated

200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

500 1000 1500 2000 2500 3000

0.2

0.4

0.6

0.8

1

 

 

HCL-PE
HCL
Bandyopadhyay et. al.

* Kelley et. al.

Co-expression

Number of pairs correctly predicted (coverage)

Number of pairs correctly predicted (coverage)

A
cc

u
ra

cy
 o

f p
re

d
ic

ti
o

n
A

cc
u

ra
cy

 o
f p

re
d

ic
ti

o
n

A
cc

u
ra

cy
 o

f p
re

d
ic

ti
o

n

Co-function

Co-complex

A

B

C

*

*

0 200 400 600 800 1000
0

0.1

0.2

0.3

 

*

Number of pairs correctly predicted (coverage)

Figure 3. Performance of complex identification. The proposed
approach is compared to several competing methods of discovering
protein complexes within genetic interaction networks: HCL imple-
ments hierarchical clustering with a distance measure computed from
the genetic interaction profiles only (S-scores), while HCL-PE extends
HCL by merging clusters only if there is a physical interaction between
them (PE-score.1). For the modules defined by each method, accuracy
versus coverage is plotted over a range of values for tuning the module
size (see Methods). Accuracy is estimated as the fraction of protein pairs
in a predicted module that are in a gold-standard set; coverage is
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doi:10.1371/journal.pcbi.1000065.g003
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approach, since although RTT109 and VPS75 are known to form

a complex their genetic interaction profiles are not congruent

(correlation of profiles of 20.1) and had been missed by

hierarchical clustering. Figure 5B highlights non-essential compo-

nents (LRP1 and RRP6) of the exosome, which contributes to the

quality-control system that retains and degrades aberrant mRNAs

in the nucleus [25]. These components have alleviating interac-

tions with a complex composed of Lsm proteins involved in

mRNA decay.

Figure 5C centers on BRE1/LGE1, subunits of the Rad6

Histone Ubiquitination Complex (RAD6-C; the Rad6 protein

itself was not covered by the original E-MAP screen) [26,27].

RAD6-C is functionally connected with two other complexes,

SWR-C and COMPASS. SWR-C functions to regulate gene

expression through the incorporation of transcriptionally active

histone variant H2AZ [28–30], while COMPASS is involved in

mediating transcriptional elongation and silencing at telomeres

through methylation of histone H3 [31]. Interactions between

RAD6-C and SWR are aggravating, suggesting synergy or

redundancy towards an essential cellular function. Interactions

between RAD6-C and COMPASS are alleviating, suggesting they

operate in a potentially serial fashion. Consistent with this analysis,

it has been shown that histone H2B ubiquitination by RAD6-C is

a prerequisite for histone H3 methylation by COMPASS [32,33].

Several trends emerge from the performance analysis in Figure 3.

First, genetic interaction data alone can yield substantial informa-

tion about molecular pathways. Functionally similar proteins often
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have similar profiles of genetic interaction, a feature we have

previously exploited to identify functional interactions between

complexes as well as to identify new members of complexes based

on a combination of weak physical and genetic data [14]. On the

other hand, the ability to detect complexes can be greatly improved

by adding information about protein physical interactions. Even the

straightforward HCL-PE method was able to greatly improve the

accuracy and coverage according to most metrics, while the greatest

performance was achieved by the improved probabilistic framework

we have presented in this study. This framework has led to the

inclusion of YKL023W as a potential new member of the SKI

complex and YGR071C in a complex with VID22/TBF1 (Figure 2),

for a total of 84 novel protein subunit assignments to complexes

(Dataset S1). Both of these examples have both physical and genetic

support and would have been missed by an approach based on

either type of interaction alone.

Future work may seek to incorporate yet additional types of

linkages such as protein-DNA interactions [34,35], kinase-

substrate phosphorylations [36], or other genetic perturbation

data such as eQTLs [37]. There are also opportunities to refine

the modeling framework further. Here, a gold-standard set of

complexes was used to explicitly learn the relationship between

physical interactions, genetic interactions, and module member-

ship. This supervised approach could be extended to also learn

which features best indicate the inter-module functional relation-

ships, perhaps through curation of a gold-standard set of

interacting complexes.

Methods

Problem Definition
We analyze the interaction data to infer a set of protein modules and

a set of inter-module links (Figure 1C). A protein module is defined as

a set of proteins that are connected through protein-protein

interactions and are likely to represent a protein complex with a

coherent cellular function. Inter-module links capture functional

relationships between modules and may be of two types,

aggravating or alleviating. The complete state of the system is

described by a set M of modules, each module defining a set of

proteins, and a set N of pairs of modules that are functionally

linked.

Scoring Module Co-Membership
For each pair of proteins (a,b) we compute a log ratio W of the

likelihood that a and b fall within the same module versus the

likelihood that they are unrelated (i.e., occur in the background).

The function uses two sources of information that are indicative of

protein complex co-membership: the strength of protein-protein

physical interaction (PE) and the strength of genetic interaction (S):

W a,bð Þ~LLRPE a,bð ÞzLLRS a,bð Þ ð1Þ

For a given data type (PE or S) the log likelihood ratio (LLR) is

defined as:

LLR a,bð Þ~log
Pwithin a,bð Þ

Pbackground a,bð Þ ð2Þ

The probability Pwithin is determined using logistic regression

training on 217 complexes curated from small-scale studies in

MIPS [19]. Pbackground is the probability of randomly observing the

observed value (PE or S) for the pair (a,b) in the background of all

gene pairs. As shown in Figure 1A and 1B, it is clear that higher

values of PE are predictive of MIPS complex membership. As both

positive and negative values of S are predictive, LLRS(a,b) is trained

on the absolute value of S. A third predictor based on the

correlation of genetic interaction profiles was also evaluated but

did not result in any gain in performance (Figure S1).

Scoring Inter-Module Links
A similar function B() is formulated to assess the likelihood that

two proteins fall between modules that are functionally linked. The

function inputs the same two sources of information on protein-

protein and genetic interactions (PE and S). Unfortunately, there is

no curated set of functionally related complexes that can be used

as positive training examples for regression. Instead, B() is derived

from the within-module LLRs, assuming that between-module

interactions have a similar pattern of genetic interactions but lack

physical interactions:

B a,bð Þ~{LLRPE a,bð ÞzLLRS a,bð Þ ð3Þ

This function captures both aggravating and alleviating genetic

interactions between two functionally-related modules. It also

ensures such modules are physically separate—if not, they would

be better considered as a single module.

Global Optimization of Module Memberships and Links
Given the above functions W() and B(), we compute the

likelihood of the complete system (i.e., given a particular choice M

of modules and N of inter-module links):

L~
X
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The first term accumulates the within-module scores among gene

pairs assigned to the same module. The second term accumulates

the inter-module scores for gene pairs spanning any two modules.

Gene pairs spanning unlinked modules do not contribute to L. The

final term is a tunable reward which scales with module size.

Larger values of a result in fewer, larger complexes. The final

module map shown in Figure 2 was generated using a = 1.6, based

on its good coverage and performance across all three metrics in

Figure 3.

Module Search
Assignment of gene to modules and of inter-module links is

performed using a simple variant of UPGMA hierarchical

clustering [38]: (a) Initially, each gene is assigned to a separate

module; (b) Each pair of modules (m1, m2) is evaluated for merging

into a single module m = m1<m2; the pair-wise merging that results

in the largest increase in L is chosen; (c) Repeat step b until no

module merge operation increases L.

At each iteration of step b, L is optimized over all possible ways

of assigning inter-module links (i.e., module pairs are linked

whenever the second term in Equation 4 is positive). Because each

inter-module link is scored independently, additions or deletions of

links from the system need only be evaluated for modules that are

under evaluation for merging.

Subsequent to the above procedure, each between-module link

is evaluated to assess its significance and whether it represents
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predominantly aggravating or alleviating genetic interactions. A

two-tailed p-value is computed by indexing the sum of S-scores for

gene pairs falling across the two modules against a distribution of

106 sums of equal numbers of S-scores drawn from random gene

pairs. To account for multiple testing, we use the distribution of

between-module p-values to compute a local false discovery rate

(FDR) [39]. All reported between-module links have an inferred

FDR of ,10% with the global map in Figure 2 constrained to

links with an FDR of ,1%. Module maps in Figure 2 and Figure 5

are visualized using the Cytoscape package [40,41].

To label modules as ‘‘aggravating’’ or ‘‘alleviating’’ (Figure 2),

the sum of S-scores for gene pairs assigned to the same module is

compared to a distribution of sums of equal numbers of randomly

drawn S-scores. Modules with a two-tailed p-value,0.05 are

labeled as either alleviating (right tail) or aggravating (left tail).

Validation Using Co-Expression, Co-Function, or Co-
Complex Annotations

Co-expressed gene pairs were defined using gene expression

datasets culled from the Stanford Microarray Database covering

,790 conditions [42]. The validation set was taken as the top 5%

(13,014) of pairs ranked by Pearson correlation coefficient. The co-

function set was based on yeast Gene Ontology annotations from

November 2005 which predates the publication of large scale

TAP-MS studies that were used to generate the PE-score [43].

This set was taken as the top 5% (13,052) most functionally similar

gene pairs covered in the E-MAP. Functional similarity was

determined by comparison to the background probability of

picking two genes with the same shared functional annotation

from the entire yeast genome (via a hypergeometric test). Similar

analysis using current Gene Ontology annotation was also

performed (Figure S2). The co-complex validation set was defined

as gene pairs from 846 MIPS complexes annotated using high-

throughput approaches (with interactions also appearing in small-

scale studies removed) for a total of 2,885 gold-standard pairs.

The size and number of final modules was varied by altering the

a parameter (see above). To assess performance at low coverage

we ran the method with no reward contribution (remove the third

term in Equation 4 by setting a= 2‘) and plotted the

performance of the algorithm at each merge step, which ultimately

connects with the performance of the method as a is increased. For

HCL and HCL-PE methods, the size and number of modules

were varied by changing the level at which the hierarchy was cut.

Supporting Information

Figure S1 Addition of congruence as a predictor of pathway

membership.

Found at: doi:10.1371/journal.pcbi.1000065.s001 (0.10 MB

DOC)

Figure S2 A current version of the Gene Ontology shows similar

performance.

Found at: doi:10.1371/journal.pcbi.1000065.s002 (0.09 MB

DOC)

Dataset S1 Results tables in Excel format.

Found at: doi:10.1371/journal.pcbi.1000065.s003 (0.06 MB XLS)
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