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Abstract

Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical
markers beyond ‘‘bad’’ and ‘‘good’’ cholesterol are needed to precisely predict individual lipid disorders. Our work
contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the
human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a
few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid
composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the
lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles
of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS),
revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based
predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present
state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual
variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential
molecular causes for individual dyslipidemia.
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Introduction

Lipids are almost insoluble in aqueous media such as blood

plasma and thus transported among the various tissues by water-

soluble complexes called lipoproteins (LP). Elucidating the kinetic

mechanisms involved in the formation, degradation and mutual

interconversion of plasma lipoproteins is of high medical relevance

as long-term perturbations of the lipoprotein distribution are

considered the primary risk factor for atherosclerosis and

cardiovascular diseases—the main cause of death in the western

states [1]. Each lipoprotein complex contains a discrete number of

apolipoproteins (e.g. apolipoprotein B-100) and lipid molecules

(e.g. triglycerides, cholesterol), the number of which may vary

between one and several hundreds or thousands, respectively.

Basically, an enormous lipoprotein heterogeneity results from all

possible stoichiometric combinations of lipid and apolipoprotein

molecules. Despite this fact, for almost half a century, lipoproteins

have usually been grouped into density classes named chylomicrons,

VLDL, IDL, LDL, and HDL (very low-, intermediate-, low-, and

high-density lipoproteins, respectively), separated by, for example,

ultracentrifugation from blood plasma [2]. Accordingly, mathemat-

ical models of the systemic lipoprotein metabolism hitherto have

considered lipoprotein density classes (compartments) to be dynamic

variables of the system. The phenomenological transition rates

between these compartments are usually determined by radioactive

or stable isotope tracer experiments (for reviews see [3–5]). Except

for the comprehensive compartment model proposed by

Knoblauch et al. [6], compartment models have focused on

specific parts of the lipoprotein metabolism based on kinetic

measurements with, for example, labeled apoA-I [7–10], apoA-

II [11], or apoB-100 [12–14]. Compartment models may

provide a useful phenomenological description of the lipoprotein

dynamics; however, they have some serious limitations. First,

they neglect the possible heterogeneity of lipoproteins. Actually,

a single density class comprises a huge number of lipoprotein

complexes differing in their amount of lipids and proteins—an

important fact that could be of relevance for the medical

interpretation of lipoprotein density profiles. Second, the

transition of a lipoprotein from one density class into another

is not a single process but is accomplished in a series of

successive elementary reactions in which, for example, triglyc-

erides are removed, cholesterols are taken up from tissues, and

apolipoproteins are exchanged. Therefore, phenomenological

inter-compartment transition rates can hardly be related to the

rate of the underlying molecular processes. To overcome these

limitations of compartment models, we propose here a novel

approach. It consists of the establishment of kinetic equations

governing the temporal changes of individual lipoprotein

complexes. Hence, in our modeling approach, the number of

dynamic variables is in principle given by the number of

different lipoprotein complexes that can be formed from a given
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number of apolipoproteins and lipids. From the calculated set of

individual lipoprotein complexes in the system we can compute the

distribution of lipoproteins over an arbitrary number of predefined

density classes (the lipoprotein profile). In particular, we can compute

such profiles over commonly defined density classes and compare

them with experimental profiles obtained from normolipidemic

subjects. Choosing a larger set of narrow density classes and

subdividing the calculated lipoprotein distribution in, as we call it,

high-resolution density sub-fractions (hrDS), we observe a remarkable

heterogeneity of the lipoprotein distribution within commonly

defined density classes. Finally, we calculate lipoprotein profiles

associated with a disorder in one of the underlying molecular

processes of the lipoprotein metabolism. In these simulations of

pathological situations we altered the rate constants of the LDL

receptor-mediated lipoprotein uptake, lipoprotein lipase, and

ABCA1-mediated cholesterol transport.

Results

The Model
We avoid usage of predefined density classes but characterize

lipoproteins regarding their protein and lipid composition. As

described below, the model takes into account essential lipoprotein

constituents and processes involved in the lipoprotein metabolism

in human blood plasma. However, for the sake of numerical

tractability we reduced the number of lipoprotein components to a

manageable set and simplified the kinetic processes.

Lipoprotein components. The lipoprotein complexes

considered in the model are composed of three different types of

apolipoproteins and lipids abbreviated as A, B, F, and C, T, P,

respectively. The protein components A and B are thought to

represent apoA-I (P02647, ENSG00000215756) as the primary

protein constituent of HDL and apoB-100 (P04114,

ENSG00000084674) as the characteristic apolipoprotein of

VLDL, IDL, and LDL, respectively. We ignore apoB-48 and

the related lipoprotein complexes (chylomicrons), which are

rapidly formed and degraded within several hours after food

intake. Each lipoprotein is either equipped with component A or

component B. Thus, we will use the terms A-particles and B-particles

in the following, respectively. All other apolipoproteins are lumped

together into the protein component F. The lipid components C,

T, and P represent total cholesterol (free cholesterol and

cholesteryl esters), triglycerides, and phospholipids, respectively.

The dynamics of phospholipids (P) is not explicitly modeled.

Instead, the number of phospholipid molecules in an individual

lipoprotein complex is calculated such that, together with the

apolipoproteins, full occupancy of the lipoprotein surface is

achieved (see Dataset S1 for details of calculation).

The component’s densities vary between 1.35 and 0.886 g/ml

for apolipoproteins and triglycerides, respectively. The possible

number of lipid molecules may go up to several thousands. This

results in a considerably diversity of lipoprotein complexes in the

system. With the maximal number of molecules for each

component given in Table 1, we would get 8.06108 lipoprotein

complexes in total. Thus, to keep the model tractable we refrained

from considering the actual number of molecules for total

cholesterol (C) and triglycerides (T). Instead, their content was

quantified in terms of lipid packages. The package size has to be

chosen carefully to avoid sparsely occupied density ranges. In the

calculations below, lipid packages of C and T comprise 2

molecules in A-particles and 20 molecules in B-particles,

respectively.

Kinetic processes. From the reactions reported to affect the

lipoprotein metabolism in human blood plasma we selected 20

elementary processes. As we lump together free cholesterol and

cholesteryl ester into one component (total cholesterol),

esterification of free cholesterol by the lecithin-cholesterol

acyltransferase (LCAT, EC 2.3.1.43, P04180,

ENSG00000213398) is not considered. A summary of the

kinetic processes included in the model and their physiological

meaning is given in Dataset S2. For a schematic representation see

Figure 1. We grouped the processes into six categories: (1) Birth

and death: the total amount of lipoprotein complexes is the result

of de novo synthesis by the liver and the receptor-mediated uptake

of whole particles from the blood by tissue cells (Figure 1A).

Separate kinetic parameters are used for the generation and

Table 1. Composition properties of lipoprotein complexes.

Lipoprotein species Component Particle Number

A B F C T

A particle Min 1 0 0 0 0

Max 4 0 15 300 50

Initial 1 0 0 10 0

B particle Min 0 1 0 0 0

Max 0 1 15 5000 10,000

Initial 0 1 10 2000 10,000

Min and Max represent the lower and upper limit of component’s number,
respectively. Initial displays the initial composition of newly synthesized
lipoprotein particles. Lipid (C,T) package sizes were defined as 2 and 20
molecules in A- and B-particles, respectively. Thus, in terms of packages, initial
A-particles contain 5 packages of cholesterol molecules, and initial B-particles
contain 100 cholesterol and 500 triglyceride packages.
doi:10.1371/journal.pcbi.1000079.t001

Author Summary

Lipids such as cholesterol and triglycerides, which are
synthesized in the body or taken up by food, are
indispensable for each cell of the human body. They are
transported in blood plasma among the various tissues by
so-called lipoproteins, which differ in size as well as in their
composition of lipids and proteins. Changes in the amount
of certain lipoprotein fractions are considered a major risk
factor for atherosclerosis and cardiovascular diseases
(CVD)—the main cause of death in the western states.
To identify patients at risk for CVD, major lipoprotein
classes (‘‘bad’’ LDL, ‘‘good’’ HDL) are routinely monitored in
clinical practice (which equals the lipoprotein profile). In
this paper, we present a mathematical model that allows
us to calculate lipoprotein profiles by computer and to
simulate how the numerous biochemical processes
involved in the metabolism of plasma lipoproteins
influence the lipoprotein profile. Our simulations success-
fully reproduce clinically measured lipoprotein profiles of
healthy subjects and patients with a defined lipid disorder
(dyslipidemia). Calculation of a lipoprotein profile that fits
best to the profile measured in individual patients opens
the possibility of diagnosing potential molecular causes for
dyslipidemia. The results of our model calculations also
suggest the existence of lipoprotein sub-fractions which
hitherto remained unrecognized in routinely performed
separation of lipoprotein fractions. If this finding could be
validated in forthcoming experimental investigations, it
might help to define better patient-specific risk predictors
of CVD.

Predicting Plasma Lipoprotein Profiles
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elimination of A- and B-particles. The initial composition of

newly synthesized particles was set to fixed values given in

Table 1. (2) Lipoprotein-tissue exchange: besides the synthesis

and uptake of whole lipoprotein complexes (see Category 1),

individual components are selectively altered by exchange

processes with various tissue cells. The uptake of peripheral

cholesterol by A-particles and the release of cholesteryl esters

from both particle species are taken into account (Figure 1B). (3)

Inter-lipoprotein exchange of neutral lipids among lipoproteins

is mediated by the cholesteryl ester transfer protein (CETP;

P11597, ENSG00000087237), which transfers preferentially

cholesteryl esters from A- to B-particles and triglycerides and

vice versa. To model this transfer, we introduce a non-lipid

bound form of this carrier protein (called CETP(0) in the model)

that can be loaded either with C (called CETP(C)) or T (called

CETP(T)) which shuttles between A- and B-particles (Figure 1C).

The transfer of triglycerides between B-particles is included as

well and defined as a separate process. (4) Exchange of

apolipoprotein A. The transfer of apolipoproteins that can be

exchanged among lipoprotein complexes is modeled by

decomposing it into (i) a release step from a lipoprotein

complex into a common plasma pool of free apolipoprotein

and (ii) an uptake process from this pool into a lipoprotein

complex. The transfer process for the protein component A is

restricted to A-particles and is thought to describe the re-

modeling of apoA-containing HDL (Figure 1D). (5) Exchange of

apolipoproteins F. The transfer of those apolipoproteins, mostly

apoE (P02649, ENSG00000130203) and apoC, lumped together

into the component F may take place between arbitrary

lipoprotein complexes (Figure 1E). (6) Enzymatic conversion.

One central enzymatic process effecting the re-modeling of

lipoproteins is the hydrolysis of lipoproteins’ triglycerides and

phospholipids. This process is catalyzed by the lipoprotein lipase

(LPL; EC 3.1.1.34, P06858, ENSG00000175445) or the hepatic

lipase (HL; EC 3.1.1.3, P11150, ENSG00000166035), which are

treated in the model as two separate processes (Figure 1F).

Figure 1. Schematic representation of the kinetic processes modeled. (A) Synthesis of A- and B-particles and degradation via HDL and LDL
receptors, respectively. (B) Influx of peripheral cholesterol (‘‘C’’) into A-particles via the ATP-binding cassette A1 (ABCA1) receptor and selective efflux
of cholesteryl ester (‘‘C’’) by the scavenger receptor B1 (SR-B1). (C) Elementary processes of the cholesteryl ester transfer protein (CETP) mediating the
exchange of triglycerides (‘‘T’’) and cholesteryl ester (‘‘C’’) between lipoprotein components. CETP(0), CETP(T), and CETP(C) represent non-lipid–
bound, T- and C-loaded forms of CETP, respectively. (D, E) Exchange of apolipoproteins (‘‘A,’’ ‘‘F’’) among lipoprotein complexes via plasma pools
(PoolA, PoolF). (F) Hydrolysis of triglycerides (‘‘T’’) from A- and B-particles by hepatic and/or lipoprotein lipase (HL, LPL).
doi:10.1371/journal.pcbi.1000079.g001

Predicting Plasma Lipoprotein Profiles
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Stochastic Versus Deterministic Model Simulations
We modeled and simulated the system of lipoproteins by two

different approaches, a stochastic and a deterministic one. For a

detailed description the reader is referred to the Materials and

Methods section. In brief, in the stochastic simulation the

calculation of stationary lipoprotein distributions was performed

by simulating the Master equation by means of the Gillespie

algorithm until a stationary state was reached. The deterministic

model (Equation 5) governing the lipoprotein concentrations

comprises as many kinetic equations as there are different

lipoprotein complexes. However, the concentrations of most

complexes are practically zero because the elementary processes

are highly specific. Moreover, the numerical solution of very large

systems of equations poses serious numerical problems.

For the stochastic simulation of the Master equation this

enormous complexity is not a problem as the stochastic trajectories

generated by the Gillespie algorithm are located in a very small

region within the space of all possible lipoprotein complexes.

Hence, Gillespie’s direct method does not suffer from the type of

combinatorial explosion as the deterministic approach. Further-

more, using the stochastic simulation algorithm instead of the

system of differential equations permits to deal with small package

sizes for the lipid components, i.e. the number of lipid molecules

per package. Small package sizes are needed to achieve a

sufficiently high coverage of physiologically relevant density

intervals containing a number of different lipoprotein complexes.

One problem, however, with the Gillespie algorithm is to

conclude from the stochastic trajectories at which time point of the

simulation the true stationary regime has been reached and a

representative sampling of the state space has been accomplished.

To test whether the criteria used to assess stationarity work well we

have compared the concentrations calculated for one and the same

set of kinetic parameters with both simulation variants, the Gillespie

algorithm and the deterministic equation system (Figure 2).

To keep the deterministic model numerically tractable we fixed

the package sizes for cholesterol (C) and triglyceride (T) to two

molecules (A-particles) and 100 and 250 molecules (B-particles),

respectively. We also restricted the maximal number of molecules

of the components A, B, F, C and T to (4, 0, 5, 100, 40) in an A-

particle and to (0, 1, 5, 5000, 10000) in a B-particle. With the

package sizes given above, the possible C and T content of an A-

particle complex decomposes into 50 and 20 packages; for B-

particles they are 50 and 40 packages, respectively.

As the number of all components, with exception of A and B,

can become zero, the total number of different lipoprotein

complexes in this example is given by 4?(5+1)?(50+1)?(40+1) for

A-particles plus 4?(5+1)?(50+1)?(40+1) for B-particles = 38,250,

spanning a density range between 0.92 and 1.40 g/ml. Arbitrary

values of the kinetic parameters (not shown) were chosen and the

stationary concentration of lipoprotein complexes was computed

using either Gillespie’s algorithm or iterating the fix-point equation

(Equation 6).

In order to compare the two solutions we subdivided the total

density range covered by the 38,250 lipoprotein complexes into 30

intervals and calculated the occupancy of these density intervals by

cumulating the calculated concentrations of the corresponding

lipoprotein complexes. As shown in Figure 2, with increasing

number of time steps used in the Gillespie simulation the stochastic

solution of the Master equation converges toward the numerical

solution of the deterministic model.

The striking advantage of performing stochastic simulations of

the Master equation by means of Gillespie’s algorithm is that

increasing the number of lipoprotein components (e.g. by

including cholesterol ester) or using smaller package sizes results

only in a moderate increase of computing times because this

algorithm per se only deals with such lipoprotein complexes that

occur with significant concentrations. In contrast, the deterministic

model has to deal with all possible complexes despite the fact that

Figure 2. Stochastic versus deterministic simulation. Density distributions of the concentration of the sum of lipoprotein components (mg/dl)
obtained by using the Gillespie algorithm with different numbers of simulation steps (events) and by the iterative solution of the deterministic
equation system. The density space (0.93–1.35 g/ml) was subdivided into 30 equally sized intervals.
doi:10.1371/journal.pcbi.1000079.g002
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most of them never reach discernible concentrations. The

following results were obtained with the stochastic simulation

algorithm using the much smaller package size of 20 molecules for

C and T in B-particles.

Calculation of Lipoprotein Density Profiles in Healthy
Subjects

In the experiment, main density classes of lipoproteins (VLDL,

IDL, LDL, HDL) and sub-fractions of LDL and HDL were

isolated from blood plasma. The LDL class was separated into six

density sub-fractions, which are grouped into the commonly

named large buoyant (lb; LDL1/2), intermediate dense (id;

LDL3/4), and small-dense LDL (sd; LDL5/6). The HDL class

was subdivided into sub-fractions of HDL2b, HDL2a, and HDL3.

In the simulation, stationary lipoprotein distributions were

computed by using Gillespie’s stochastic simulation algorithm as

outlined in the Materials and Methods section. Simulation starts in

a system state that is lipoprotein-free. Executing approximately

five million reactions (one per time step), a steady state was

reached, i.e. the average number of lipoproteins and their

composition in the systems remained constant. An additional 10

million executions sampled the stationary distribution of individual

lipoprotein complexes. We then calculated lipoprotein density

profiles as they are typically determined in clinical investigations

by assigning each of the lipoprotein complex according to its

concentration to one of the experimentally defined density classes.

The set of model parameters that entail best agreement between

the computed lipoprotein profile and the experimental data (see

Table 2) was determined as follows. To keep the number of

lipoprotein complexes in the simulation tractable, we scaled the

system with an appropriate volume factor yielding a reaction

volume of one tenth femto-liter. Parameter values for the synthesis

of A- and B-particles were taken from [9] and [15], respectively,

and fixed during parameter optimization. Numerical values of all

other model parameters were obtained by minimizing the distance

between simulated and clinically measured lipoprotein profiles (see

Materials and Methods). They are listed in Table 3.

The estimated parameter values are in most cases in a

reasonable agreement with experimentally determined values

taking into account the difficulties to extract rate constants of

elementary processes from kinetic measurements settled on

compartment analysis. The underlying reaction mechanism can

either be monomolecular or bimolecular which is important to

know while comparing the stochastic rate constants with rate

constants obtained from tracer kinetic studies. A detailed

comparison of calculated and measured rate constants is given

in Dataset S3.

As shown in Figure 3, the calculated lipoprotein density profiles

for each of the lipoprotein components by using the parameter

values given in Table 3 are, to a large part, in a remarkable

agreement with the clinical data. However, with respect to the

distribution of apolipoprotein B (Figure 3B) and of triglycerides

(Figure 3E) some discrepancies remain.

The total amount of 41.860.45 mg/dl of component B

predicted by the model is lower than the mean value of

56.6 mg/dl determined experimentally for apoB-100, but within

the expected interval (621.4 mg/dl). Compared with experimen-

tal values the calculated concentration of apoB-100 is higher in the

VLDL sub-fraction but lower in IDL and all LDL sub-fractions.

This might be accounted by the simplifications made in our model

for the kinetics of triglyceride removal from B-particles because

regulatory influences of apolipoproteins C and E are ignored.

Likewise, the simplified kinetics of triglyceride removal from B-

particles might also explain the too low triglyceride content

predicted for the IDL sub-fraction since the high rate of

triglyceride hydrolysis obtained by the parameter optimization

procedure yields a rapid delipidation of newly synthesized B-

particles. The simplification to assume a definite initial composi-

Table 2. Experimental lipoprotein composition data.

Lp fraction Density (g/ml) Concentration, mg/dl (6SD) (n = 11)

Min Max Total A B F C T P

Plasma 0.950 1.400 755.8 (102.6) 122.3 (21.7) 68.3 (17.3) 20.87 (3.8) 164.9 (30.1) 109.9 (44.6) 181.9 (23.0)

VLDL 0.950 1.006 120.9 (70.9) 0.0 5.1 (2.1) 7.12 (3.8) 17.1 (9.3) 69.5 (42.8) 22.0 (11.9)

IDL 1.006 1.019 33.4 (10.4) 0.0 3.7 (1.7) 0.54 (0.2) 8.4 (5.1) 12.1 (2.6) 8.6 (3.4)

LDL 1.019 1.063 217.34 (56.1) 0.0 47.5 (12.7) 0.45 (0.4) 89.6 (24.4) 19.7 (5.6) 60.1 (14.6)

LDL1 1.019 1.031 41.8 (12.5) 0.0 7.8 (2.2) 0.05 (0.1) 17.0 (5.9) 5.1 (1.5) 11.8 (3.5)

LDL2 1.031 1.034 30.4 (8.7) 0.0 6.2 (1.7) 0.0 13.0 (4.3) 2.5 (0.7) 8.6 (2.6)

LDL3 1.034 1.037 33.4 (10.0) 0.0 7.3 (2.2) 0.0 14.2 (4.3) 2.6 (1.1) 9.4 (2.7)

LDL4 1.037 1.040 39.7 (17.3) 0.0 9.2 (4.1) 0.0 17.0 (7.5) 2.8 (1.5) 10.8 (4.5)

LDL5 1.040 1.044 36.9 (16.8) 0.0 8.9 (4.1) 0.0 15.5 (7.2) 2.5 (1.2) 10.0 (4.5)

LDL6 1.044 1.063 33.4 (11.6) 0.0 8.4 (3.1) 0.34 (0.2) 12.9 (4.6) 3.0 (1.1) 8.8 (3.0)

HDL 1.063 1.400 216.1 (50.5) 89.4 (19.9) 0.0 5.12 (2.0) 41.8 (10.9) 10.5 (2.0 ) 64.8 (18.3)

HDL2 1.063 1.125 96.13 (33.1) 34.9 (12.0) 0.0 0.38 (0.5) 21.61 (8.0) 5.63 (1.0) 33.80 (12.9)

HDL2b 1.063 1.100 31.1 (16.8) 9.4 (5.5) 0.0 0.38 (0.4) 8.1 (4.3) 2.0 (0.4) 11.3 (6.5)

HDL2a 1.100 1.125 65.1 (18.6) 25.5 (7.3) 0.0 0.0 13.5 (4.2) 3.6 (0.8) 22.5 (7.2)

HDL3 1.125 1.210 84.2 (17.3) 42.8 (9.1) 0.0 0.48 (0.4) 14.4 (3.0) 3.6 (1.1) 23.2 (5.4)

preb-HDLa 1.210 1.400 40.8 (20.0) 30.6 (8.0) 0.0 2.57 (1.5) 0.0 0.0 29.7 (1.3)

The data are averaged values from 11 randomly selected normolipidemic subjects.
aThe density fraction of so-called preb-HDL (1.210–1.400 g/ml) was not directly measured in the experiment. We therefore assumed and calculated this fraction as the
difference between total plasma and total HDL values for apoA-I, cholesterol, and phospholipids.

doi:10.1371/journal.pcbi.1000079.t002
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tion of newly synthesized lipoproteins in the model might be

another reason for the remaining discrepancy in the distribution of

apoB-100.

The calculated distribution of model component F was

compared with the clinically measured concentration values of

the C apolipoproteins I–III and apoE. However, experimental

data for component F are questionable, as only about one-half of

the total plasma concentration of apoC and apoE (20.8763.8 mg/

dl) is associated with lipoprotein complexes. The other half reflects

a free apolipoprotein pool in plasma, whose value is about 10-fold

higher than 1.2 mg/dl reported by [16]. This might result from

experimental difficulties, because it is well documented that apoE

may dissociate from the surface of apoB-containing particles

during prolonged ultracentrifugation [17,18]. This may account

for the fact that our model predicts higher levels of component F in

almost all lipoprotein density classes as compared to the available

experimental data (Figure 3C). In fact, the calculated distribution

of F agrees much better with the experimental total plasma

concentration (19.0 mg/dl) as well as with the concentration

observed for the free plasma pool (1.2 mg/dl) by Batal et al.

Initial composition analysis. The initial composition of A-

and B-particles was kept constant during simulation (Table 1).

However, depending on a variety of factors, including nutrition or

cellular and regulatory processes, the liver generates a certain

lipoprotein spectrum of different compositions. To analyze how

the lipoprotein distribution in the blood plasma changes in

response to different initial compositions, the molecule numbers of

the lipoprotein components F, C, and T of B-particles were

randomized from a normal distribution by taking the reference

composition as the mean value. A total of 100 different initial

compositions were analyzed in independent simulation runs. The

compositions obtained by randomization provide ranges for F, C,

and T between 0–18, 760–2,934, and 6,654–14,784 molecules,

respectively. The variation of each of the random compositions

relative to the reference composition was quantified using the

euclidean distance.

Figure 4 illustrates the overall tendency, the more different the

composition from the reference value (increasing euclidean

distance) the larger the distance between the calculated and

experimental lipoprotein distributions. However, a number of

compositions considerably deviating from the default one fit

comparably well or even improve the agreement with the

experimental data (see LP composition #81 and #63, respective-

ly). In our calculations, this predominantly pertains to composi-

tions that are mainly increased in the amount of component F and

C. The results suggest that certain variability in the initial

composition can be partially compensated by the kinetic processes

in the LP metabolism. Or, the other way around, specific inter-

individual variations in the liver status are not necessarily reflected

in altered distributions of the main lipoprotein classes in the blood.

hrDS
Characterizing the distribution of lipoproteins in the blood

plasma by quantifying their abundance in a limited number of

main density classes such as chylomicrons, VLDL, IDL, LDL, and

HDL (the classical density profile) appears feasible as long as the

distribution of lipoprotein components within these classes is

sufficiently smooth. That means, any alteration in the kinetic

properties of the underlying elementary processes ultimately gives

rise to changes in the relative occupation of these density classes.

On the other hand, alterations in the kinetic processes may not

necessarily lead to visible changes in the average value of a density

class, while the concentration and composition of individual

lipoproteins within the class may vary significantly.

To reveal the heterogeneity of the lipoprotein distribution

within the main density classes experimentally used, the width of

each was decomposed into five equally sized sub-intervals.

Subsequently, we quantified the calculated amount of lipoprotein

components in these narrow density classes, for which we

introduce the name hrDS. Since the main density classes exhibit

differing density interval sizes, we normalized the distribution

within each density class to its interval size.

As an example, Figure 5 shows the distribution of cholesterol

across the hrDS, which allows to quantify the contribution of the

hrDS to the average concentration of the main classes. Most

significant intra-class variation appear in the ascending (LDL1,

LDL2 and HDL2b) and descending (LDL5, LDL6 and HDL3)

part of the overall distribution. For example, in LDL6 (density

d = 1.044–1.063 g/ml), the calculated mean concentration of

cholesterol amounts to 15.160.1 mg/dl (normalized value of

0.795 with LDL6 interval size of 19). The five hrDS named

LDL6(I), (II), (III), (IV), and (V) relatively contribute with 53.1%,

25.7%, 11.7%, 5.5%, and 4.0% to the average cholesterol

concentrations, respectively. According to this finding, more than

one-half of the cholesterol content in LDL6 is contributed by

lipoprotein complexes with densities in the narrow range of 1.044–

Table 3. Model parameter values.

Rate Constants (cm) Unit
Model
Value Exp Value Reference

A-particle ccreateA mmol/l?day21 8.0e-3 8.4e-3 to
9.2e-3

[9,15,53]

cdestroyA day21 0.21 0.20 [9,15,53,54]

cinflux mmol/l?day21 1.1e-3 2.5e-3 [55]

ceffluxA day21 0.01 0.312 [54]

cexchangeCA day21 397.1 110.1 [56]a

cexchangeTA day21 0.65 -

ctransferA day21 2.0e-4 5.3e-5 [53]g

cuptakeA day21 0.02 0.14 [53]h

ctransferFA day21 9.4e-4 7.6e-3 [16]c

cuptakeFA day21 1.9e-3 3.9e-3 [16]d

chydrolyzeA day21 5.6 27.72 [57]

B-particle ccreateB mmol/l?day21 1.0e-3 1.0e-3, 1.4e-3 [15,58]

cdestroyB day21 1.31 0.5 - 5.5 [15]

0.4 - 6.9 [58]

ceffluxB day21 0.5 -

cexchangeCB day21 1.7 -

cexchangeTB1 day21 887.75 1.2 [56]b

cexchangeTB2 day21 55.7 -

ctransferFB day21 2.0e-3 1.6e-3 [16]e

cuptakeFB day21 3.5e-3 0.061 [16]f

chydrolyzeB day21 8.3 7.52 [54]

Comparison of estimated model parameter values with measured rate
constants found in the literature.
a–hIndexes; see explanations in Dataset S3. For a and b, it might be more useful

to compare the flux values (total transfer activities, mg/dl per day), because
the literature substrate concentrations vary from that in our simulation. HDL-
CE is approximately one third and VLDL-TG is approximately double of that
in our simulation. In both cases, the CETP mass is much less even.

a72.13 vs. 110.52 mg/dl ? day21.
b297.45 vs. 15.87 mg/dl ? day21.
doi:10.1371/journal.pcbi.1000079.t003

Predicting Plasma Lipoprotein Profiles

PLoS Computational Biology | www.ploscompbiol.org 6 May 2008 | Volume 4 | Issue 5 | e1000079



1.0478 g/ml. Within the other classes the hrDS are nearly equally

distributed.

The specific intra-class variations of the main density classes

show similar patterns for all the other lipoprotein components

(Figure 6). However, some intra-class distributions vary for

different components. For example, within VLDL triglycerides

and phospholipids show monotonically decreasing instead of a

nearly equal distribution (Figure 6E, F).

Figure 3. Simulated versus clinically measured distribution of lipoprotein components over main density classes including sub-
fractions of LDL1-6, HDL2b, HDL2a and HDL3. x-axis: number of lipoprotein density fraction; y-axis: simulated (circles) versus clinically
measured (rectangles) concentration values in mg/dl of Apolipoprotein A–I (A), Apolipoprotein B-100 (B), Sum of further apolipoproteins (C), Total
cholesterol (D), Triglycerides (E, logarithm) and Phospholipids (F). The error bars show the standard deviation of the experimental values.
doi:10.1371/journal.pcbi.1000079.g003
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One may hypothesize that the amount and distribution of

lipoprotein sub-populations differ between individual healthy subjects

or even in pathological conditions due to inter-individual variations.

To check whether the knowledge of the intra-class distribution

provides additional and valuable information, we moderately varied

each of the kinetic parameters by 610% of the reference value.

The results indicate that, for example, marginal alterations in

the delipidation process of B-particles (HydrolyzeB) shifts the high

resolution distribution within a major density class either to lower

or higher densities (Figure 7), while the concentration value of the

major classes (e.g., LDL) remains nearly unchanged. Similar

results were obtained for the selective cholesteryl ester uptake from

B-particles (EffluxB) and the amount of CETP available (data not

shown).

Simulated Pathological States
To check the predictive capacity of our model we simulated the

impact of disorders in the kinetic properties of the LDL-receptor

(LDLR; P01130, ENSG00000130164), the lipoprotein lipase

(LPL) and ATP-binding cassette A1 (ABCA1; O95477,

ENSG00000165029) on the stationary density distribution of

lipoproteins (Figures 8–10).

Familial Hypercholesterolemia (FH) is an autosomal

hereditary disease caused by a dysfunction of the LDLR. We

simulated a reduced LDLR activity by decreasing the parameter

for the process DestroyB to 75% of its normal value. The calculated

lipoprotein distribution exhibits an increased concentration of

LDL cholesterol at nearly unchanged cholesterol levels of VLDL

and IDL (Figure 8D). It is suggesting that this arises from lowering

the receptor-mediated uptake while maintaining a sufficient apoB-

synthesis leading likewise to elevated LDL-apoB levels (Figure 8B).

Within LDL, the sub-fractions LDL1-6 behave differently. As

compared to normolipidemic cholesterol values, we observe

moderately increased levels of idLDL-C (25.2 vs. 31.8 mg/dl,

+26%) and to a higher extent of sdLDL-C (28.7 vs. 49.2 mg/dl,

+71%) whereas lbLDL-C (26.8 vs. 24.4 mg/dl) remains nearly

unchanged. These results coincides with findings of low LDL-

cholesterol to LDL-apoB ratios in carriers of the FH-Keuruu

mutation (Asp235RGlu) suggesting that LDL particles are small

and dense [19]. The LDL subfraction pattern is also similar to

findings by März et al. in a patient with FDB (Familial defective

apolipoproteinB-100) who has a mutation in codon 3500 of the

apoB gene substituting glutamine for arginine [20].

Regarding the distribution of A-particles (equivalent to HDL),

the model predicts a moderate decrease in HDL cholesterol as

compared to the normolipidemic profile (Figure 8D). This is in

good agreement with the reduced overall HDL cholesterol level

observed in heterozygous FH patients [7].

Figure 4. Variation in the initial composition of B-particles. The initial composition of B-particles, i.e. the molecule numbers of component F,
C and T, was randomized. The filled black bars (x = 0) mark the default B-particle initial composition (initF = 10, initC = 2000, initT = 10000). A total of
100 different compositions (brown bars) were analyzed by independent simulation runs. The graphs are sorted by the euclidean distance (topmost
sub-graph, black dashed line). The change in the error measure (distance between calculated and experimental lipoprotein distributions) relative to
the value obtained for the default composition is shown in the topmost sub-graph (black continous line).
doi:10.1371/journal.pcbi.1000079.g004
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However, an impaired interaction between B-particles, such as

LDL, and the receptor may be due to several reasons. Either there

is indeed a defect in the receptor itself (FH) due to mutations that

cause a reduced expression or binding activity, or the ligand

(potentially apolipoprotein B-100) carries a mutation (FDB). Since

the uptake process is determined by solely one parameter in the

present model, we cannot yet discriminate between different

molecular determinants.

Hypertriglyceridemia is characterized by elevated levels of

plasma triglycerides caused, among others, by deficiencies of the

lipoprotein lipase (LPL), the key enzyme in the catabolism of

triglyceride-rich lipoproteins by removing (hydrolyzing) triglycer-

ides. We simulated the consequences of an impaired LPL activity

by lowering the parameter value for the process HydrolyzeB to one-

half of the original value.

The calculated lipoprotein distributions display markedly

elevated levels of triglycerides as well as cholesterol, predominantly

of VLDL, IDL and early LDL (Figure 9D and 9E). The total

plasma concentration of triglycerides (159.5 vs. 95.2 mg/dl) is

about 67.4% increased as compared to the simulated normolipi-

demic profile. According to our calculations, the total concentra-

tion of LDL cholesterol is only marginally affected (152 vs.

145 mg/dl), whereas substantial alterations in the cholesterol level

of individual LDL subfractions are predicted. lbLDL (LDL1+2) is

considerably increased. As compared to normolipidemic LDL

cholesterol values, we obtain a strong reduction in idLDL

(LDL3+4, 25.2 mg/dl vs. 1.8 mg/dl, 292%) and to a lower

degree of sdLDL (LDL5+6, 28.7 mg/dl vs. 5.1 mg/dl, 282%).

Elevated levels of sdLDL implicated with mild to moderate

hypertriglyceridemia cannot be found in the model simulations

[21]. Likewise, reduced HDL cholesterol are not observed as

reported by Babirak et al. for the phenotype of heterozygous LPL

deficiency [22]. In contrast, the calculated distribution shows

increased HDL cholesterol levels of HDL2b while in HDL2a and

HDL3 no discernible changes occur.

The calculated distributions might be mechanistically explained

as follows. Due to the decreased hydrolysis parameter, during

simulation, the HydrolyzeB process is executed about 1.2-fold less

leading to the accumulation of B-particles enriched in triglycer-

ides. Elevated triglyceride levels, in turn, promote the transfer of

triglycerides to A-particles mediated by the CETP (1.4-fold higher

frequency of the processes ExchangeTB and ExchangeTB).

Likewise, the more CETP is loaded with triglycerides the less

lipid-unloaded CETP is capable to transport cholesterol back from

A-particles to B-particles. Subsequently, lipoprotein complexes in

the density range of HDL become enriched in cholesterol and

triglycerides. A 1.4-fold higher frequency is also observed for the

HydrolyzeA process implicating a higher HL activity, the enzyme

that catalyzes the hydrolysis of triglycerides from small B-particles

and A-particles. That may explain the low triglyceride content in

all LDL sub-fractions.

Hypoalphalipoproteinemia is a rare human metabolic

disorder characterized by a severe decrease in HDL cholesterol

and apoA-I levels. For example, Tangier Disease (TD) is assumed

Figure 5. High-resolution distribution of total cholesterol within main density classes including sub-fractions of LDL1-6, HDL2b,
HDL2a, and HDL3. Each density class was further decomposed into 5 equally sized sub-fractions, called hrDS (grey bars). x-axis: density in g/ml; y-
axis: concentration of total cholesterol in mg/dl normalized to the density interval size.
doi:10.1371/journal.pcbi.1000079.g005
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to be caused by defects in both alleles of the ABCA1 (ATP-binding

cassette A1) transporter gene [23], the key mediator of the reverse

cholesterol transport by transferring cholesterol and phospholipids

from peripheral cells to acceptor lipoproteins in the plasma. A

heterozygous ABCA1 defect correspond to the disorder known as

familial hypoalphalipoproteinemia (FHA).

We simulated an impaired activity of ABCA1 by reducing the rate

constant for the cholesterol uptake into A-particles (process Influx) to

Figure 6. High-resolution distribution of lipoprotein components within main density classes including sub-fractions of LDL1-6,
HDL2b, HDL2a, and HDL3. Each density class was further decomposed into five equally sized sub-fractions, called hrDS (grey bars). x-axis: number
of lipoprotein density subfraction; y-axis: concentration of apolipoprotein A–I (A), apolipoprotein B-100 (B), sum of further apolipoproteins (C), total
cholesterol (D), triglycerides (E) and phospholipids (F) in mg/dl normalized to the density interval size.
doi:10.1371/journal.pcbi.1000079.g006
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50% of its normal value. Compared with simulated normolipidemic

values, the model predicts low plasma cholesterol concentrations

(144.5 mg/dl vs. 95.47 mg/dl, 234%). As reported for FHA, a

remarkable reduction of cholesterol levels appears in all HDL

fractions (Figure 10D). HDL cholesterol accounts for only ,10 mg/

dl at nearly normal total plasma triglyceride levels (95.2 vs. 96.8 mg/

dl). As a consequence, considerable levels of apoA-I occur in the

density range d.1.21 g/ml which argues for the accumulation of

pre-b–migrating lipoproteins (Figure 10A). Our model simulation

predicts further a marginal reduction in apoA-I within the HDL3

fraction, while in HDL2b and HDL2a apoA-I is selectively depleted.

As comparable results from clinical studies, a predominance of HDL

particles being poor in cholesterol but enriched in apoA-I in patients

with heterozygous TD [24], [25].

The distributions of apoB, apoF, cholesterol and triglycerides of

B-particles display a shift to lipoproteins in the density range of

Figure 7. Variation in the distribution of hrDS cholesterol at moderately altered parameter values. Alteration of the normal hrDS
cholesterol distribution (grey bars) by (A) increasing and (B) decreasing the parameter value of the HydrolyzeB process by 10% of its normal value
(black bars). x-axis: metrical density intervals in g/ml; y-axis: concentration of total cholesterol in mg/dl normalized to the density interval size.
doi:10.1371/journal.pcbi.1000079.g007
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LDL6 (Figure 10B–10E). Analyzing the stochastic trajectories of our

model simulations shows that the Influx process occurred approxi-

mately 2-fold less frequent. The reduced uptake of cholesterol from

the periphery to A-particles leads to a diminished cholesterol transfer

to B-particles and to less CETP molecules loaded with cholesterol.

This forces the rate for the back transfer of triglycerides from

triglyceride-rich B-particles to A-particles or cholesterol-rich B-

particles to increase. Accordingly, the model calculations show

reduced concentrations of VLDL triglycerides and increased

triglyceride levels in, e.g. HDL3 and LDL6, respectively.

Figure 8. Calculated pathological distribution compared with calculated normal data for LDL receptor deficiency. Distributions of the
lipoprotein components in the main density classes including sub-fractions of LDL1-6, HDL2b, HDL2a and HDL3. x-axis: number of lipoprotein density
fractions; y-axis: calculated pathological (squares) and calculated normal (circles) concentration values of apolipoprotein A–I (A), apolipoprotein B-100
(B), sum of further apolipoproteins (C), total cholesterol (D), triglycerides ([E], logarithm) and phospholipids (F) in mg/dl.
doi:10.1371/journal.pcbi.1000079.g008
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Discussion

We have developed a novel computational approach toward the

calculation of lipoprotein distributions in blood plasma. The basic

idea of our concept is to model the dynamics of individual

lipoproteins instead of predefined density classes. This enables us

to include in an adequate manner the elementary reactions

involved in lipoprotein metabolism. A further benefit of our

approach is to provide a more detailed information on the lipid

and protein composition of lipoproteins than possible by using

conventional compartment models.

Figure 9. Calculated pathological distribution compared with calculated normal data for LPL deficiency. Distributions of the
lipoprotein components in the main density classes including sub-fractions of LDL1-6, HDL2b, HDL2a, and HDL3. x-axis: number of lipoprotein density
fractions; y-axis: calculated pathological (squares) and calculated normal (circles) concentration values of apolipoprotein A-I (A), apolipoprotein B-100
(B), sum of further apolipoproteins (C), total cholesterol (D), triglycerides ([E], logarithm), and phospholipids (F, logarithm) in mg/dl.
doi:10.1371/journal.pcbi.1000079.g009

Predicting Plasma Lipoprotein Profiles

PLoS Computational Biology | www.ploscompbiol.org 13 May 2008 | Volume 4 | Issue 5 | e1000079



To introduce the method and to deal with a manageable set of

unknown kinetic parameters, we present in this work a simplified

core model which does not include all biochemical processes

involved in lipoprotein metabolism and which uses simplified rate

equations of the mass-action type. Therefore, it is obvious that

some inconsistencies between calculated and measured distribu-

tions of lipoprotein should occur. Nevertheless, even based on this

simplified core model we were able to simulate with remarkable

accuracy experimentally determined density profiles of lipid and

protein components in normal and pathological situations.

Figure 10. Calculated pathological distribution compared with calculated normal data for ABCA1 deficiency. Distributions of the
lipoprotein components in the main density classes, including sub-fractions of LDL1-6, HDL2b, HDL2a and HDL3. x-axis: number of lipoprotein density
fractions; y-axis: calculated pathological (squares) and calculated normal (circles) concentration values of of apolipoprotein A–I (A), apolipoprotein B-
100 (B), sum of further apolipoproteins (C), total cholesterol (D), triglycerides ([E], logarithm), and phospholipids (F) in mg/dl.
doi:10.1371/journal.pcbi.1000079.g010
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Calculated Versus Clinically Measured Lipoprotein
Profiles in Healthy Subjects

As experimental information on the composition of lipoproteins

so far is only available for the commonly defined density classes

(lipoprotein compartments) the only way to estimate unknown

parameters of the model and to compare the computations with

the experiment was to condense the calculated profiles of

individual lipoprotein complexes into density class profiles. This

way, we determined numerical values of model parameters which,

to a large degree, are in good agreement with experimental data

taken from a larger set of independent kinetic experiments.

Based on this parametrization, we computed lipoprotein density

profiles of healthy subjects. The remaining deviations pertain

mostly to the distribution of apoB-100, whose calculated

concentration is higher in VLDL and lower in the IDL and

LDL classes than measured in the blood of normolipidemic

patients. Further refinement of the model by including, for

example, the regulation of LPL activity by apolipoprotein C-II

[26] or the hepatic generation of a broader spectrum of

lipoproteins even belonging to the IDL and LDL type [14] will

certainly help to overcome this discrepancy. However, discrepan-

cies between model and experiment may at least partially also

result from experimental uncertainties.

Simulated Pathological States
The model was applied to calculate the distribution of

lipoproteins of subjects with a defined molecular defect in one of

the underlying elementary kinetic processes. Hypercholesterol-

emia, hypertriglyceridemia and hypoalphalipoproteinemia were

exemplarily simulated by modifying the corresponding model

parameters.

In all cases, the simulated pathological states could nicely

reproduce fundamental clinical characteristics of the selected

dyslipidemia. It has to be noted, that, in the present state of the

model, we cannot assign the altered lipid phenotype to different

molecular determinants of a process. For example, hypercholes-

terolemia may caused by a reduced binding constant of apoB or a

diminished expression of the apoB-binding LDL receptor.

Refining the kinetic description of the processes will be therefore

one of the tasks in future work and might allow to address defects

in different genes to a process.

Lipid Values in High Resolution
Various studies have shown that individual lipoprotein sub-

populations exhibit differing metabolic behavior. First evidence for

the existence of discrete LDL sub-populations has been reported

by Krauss and Burke [27]. More recently, also HDL has been

found to be especially complex with at least 5 and perhaps as many

as 12 or more subclasses [28] showing differing metabolic behavior

[29] and redistribution in pathological conditions [25].

Nevertheless, experimental separation and analysis is an

elaborate, time-consuming and expensive venture and not yet

worthwhile for routine measurements. Experimental methods

established for lipid fractionation include gradient density

ultracentrifugation [30–32], non-denaturing polyacrylamide gra-

dient gel electrophoresis (GGE) [33], nuclear magnetic resonance

(NMR) spectroscopy [34,35] and high performance liquid

chromatography (HPLC) [36,37], each with particular assets and

drawbacks [38]. GGE and NMR spectroscopy in particular are

capable of measuring both lipoprotein particle numbers (LDL-P)

and size. In fact, the cholesterol content per particle exhibits large

inter-individual variation, and distributions of LDL sub-classes

have been shown to vary tremendously among individuals

independent of total LDL cholesterol [39], which emphasizes the

importance of the concept presented here as the work permits to

calculate the distribution of lipoproteins across any narrow density

interval of choice and on the basis of the entire spectrum of

lipoprotein particles in plasma differing in size, composition and

physiological function.

The analysis of high-resolution lipoprotein profiles, therefore,

preferentially aim at understanding the reasons for inter-individual

variability in subjects of normal or intermediate risk state, but

possibly even in distinct pathological conditions. To this end,

experimental validation of the predicted high resolution distribu-

tion will be essential in future work.

Model Extensions and Refinements
Based on our findings, we plan to study in a systematic manner

how a re-definition of density classes and the combination of

lipoprotein component levels determined within these classes may

help to define novel diagnostic parameters which sensitively and

specifically indicate alterations of the lipoprotein metabolism on

the molecular level. However, such model-based optimization of

systemic lipid diagnostics requires extensive improvements of the

core model presented in this paper. The most relevant extensions

and refinements necessary to increase the physiological reliability

of the model are as follows: (i) inclusion of apoA-II (P02652,

ENSG00000158874) to allow for differentiation between LpA-I

and LpA-I:A-II particles to better satisfy the differing metabolic

behavior of several HDL sub-populations in normal and

pathological conditions [25,40]; (ii) inclusion of apoB-48 in

addition to apoB-100 to model the metabolism of intestinal

synthesized chylomicrons even with respect to postprandial

hyperlipidemia [41,42]; (iii) distinguishing between free cholesterol

and cholesteryl ester and inclusion of the esterification process of

free cholesterol by LCAT [43]; (iv) disaggregation of the model

component variable F into apolipoproteins E and C and explicit

consideration of the regulatory function of these isoforms (e.g.,

activating effect of apoC-I [P02654, ENSG00000130208] on

LCAT [44], activation of LPL by apoC-II [P02655,

ENSG00000213044] [26], influence on the LDL receptor binding

by apoE [45], and the apoE-dependent alternative path for

peripheral cholesterol [46]); (v) explicit incorporation of the

phospholipid exchange mediated by the phospholipid transfer protein

(PLTP; P55058, ENSG00000100979) playing a key role in the

remodeling of HDL [47,48]; and (vi) inclusion of other transporters

and receptors involved either in the holoparticle uptake or in the

uptake of individual lipoprotein components, e.g., SR-B1 (Q8WTV0,

ENSG00000073060), ABCG1 (P45844, ENSG00000160179), and

ABCG4 (Q9H172, ENSG00000172350) [49,50].

Model-Based Clinical Application
The clinical relevance of our modeling approach consists in its

capability to infer from the measured lipoprotein profile of a

patient potential alterations in one or several of the underlying

kinetic processes. Together with other independent information on

diet (affecting primarily the composition and amount of VLDL

particles generated by the liver) and genetic variations based on

SNP analysis of genes related to enzymes of the lipoprotein

metabolism this will allow to elucidate the molecular basis of

observed abnormal lipoprotein profiles.

It has to be critically noted, however, that there is no

unambiguous relationship between the conventionally measured

pattern of lipoprotein main classes (VLDL, IDL, LDL, HDL2,

HDL3) and the kinetic parameters of the kinetic processes

included in the model. In other words, different sets of kinetic

parameters may provide one and the same calculated pattern of
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main classes. One reason is that moderate changes in the kinetic

properties of a single process may cause a moderate shift in the

lipoprotein distribution that does not significantly affect the

average composition of the main classes. This has been

demonstrated by comparing our calculated lipoprotein distribution

of a normal patient and a virtual patient having a 10% lower or

higher activity of his lipoprotein lipase. The absolute amount and

lipid composition of the main density classes of both patients are

practically identical. The example also illustrates the advantage of

high-resolution profiles for making the altered lipoprotein

distribution within the main classes visible. A second reason

accounting for the above mentioned ambiguity between the

lipoprotein density profile and the kinetic parameters of the

underlying molecular processes is that simultaneous alterations in

more than one parameter may compensate each other with

respect to the resulting shape of the LP distribution. An exemplary

case was shown in that the initial composition of the VLDL

particle leaving the liver was varied and the distance of the

associated lipoprotein density profile was computed with respect to

the standard profile. Notably, there exist different initial

compositions yielding practically identical lipoprotein profiles.

For the practical application of our model this implies the

following strategy: First, vary the kinetic parameters of those

processes known to be mostly affected by genetic variations (e.g.

LDL uptake rate, LPL activity, rate of cholesterol transfer to HDL)

and/or diet (synthesis rate of a composition of VLDL) in a

physiologically reasonable range, calculate the associated LP

profiles and store them in a lipoprotein profile data base. Second,

compare the measured LP profile of a patient (the higher the

resolution, the better) with all profiles in the data base and identify

parameter constellations that would account for the patient’s

profile. Take this information as an adjunct to other independent

findings to diagnose the molecular background of the patient’s

profile.

Finally, it has to be emphasized that the model can also be used

to simulate the expected outcome of a proposed medical treatment

following the diagnostic step described above.

Conclusion
The model simulations successfully reproduce lipoprotein

composition data of common density classes from healthy subjects

and enable the revealing of the distribution of lipoproteins in high

resolution. Abnormal distributions of lipoproteins can be predicted

by modifying one of the underlying kinetic processes simulating

lipid disorders. On the other hand, lipoprotein profiles of

individual patients can be related to a selected set of kinetic

parameters associated with abnormalities in the underlying

processes of lipoprotein metabolism. In its present state, the model

poses various questions to answer and offers a platform for many

future applications aimed at understanding the reasons for inter-

individual variability, identifying new sub-fractions of potential

clinical relevance and a patient-oriented diagnosis of individual

lipid abnormalities.

Materials and Methods

Stochastic Model
We consider a system of N lipoprotein complexes ~LLpi, i = (1, …,

N), which are affected by M different kinetic processes Rm, m = (0,

…, M) in a unit volume V. Each lipoprotein complex ~LLpi is unique

with respect to its composition (nAi, nBi, nFi, nCi, nTi) where nXi is

the number of molecules of component X, XM{A,B,F,C,T}, in the

lipoprotein i.

All lipoprotein complexes ~LLpi may be present with ni identical

copies. The ni may be any non-negative integer number. As our

model includes the exchange of the components A and F with

plasma pools of free A and free F, respectively, and the exchange

of the components C and T by the cholesteryl ester transfer

protein (CETP) we also introduce the numbers nA, nF, nCETP(0),

nCETP(C) and nCETP(T) which denote the numbers of the respective

component in the plasma pool. The state of the system is uniquely

characterized by the vector ~nn of all numbers ni and of all pool

components.

~nn~ n1,n2, . . . ,nN ,nA,nF , . . . ,nCETP Tð Þ
� �

ð1Þ

The set of all thinkable vectors ~nn constitutes the state space of the

system. Let P ~nn,tð Þd~nn be the probability to observe the system in a

small volume d~nn in the state space, i.e. the probability to find

n01ƒn1vn01zdn1

..

.

n0NƒnNvn0NzdnN

n0AƒnAvn0AzdnA

..

.

n0CETP Tð ÞƒnCETP(T)vn0CETP Tð ÞzdnCETP Tð Þ

The function P ~nn,tð Þ is the probability density of state ~nn. It

contains all information about the evolution of the stochastic

system over time. We denote with Nfrom the set of states which

may be transformed to state ~nn by a single reaction and with Nto

the set of all states which may be produced from ~nn by a single

reaction. Consider, for example the reaction EffluxAi represent-

ing the uptake of cholesteryl ester from an A-particle of type i.

The event of this reaction would be to transform a particle of

type i to type i-C which has one C less than i. Therefore, by

action of the considered reaction the number ni is reduced by

one. At the same time, the number ni{C
is increased by one (the

total number of A-particles in the system is not affected by the

considered reaction). Therefore, the set Nto created by a reaction

of type EffluxA (with arbitrary i) is the set of all states where one

arbitrary A-particle is missing and in exchange, an A-particle

with one less C is added. In the same manner the action of the

other reactions has to be considered. The equation governing

the evolution of the probability density P ~nn,tð Þ—the master

equation—can be written

dP ~nn,tð Þ
dt

~
X

~nn0[Nfrom

r~nn0?~nnP ~nn0,tð Þ{
X
~nn0[Nto

r~nn?~nn0P ~nn,tð Þ ð2Þ

Here, r~nn?~nn0 denotes the rate of the reaction transforming the

state ~nn to ~nn0. The explicit expression for this would be very

complicated as we have to consider all possible results of the

action of 20 different reaction types and will, therefore, be

omitted here.

The Master equation (Equation 2) cannot be analytically solved.

Therefore, we determined approximative numerical solutions by

using Gillespie’s stochastic simulation algorithm [51].

Gillespie’s algorithm. The time evolution of the system is

described as a sequence of events taking place at discrete time

points. In each event, only one of the elementary processes is

carried out instantaneously thereby changing the state of the

system. The probability for reaction m to occur next is proportional
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to its rate am which is considered constant between the events. The

total probability rate a0 =Sam is a measure for the total activity in

the system. Two random numbers uniformly distributed over the

unit interval are generated to determine both the waiting time t
until the next reaction occurs and the reaction m which occurs after

the previously determined waiting time. Reaction m is

characterized both by its type (e.g. EffluxA) and by the

individual lipoprotein being its substrate. Execution of the

reaction changes the state of the system (either by changing the

number of lipoproteins or by altering the composition of one of

them). Thus, recalculation of the reaction probabilities for the new

state is needed, however, only for those am which were actually

affected by the system change. The simulation time is advanced to

t = t+t. The process is repeated until the steady state of the system

is reached or a different termination criterion is met. In our

calculations this required approximately five millions of such

consecutive single events. During the execution of the algorithm

the lifetime of each lipoprotein in the system is monitored. This

allows to calculate the average number of an individual lipoprotein

complex in the steady state.

Deterministic model. If the probability density function

P ~nn,tð Þ is known expectation values ci(t) for the concentration of

lipoprotein complexes can be calculated according to

ci tð Þ~ 1

V

X
~nn

niP ~nn,tð Þ: ð3Þ

The summation goes over all possible states of the system, i.e. over

all legal combinations of ni.

Carrying out the calculation of the expectation values using the

Master equation (Equation 2) one obtains a system of first-order

differential equations for the time evolution of the concentration

vector~cc tð Þ:

~cc tð Þ~ c1 tð Þ,c2 tð Þ, . . . ,cN tð Þ,cA tð Þ,cF tð Þ,ð
cCETP 0ð Þ tð Þ,cCETP Cð Þ tð Þ,cCETP Tð Þ tð Þ

� ð4Þ

The differential equation for the time-evolution of the concentra-

tion of the i-th lipoprotein complex has the general form (similar to

the form of the master equation)

dci

dt
~f

zð Þ
i ~ccð Þ{ci

:f
{ð Þ

i ~ccð Þ ð5Þ

where f
zð Þ

i and f
{ð Þ

i comprise all processes that increase or

decrease the concentration ci, respectively. The stationary solution

of this system obeys the fix-point equation Equation 6:

ci~
1

n

f
zð Þ

i ~ccð Þ
f

{ð Þ
i ~ccð Þ

z 1{
1

n

� �
ci ð6Þ

which was solved iteratively. l$1 is an integer factor that helps to

stabilize convergence, i.e. to overcome oscillations that may occur

during iteration procedure.

Density Profile Calculation
The density d of a lipoprotein complex is calculated as the sum

of the component’s molecular weights wi divided by the sum of the

component’s molecular volumes vi

d~

P
wini,jP
vini,j

ð7Þ

where i specifies the components (A, B, F, C, T, P) and ni,j is the

number of molecules of component i in the lipoprotein complex j.

The number of phospholipid molecules is estimated to fill the

calculated free volume within the lipoprotein surface (see Dataset

S1). Values of the molecular weights and volumes were taken from

literature and are listed in Table 4. From its amino acid

composition, apoB-100 is estimated to have a molecular mass of

513 kDa. The somewhat higher apparent molecular mass

(approximately 550 kDa) of the native protein is the result of

glycosylation. For the lipid components CE, PL and TG we used

average values because the molecular weight and volume may

vary depending on the chain length and type (saturated, mono- or

polyunsaturated) of the esterified fatty acids.

Experiments
Subjects. All laboratory assessments were performed at the

Department of Clinical Chemistry, University of Freiburg,

Germany. Lipid profiles of eleven randomly selected

normolipidemic subjects were measured under fasting

conditions. Normolipidemic concentration ranges of total plasma

lipoprotein components are given in as follows: 120–240 mg/dl

total cholesterol, 25–200 mg/dl triglycerides, 40–80 mg/dl free

cholesterol, 80–160 mg/dl cholesteryl ester, 100–300 mg/dl

phospholipids and 90–200 mg/dl for apolipoprotein A-I, 40–

70 mg/dl A-II, 30–150 mg/dl B-100, 1–10 mg/dl C-II, 5–

15 mg/dl C-III and 4–12 mg/dl E.

Lipoprotein separation. Lipoproteins were isolated from

plasma by sequential preparative ultracentrifugation according to

Baumstark [32].

Table 4. Data for density calculation.

Component Molecular Weight, g/mol Molecular Volume, ml/mol Reference

A 28,500 21,087 [59]

B 546,340 404,292 [60]

F 15,000 11,100

C (FC+CE) 583 605

T 859 947 [60]

P 786 773 [60]

The molecular weight of component F is averaged by taking individual molecular weights (see also [53]) of apoC isoforms, predominantly apoC-II (8.8 kDa) and C-III
(8.9 kDa), and apoE (34 kDa) in a specific set ratio. Similarly, a 1:2 ratio for cholesterol:cholesteryl ester (with molecular weights of 386 and 648 Da, respectively) is used
for the average molecular weight of component C. Molecular volumes were calculated using appropriate component’s specific volumes [54].
doi:10.1371/journal.pcbi.1000079.t004
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Recoveries of cholesterol after centrifugation of all lipoproteins

were .95%. The interassay coefficient of variance of the

determination of apoB in each of the six LDL subfractions was

#5% [8].
Lipoprotein chemistry. Cholesterol (C), triglyceride (T) and

phospholipid (P) concentrations were determined enzymatically

with the CHOD-PAP, GPO-PAP and PLD-PAP methods (Roche

Diagnostics, Mannheim, Germany), respectively. Concentrations

of apolipoproteins were determined by turbidimetry on a Wako 30

R analyzer (Wako Chemicals, Japan) using polyclonal antisera

(Rolf Greiner Biochemica, Germany) specific for the respective

antigens. For experimental details the reader is referred to [8].

Parameter Estimation
Predicted and experimental lipoprotein profiles were compared

by measuring the distance

E pð Þ~
X

i

wi x
exp
i {x

pred
i pð Þ

� �2

ð8Þ

where p is the vector of the model parameters. x
pred
i pð Þ and x

exp
i

correspond to the simulated and measured concentrations of

lipoprotein constituents in the i-th density class (see Table 2),

respectively. wi is a weight that all the data points contribute

equally to the distance. Model parameters are adjusted by

minimizing the distance function (Equation 8). To avoid

trapping of the minimization procedure in local minima we

used Simulated Annealing (SA) as described in [52] to find the

global optimum.

Model Equations
For most reactions considered in the model, the exact kinetic

mechanism including all regulatory effects is not known.

Therefore, we used simple rate equations based on mass action

kinetics. They are summarized in Dataset S4. There is a simple

relationship between the values of the rate constants to be used in

the stochastic and the deterministic model. The numerical values

of rate constants of first-order reactions are identical in both types

of models. In the case of second order reactions, the stochastic rate

constant cm derives from the deterministic rate constant km by

cm~
km

NAV
ð9Þ

where NA is the Avogadro constant and V denotes the small sample

volume used in the stochastic simulation.

Supporting Information

Dataset S1 Calculating the Number of Phospholipids

Found at: doi:10.1371/journal.pcbi.1000079.s001 (0.03 MB PDF)

Dataset S2 Description of the Kinetic Processes Defined in the

Model

Found at: doi:10.1371/journal.pcbi.1000079.s002 (0.03 MB PDF)

Dataset S3 Explanations to the Model Parameter Values

Found at: doi:10.1371/journal.pcbi.1000079.s003 (0.06 MB PDF)

Dataset S4 Model Equations

Found at: doi:10.1371/journal.pcbi.1000079.s004 (0.03 MB PDF)
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