
Silent Synapses, LTP, and the Indirect Parallel-Fibre
Pathway: Computational Consequences of Optimal
Cerebellar Noise-Processing
John Porrill*, Paul Dean

Department of Psychology, Sheffield University, Sheffield, United Kingdom

Abstract

Computational analysis of neural systems is at its most useful when it uncovers principles that provide a unified account of
phenomena across multiple scales and levels of description. Here we analyse a widely used model of the cerebellar
contribution to sensori-motor learning to demonstrate both that its response to intrinsic and sensor noise is optimal, and
that the unexpected synaptic and behavioural consequences of this optimality can explain a wide range of experimental
data. The response of the Marr-Albus adaptive-filter model of the cerebellar microcircuit to noise was examined in the
context of vestibulo-ocular reflex calibration. We found that, when appropriately connected, an adaptive-filter model using
the covariance learning rule to adjust the weights of synapses between parallel fibres and Purkinje cells learns weight values
that are optimal given the relative amount of signal and noise carried by each parallel fibre. This optimality principle is
consistent with data on the cerebellar role in smooth pursuit eye movements, and predicts that many synaptic weights
must be very small, providing an explanation for the experimentally observed preponderance of silent synapses. Such a
preponderance has in its turn two further consequences. First, an additional inhibitory pathway from parallel fibre to
Purkinje cell is required if Purkinje cell activity is to be altered in either direction from a starting point of silent synapses.
Second, cerebellar learning tasks must often proceed via LTP, rather than LTD as is widely assumed. Taken together, these
considerations have profound behavioural consequences, including the optimal combination of sensori-motor information,
and asymmetry and hysteresis of sensori-motor learning rates.
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Introduction

The uniformity of the cerebellar microcircuit [1] has long been

attractive to modellers. The original Marr-Albus framework [2,3]

continues to be influential, particularly in the adaptive-filter form

developed by Fujita [4] to deal with time-varying signals [5,6].

However, although variants of the cerebellar adaptive-filter model

are widely used and show great promise for generic motor control

problems [7–13], they are typically constructed in a distributed

form that makes mathematical analysis of their properties difficult.

It is therefore still unclear whether the adaptive-filter model has

the power and robustness needed to underlie the computational

capacities of the cerebellum.

One method of addressing this question is to use a lumped

version of the model, in simulated tasks that are simplified as much

as possible while still retaining the computational demands of the

real-world equivalent. This approach has indicated that, when

wired in a recurrent architecture, the adaptive filter can use the

sensory consequences of inaccurate movements for adaptive

feedfoward control [14–17], thereby solving the classic problem

of the unavailable motor-error signal [18,19]. The recurrent

architecture allows the filter to decorrelate an efference copy of

motor commands from the sensory signal, ensuring that any

remaining movement inaccuracies are not the result of the

inadequate commands. The translation of ‘simple’ motor com-

mands into the detailed instructions required for accurate

movements has long been considered a central function of the

cerebellum [2], and this translation entails the adaptive compen-

sation of time-varying biological motor plant (muscles, tendons,

linkages, etc.). The demonstration that the adaptive filter in a

recurrent architecture can achieve adaptive compensation using

only physically available signals is thus an important step towards

establishing its computational suitability as a model of the

cerebellar microcircuit.

A second requirement of a cerebellar model is robustness in the

face of typically biological features of motor control problems. One

ubiquitous example of such a feature is the presence of noise in

biological signals [20]. In the modelling examples given above,

both input and internal signals were assumed to be noise free.

Here we investigate the performance of the model when noise is

added to these signals. The investigation is in two parts. First, we

show that an adaptive filter using the standard covariance learning

rule behaves optimally with respect to input and internal noise.

Secondly, we show there are important consequences of this

computational optimality for both the neuronal implementation of

the adaptive-filter, and for behavioural learning rates. These
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findings are significant for understanding not only cerebellar

function, but also the relationship between computational and

implementational aspects of neural modelling in general [21].

Results

Basic Model
The linear adaptive-filter model of the cerebellar microcircuit

[4,22] is outlined in Figure 1. Filter inputs correspond to mossy

fibre signals, conveying information about the current sensory and

motor state of the organism. These inputs are recoded by a bank of

linear filters representing the granular layer, whose outputs (PF

signals) are weighted (PF synapses on Purkinje cells) then summed

to constitute the filter output (Purkinje cell firing). Weights are

adjusted in response to an error signal (climbing fibre input to

Purkinje cell), using the covariance learning rule [23]. This rule,

which assumes that signals are carried by modulation of a tonic

firing rate so that positive and negative values can be coded, is

identical in form to the powerful Least Mean Square rule of adaptive

control theory [24]. It requires bidirectional plasticity (that is both

LTD and LTP) at synapses between parallel fibres (PFs) and Purkinje

cells [25], so that synaptic weights decrease when climbing fibre

input is positively correlated with parallel fibre input, and increase

when the correlation is negative. If the filter is properly connected,

this learning rule learns weights which combine parallel fibre inputs

so that the PC output has minimal mean square error. It should be

noted that in Figure 1 we follow the convention of referring only to

parallel fibre synapses, without mentioning the synapses between the

ascending axons of granule cells and Purkinje cells. However, the

arguments in the paper would not be affected by inclusion of

ascending axon synapses, provided their behaviour conformed to the

covariance learning rule.

The uniformity of the cerebellar microcircuit implies that a

model can be tested using any convenient cerebellar task.

Adaptation of the vestibulo-ocular reflex (VOR) is relatively

simple, has been extensively modelled and investigated [26], and

previously used to investigate the computational properties of

adaptive-filter models [14,15,17]. The simplified architecture used

for the simulations is shown in Figure 2.

Horizontal VOR accuracy requires that motor commands to eye

muscles compensate for changes in the dynamic properties of both

the oculomotor plant P and of vestibular processing V. We have

previously shown that plant compensation can be learnt by an

adaptive filter version of the Marr-Albus algorithm using the

recurrent pathway illustrated in Figure 2, in which the filter receives

an efference copy of the motor commands to the plant. In contrast,

the forward pathway shown in Figure 2 is suitable for compensating

for changes in vestibular processing. In the simulations below both

architectures are used although, since these simulations deal only

with changes in scalar gain, this is not a crucial distinction.

Learning Rule Optimises Filter Weights for Noisy Signals
In general, appropriately connected adaptive-filters using the

covariance learning-rule will achieve optimal filter weights that

minimise the error measure e (Figures 1 and 2). Since e is a

Author Summary

The cerebellum or ‘‘little brain’’ is a fist-sized structure
located towards the rear of the brain, containing as many
neurons as the rest of the brain combined, whose functions
include learning to perform skilled motor tasks accurately
and automatically. It is wired up into repeating microcir-
cuits, sometimes referred to as cerebellar chips, in which
learning alters the strength of the synapses between the
parallel fibres, which carry input information, and the large
Purkinje cell neurons, which produce outputs contributing
to skilled movements. The cerebellar chip has a striking
resemblance to a mathematical structure called an
adaptive filter used by control engineers, and we have
used this analogy to analyse its information-processing
properties. We show that it learns synaptic strengths that
minimise the errors in performance caused by unavoidable
noise in sensors and cerebellar circuitry. Optimality
principles of this kind have proved to be powerful tools
for understanding complex systems. Here we show that
optimality explains neuronal-level features of cerebellar
learning such as the mysterious preponderance of ‘‘silent’’
synapses between parallel fibres and Purkinje cells and
behavioural-level features such as the dependence of rate
of learning of a motor skill on learning history.

Figure 1. Schematic diagram of the organisation of the cerebellar microcircuit and its interpretation as an adaptable filter. (A) The
mossy fibre input signals are distributed over many granule cells whose axons form parallel fibres (PFs) that synapse on Purkinje cells (PCs). In models
of Marr-Albus type, correlated firing of a PF and the single climbing fibre (CF) which winds around the PC alters the efficacies of the PF/PC synapses.
(B) Processing of MF inputs uk(t) by the granule cell layer is interpreted as analysis by a bank of causal filters Gi so that the PFs carry signals which form
an expansion re-coding pi = Gi[u1,…,uM] of the MF inputs. PC output is modelled as a weighted sum z(t) =Swipi(t) of its PF inputs so the PC
implements a linear-in-weights filter C =SwiGi. The CF input is interpreted as a training signal e(t) which adapts synaptic weights wi using Equation 2;
this hetero-synaptic covariance learning rule [23] is consistent with known properties of LTD and LTP at PF/PC synapses and is identical in form to the
LMS learning rule of adaptive control theory.
doi:10.1371/journal.pcbi.1000085.g001

Optimal Cerebellar Noise-Processing
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measure of task performance, these weights enable the filter to

perform the task accurately. This optimal behaviour clearly

generalises to the situation where noise is present in PF signals:

because this noise affects the filter output, minimising e will also

tend to minimise the effect of PF noise, by choosing weights that

are optimal for eliminating disturbances due to PF noise.

The optimality principle can be illustrated by considering the case

where a number of PFs carry signals pi with different levels ai of a

signal of interest s but contaminated by independent noise com-

ponents ni of power si
2. It is shown in the Methods section (Equation

6) that mean square output error is minimised when the weights on

these input signals have the ratios wi:wj =ai/si
2:aj/sj

2. Figure 3

shows the time course of this learning, for the case where plant gain is

suddenly decreased from 1.0 to 0.5. and the filter has four PF

channels carrying differing amounts of efferent-copy signal and noise.

Figure 3A illustrates a general phenomenon for low levels of PF

noise, namely the existence of fast and slow phases of learning (see

Methods). Initial learning is fast, producing a 5-fold drop in retinal

slip error in ,60 batches, nominally about 1 hour of input.

During this phase the weight vector converges close to the

subspace of weight combinations which performs the task in the

absence of noise. Thus, the values of the weights attained after this

early fast phase of learning are sufficient to achieve a near optimal

VOR gain of just below 1.0. Subsequent learning is much slower

(note log scale for x-axis), as the weight vector moves essentially

within this subspace to bring all weights to the optimal values

determined by Equation 6. During this learning phase perfor-

mance improves, but less dramatically, as the smaller noise

contribution to task errors is reduced. The slowest time constant

for this phase of learning is lengthened by a factor approximately

equal to the signal to noise ratio (Equation 10).

Implications for Sensory Processing
If the signals carried by parallel fibres correspond to a set of

noisy sensory estimates of an environmental property, and

appropriate cost information is carried on the climbing fibre, the

adaptive-filter behaviour above leads to the optimal linear

estimator in the Bayesian sense. Our analysis shows this explicitly

for the simplest case of a minimum least square error estimator

when the sensory estimate noises are independent. Such

statistically optimal performance has been observed for humans

integrating visual and haptic information [27], and the above

result suggests that the adaptive-filter model of the cerebellum can

match the performance of the whole subject. This result has

particular relevance to smooth pursuit, a class of eye-movement

known to be dependent upon the cerebellum, whose accuracy (in

the initial open-loop phase) appears to be limited primarily by

sensory noise [28]. This example is considered further in the

Discussion.

Implications for Weight Values
It can be seen from Figures 3 and 4 that even weights for

parallel fibres carrying relevant signals are driven to low values if

they also carry high amounts of additive noise. We now consider a

second type of noise, namely potentially useful signals carried by

PFs but which are irrelevant to the current task (termed ‘nuisance’

signals in the control-theory literature), these signals could be

correlated between different PFs. A simple example would be a

parallel fibre that carries information about the conditioned

stimulus in classical conditioning. Conditioned stimuli are

deliberately chosen on the basis of their not having prior influence

on the response to be conditioned, so before acquisition

commences the corresponding parallel-fibre signal is essentially

all noise. Its weight will therefore have been set to zero at the fast

time scale before the start of formal training.

A more interesting example is provided by the case of two

parallel fibres, one carrying irrelevant information n and a second

fibre carrying the same information with the opposite sign 2n.

Here the total contribution to the task will be zero if the weights

are equal. From any arbitrary non-zero starting weights this state

will be reached on the fast time scale. However if these PFs also

carry an independent second component of noise (as they surely

will) these redundant weights will go on changing to become zero

on the slow time scale (illustrated in Figure 4). In general all non-

zero weight combinations for which nuisance sources cancel will

be unstable due to intrinsic noise. In a similar way large numbers

of nuisance sources might cancel to good accuracy due to the

central limit theorem, but their weights will nevertheless eventually

converge to zero due to intrinsic noise.

Implications for Neuronal Implementation
Parallel fibres are thought to carry a widespread array of

information about the sensorimotor context in which motor

activity takes place, including sensory signals, copies of motor

commands, and signals about the state of the organism such as

arousal [29]. The fact that there are so many (,170,000) parallel-

fibre inputs to a given Purkinje cell [6] implies that most parallel

fibres will inevitably carry information which is only weakly related

(low signal to noise) or is simply unrelated (all noise) to a given task.

From the analysis above the long-term optimal synaptic weights

for such synapses will be small or zero. Hence it is a consequence

of the optimal performance of the model that most synapses

between parallel fibres and Purkinje cells are expected to be silent,

consistent with experimental evidence [30–32].

The second consequence of optimal performance is related to the

first. In simplified computational models it is often assumed that a

given synaptic weight can be either positive or negative. The fact that

actual synapses do not change between excitatory or inhibitory forms

can be finessed if the weights vary around some intermediate positive

Figure 2. Architecture used for simulations of horizontal VOR
adaptation. The task of the VOR is to convert the vestibular signal vhead

into motor commands m to the oculomotor plant P which move the eye
so as to exactly compensate head movements: veye = vhead. We model this
reflex as a fixed pathway through the brainstem supplemented by
forward and recurrent adaptable pathways via the cerebellum. In previous
work we have argued that VOR plant compensation depends mainly on
the recurrent pathway through C [14,15,17], which has the advantage that
the required teaching signal is sensory error, that is the retinal slip e as
shown. Feedback-error learning [22] uses an alternative architecture
without the recurrent loop; in this case, the required teaching signal is
motor error, eM = P21e. In more general adaptation problems both
pathways seem to be necessary, with one being well-adapted to
vestibular compensation and one to plant compensation [17]. In all these
architectures, the requirement for learning stability is that the teaching
signal e must be related by a strictly positive real (SPR) transfer function to
error in cerebellar output (which is trivially satisfied for the case of
adaptation of scalar gain). Given the SPR assumption, our conclusions
apply equally to all these configurations.
doi:10.1371/journal.pcbi.1000085.g002

Optimal Cerebellar Noise-Processing
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(or negative) value. However, if many of them are typically zero at

the start of learning, the model can only be properly implemented if

there is a second pathway from granule cells to Purkinje cells of

opposite sign to the first, else learning would only be possible when it

required Purkinje cell excitability to increase. Fortunately, this

requirement appears to be consistent with recent experimental

evidence indicating that there is climbing-fibre controlled plasticity

in the synapses between parallel fibres and stellate and basket cells,

which are inhibitory interneurons that project to Purkinje cells

[31,32]. Thus there is a second, indirect, pathway from granule cells

to Purkinje cells via inhibitory interneurons that can support the

learning required by the adaptive-filter model.

The final consequence is almost a triviality. Clearly if most

synapses are silent they are not available for long-term depression

(LTD). Hence for a large class of tasks learning must initially

proceed via long-term potentiation (LTP), in either the direct or

indirect pathway from granule cells to Purkinje cells. LTP in the

direct excitatory pathway would increase Purkinje cell excitability,

whereas LTP in the indirect inhibitory pathway would reduce

Purkinje cell excitability. The covariance learning rule thus implies

that LTP and LTD are in general of equal significance, rather

than cerebellar LTP merely playing a book-keeping role by

normalising an LTD-lead learning process. The predominance of

silent granule synapses goes further by implying that LTP may be

particularly important for new learning.

Implications for Learning
The basic simplicity of the Marr-Albus mechanism as

exemplified by the adaptive-filter model is substantially modified

by the implementation issues just considered, in particular by the

presence of both direct excitatory and indirect inhibitory pathways

from granule cells to Purkinje cells. We have shown that synaptic

positivity requires an indirect pathway whenever a task requires

synaptic weights to be negative. Hence the locus of synaptic

plasticity, in the direct or indirect pathway, will depend on the

direction of the change to be learnt. This means that any

differences between direct and indirect pathways will lead to

asymmetries in learning behaviour.

An example is given in Figure 5, which illustrates the behaviour

of a system with vestibular inputs arriving on both the direct

excitatory pathway and an indirect inhibitory pathway. Signs were

chosen so that gain down would initially be learnt by LTP on the

Figure 3. Synaptic weights are optimal with respect to output noise. Here the plant suffers a 50% decrease in gain and learning takes place
in 4 PFs carrying levels ai = 1, 1, 2, and 2 of the same unit power signal s and levels si = 1/2, 1, 1/2, and 1 of independent noise (see legend below for
[A]). During the fast learning phase, synaptic weights are learned that are approximately proportional to signal amplitude ai on the relevant PF ([A]—
the learning rate was chosen to make this phase last ,1 h, as shown by the first vertical line). During this phase, performance improves dramatically
(B) and overall VOR gain approaches a value just smaller than unity (C). This is followed by a slow learning phase (predicted length shown by second
vertical line) in which weights rearrange themselves to be proportional to ai/si

2 (predicted values shown by dotted lines). During this stage there is a
small improvement in performance as the effect of the disturbance is minimised, but overall VOR gain is virtually unaffected.
doi:10.1371/journal.pcbi.1000085.g003

Optimal Cerebellar Noise-Processing
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direct pathway, consistent with [33]. It is further assumed that the

learning rate in the direct pathway is smaller than that in the

indirect pathway. The effect of these assumptions is to produce

asymmetrical learning rates, with gain-up learning being about

twice as fast as gain down (a similar result can be obtained using

equal learning rates but with the indirect pathway carrying a more

powerful signal than the direct pathway). This difference is similar

to that found for VOR adaptation in the mouse [33]. Figure 5

therefore shows how, in principle, the presence of a direct

excitatory and indirect inhibitory pathway could contribute to an

observed asymmetry in learning rate. Additional differences

between these pathways with respect to, for example, generalisa-

tion could also contribute to other kinds of experimentally-

observed learning asymmetries (see Discussion).

Finally, we have argued above that, if most synapses are

inactive, learning novel tasks must proceed mainly via LTP.

However once learning has taken place, these newly active

synapses become available for learning via LTD. Hence the

number of active synapses and the magnitude of the synaptic

weight available for LTD will depend on previous experience,

ensuring that learning rates will depend on previous learning

history. An example of this hysteresis mechanism is given in

Figure 6, which illustrates learning rates for an increase in VOR

gain in the dark from 1.0 to 1.5, followed firstly by a decrease back

to 1.0, then by another gain increase to 1.5. It is assumed that all

weights are zero at the start of learning, and that the direct

excitatory and indirect inhibitory pathways have identical signal

strengths and learning rates. It can be seen that the initial learning

of the gain increase (‘acquisition’) is slower than learning the

subsequent decrease (‘extinction’), and also slower than re-learning

the gain increase (‘re-acquisition’). As with the previous figure,

Figure 6 shows how in principle the presence of direct and indirect

pathways could contribute to hysteresis in learning rates.

Discussion

An important step in evaluating candidate models of the

cerebellar microcircuit is to assess their computational power. We

show here that the adaptive-filter version of the Marr-Albus

framework using the covariance learning rule has the very

desirable computational property of providing optimal estimates

of sensory input signals from the information available in the

Figure 4. Covariance rule eventually drives weights on nuisance inputs to zero. In this simulation, the cerebellar input is carried on three
parallel fibres. One (PF1) carries the required motor command s, and the other two (PF2, PF3) carry equal and opposite versions of a nuisance signal n
with the same power as, but uncorrelated with, the motor command. In addition, each parallel fibre carries a small additive component of noise ni

with (s= 0.1) representing intrinsic PF noise which is uncorrelated between parallel fibres (see legend below [A]). The initial synaptic weights on PF1,
2, and 3 are set to 0, 0.5, and 0.9, respectively. (A) shows that on a fast time scale, the signal synaptic weight converges to a value where the plant is
compensated, and over the same time scale, the nuisance signal weights converge to equal values so that the correlated nuisance signal they carry
cancels. On this time scale, performance improves dramatically. The non-zero weight values on the nuisance inputs are not stable, however, and the
small component of intrinsic noise drives them to zero on a slower time scale. This process is associated with a smaller improvement in performance
(shown in [B] and [C]).
doi:10.1371/journal.pcbi.1000085.g004

Optimal Cerebellar Noise-Processing
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parallel fibres. This is important both for the general reason that

noise is ubiquitous in neural signals, and more specifically because

there is evidence suggesting that the cerebellum itself can make

optimal use of noisy signals.

Optimal Cerebellar Performance in Smooth Pursuit
Analysis of inaccuracies in open-loop smooth pursuit move-

ments indicates that more than 90% of the variance arises from

errors in sensory estimation of the speed, timing and direction of

target motion [28], and that pursuit thresholds are similar to

perceptual thresholds [34]. Since smooth pursuit is dependent

upon the cerebellum (e.g., [35]), these findings suggest that the

cerebellum can process noisy sensory information as well as the

perceptual system as a whole. Moreover, at least in some instances

perceptual processing of this kind has been shown to be statistically

optimal (e.g., [27]). Recordings from smooth-pursuit related

Purkinje cells in the cerebellar floccular complex suggest that

variability in their open-loop responses is also driven primarily by

sensory noise, with noise downstream from the Purkinje cells being

of minor importance [36]. These findings together suggest that

smooth pursuit performance is close to optimal given the noise

present in sensory measurements, and that the cerebellum can

make optimal use of those measurements. An important criterion,

therefore, for assessing cerebellar models is their computational

ability to reproduce such optimality.

Complexity of Neuronal Implementation
A second feature of the present findings is the implication of the

model’s computational power for its implementation and perfor-

mance. After long periods of training most of the model’s weights

are likely to be small or zero, consistent with recent experimental

evidence [30–32]. We comment on four features of this finding.

(i) The presence of many silent synapses may appear

puzzling, given that in vitro studies of LTD typically report

reductions in efficacy of only ,50%. However, from the

computational perspective the crucial point is whether the

synapses are functionally silent, i.e. they do not influence

Purkinje cell output. In fact Isope and Barbour [30] found

that ‘‘… a large fraction of these synapses is so weak as to

produce no detectable response’’ (p. 9676), and evidence

from in vivo studies suggests that LTD is able to render

parallel-fibre synapses on Purkinje cells functionally silent

[31,32]. The relationship between in vitro and in vivo LTD is

an intriguing issue, but not directly germane to the central

purpose of the present study.

Figure 5. Effect of asymmetry between direct excitatory and indirect inhibitory pathways. Vestibular compensation experiment
simulated in forward architecture. Signs for the vestibular signal were chosen so that the direct excitatory pathway learned gain down and the
indirect inhibitory pathway learned gain up ([A] and [B], respectively). The asymmetry between the two pathways was chosen to be a difference in
learning rates. (C) shows that data (circles) from Figure 1E of Boyden and Raymond [33] were well-fitted when the learning rate in the indirect
pathway was about 9 times faster than that in the direct pathway, leading to time constants of 10 min for gain up and 26 min for gain down. A
similar result (not shown) was obtained assuming a factor of 3 asymmetry between indirect and direct signal strengths.
doi:10.1371/journal.pcbi.1000085.g005

Optimal Cerebellar Noise-Processing
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(ii) As explained in the Results section, the presence of many

silent synapses implies the necessity for a second pathway

from granule cell to Purkinje cell, of opposite sign to the

first and also capable of plasticity in accordance with the

covariance learning rule. Again, recent experimental

evidence is consistent with this requirement [31,32]. This

evidence also shows that the synapses between parallel

fibres and interneurons in this pathway too are mainly

silent, as our computational analysis would predict.

(iii) Perhaps unexpectedly, the addition of an indirect inhibi-

tory pathway to the model’s implementation substantially

increase the complexity of its behaviour. Unless the direct

and indirect pathways have identical properties, then

learning tasks that engage them to different degrees will

show differences in such properties as rate of learning

(Figure 5), and exact nature of what is learned, as revealed

for example by generalisation tests. Such differences have

been demonstrated for gain-up and gain-down VOR

learning [26,33,37–39], and our results show that a

candidate explanation for the asymmetric learning rates

is (a) the two tasks engage the direct excitatory and indirect

inhibitory pathways to differing extents, and (b) the two

pathways have different learning rates.

(iv) Finally, even if the two pathways were to have identical

properties, a ‘new’ task (starting from zero weights in both

pathways) will show learning rate hysteresis (Figure 6) as

has been observed for VOR adaptation [33,40,41] and

classical eyeblink conditioning [42,43]. These observations

establish that the presence of direct and indirect learning

pathways is likely to contribute to learning-rate asymmetries

and hysteresis, but of course do not rule out possible

contributions from other sources, such as sites of plasticity in

brainstem for the VOR or forebrain for classical condition-

ing, or in the granular layer for cerebellar learning in general.

Interpretation of Behavioural Experiments
The possibility that cerebellar learning can proceed via at least 4

separate processes (LTP and LTD in either pathway) complicates the

interpretation of behavioural studies in which one or more of those

processes are compromised. As can be seen from Figures 5 and 6, the

contribution of each process depends both on the direction of

learning, and the organism’s past history. For example, the neural

bases of a new learning task (possibly the initial acquisition of

eyeblink conditioning to a tone) may differ from those of an ongoing

familiar task (VOR or saccadic calibration). This complication may

contribute to the difficulty of identifying these neural bases using

behavioural studies of mutants [44], though again it must be

emphasised that there are a number of other possible sources

contributing to difficulty in this area.

A related issue concerns the processes underlying the fast and

slow phases of learning illustrated in Figures 3 and 4. It can be

seen that in principle there could be some tasks where early

learning uses a single process, whereas later learning uses a

mixture (e.g., Figure 3A). Although a distinction between fast early

learning (‘acute’) and slow subsequent learning (‘chronic’) is

familiar in the cerebellar literature [26,44], the mechanisms

illustrated in Figure 3 have not so far been considered as a possible

basis. One additional implication of this figure is that the slow

acquisition of many motor skills (to expert level) might be caused in

part by cerebellar input noise.

Comparison With Other Cerebellar Models
The cerebellar algorithm we have described necessarily inherits

the well-known optimality properties of the adaptive filter [24].

We have demonstrated statistical optimality explicitly and

examined its consequences for a class of noisy inputs likely to be

of importance in cerebellar learning. As far as we are aware, the

cerebellar model described here is at present the only one

demonstrated to guarantee statistical optimality in dealing with

noisy inputs, and thus the only one known to be capable of, for

example, the optimal smooth pursuit performance described

experimentally [28,34,36].

There is an alternative account, however, of the experimentally

observed preponderance of silent synapses between parallel fibres

and either Purkinje cells or interneurons. The relation between

weight distribution and storage capacity has been examined for

perceptron models [45], and the optimal distribution has been

shown to contain a high proportion of very weak or silent synapses.

This analysis is based on the assumptions i) that the cerebellar

microcircuit acts like a perceptron in which both inputs and

outputs are binary and ii) that weights are distributed so as to

achieve maximum storage capacity. Under these assumptions it is

shown that coding capacity is maximised when 50% of weights are

silent, and that this proportion increases if a noise threshold is

introduced to increase reliability of classification.

Although the derivation is rigorous, there is a question of how

far the Perceptron is in fact a suitable representation of the

cerebellar microcircuit in a motor control context. Although

Perceptrons have been used as models for cerebellar cortex based

on the Marr-Albus framework [46,47] they are not usually applied

Figure 6. Hysteresis in vestibular compensation simulation in
forward architecture. In response to a decrease in plant gain (top
plot), learning proceeds initially via LTP in the direct pathway (A) and
increases VOR gain in the dark by 50% (B); the learning rate has been
adjusted to give this stage a time constant of 15 min. When the plant
gain is returned to its original value, learning occurs in both pathways:
via LTD in the newly available synapse in the indirect inhibitory
pathway, and via LTP in the synapse in the direct excitatory pathway,
leading to faster learning (with a time constant of approximately 5 min)
during this gain down phase of learning. This is followed by a second
phase of gain up learning, again increasing VOR gain by 50%. Learning
is still possible at both sites, and this gain up phase has a faster time
constant (approximately 7 min) than the initial gain up phase.
doi:10.1371/journal.pcbi.1000085.g006
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to motor control problems where continuous time-varying signals

are required. In general the adaptive filter interpretation is more

suited to these sensori-motor applications, and it is more closely

linked to theoretical developments in adaptive control. Moreover,

the task of learning the coefficients of an adaptive filter is very unlike

that of coding many random bit patterns with a single template. For

example in a motor control problem the inputs would generally be

confined to a low dimensional subset of input space, an assumption

that is basic to current machine learning algorithms such as locally

weighted linear regression [48]. In these circumstances the

requirement of maximising coding capacity is not relevant.

Levels of Analysis
Although the simplicity of the Marr-Albus algorithm may seem

to imply correspondingly simple learning behaviour, we have

shown how constraints at the hardware level can mask this

algorithmic simplicity so that Marr-Albus systems exhibit complex

phenomena such as multiple time scales, asymmetry and

hysteresis. Marr [21] distinguished between the computational,

algorithmic and hardware levels of description in models of neural

information processing. In fact models often have the greatest

explanatory power when they integrate information across all

three levels. Our previous work has concentrated primarily on the

interaction between the two higher levels [14–17]. Here we have

extended this work to include two important hardware level

constraints, namely system noise and weight positivity, and show

that they have computational consequences which are critical to

understanding neuronal and behavioural aspects of cerebellar

learning. It is of interest that recent experimental work on VOR

adaptation has emphasised the complexity of the learning

processes involved [26]. The results here suggest that such

complexity is not in principle incompatible with the original

Marr-Albus framework.

Methods

Simulations
In the simulations the model architecture shown in Figure 2 was

programmed in MATLAB with V, P, and B taken as scalar gains.

In recurrent architecture V was a unit gain and the forward

pathway through C was not used giving an overall loop gain of

BP/(12BC). Initially P = 1, B = 1 so the plant is initially perfectly

compensated when C = 0. For example when P is reduced to 0.5

exact compensation requires C = B212P = 0.5. In adaptive filter

models the cerebellar filter C analyses its input m(t) into many

parallel fiber signals pi which are re-synthesized to form the output

z =S wipi. Since the simulations here deal only with scalar gains we

do not require pi containing information about the past history of

m as in our previous work. Assumptions about the nature of the pi

are described separately for each simulation. Since the time

dependence of the inputs is irrelevant to learning a scalar gain the

input was taken to be constant. All noise signals were represented

as white noise, results would be the same for other types of noise

with the same variance and correlations.

The learning rule (Equation 2 below) at the parallel fibre/

Purkinje cell synapse was implemented as a batch update rule,

accumulating the total change in weight over the batch for fixed

weights and then updating at the end of the batch. A batch

consisted of 6,000 time steps so that with dt = 0.01 s a batch had a

nominal duration of 1 min.The teaching signal e was retinal slip

vhead-veye. The learning rate b was chosen to fix the fast time scale

for each simulation. Although batch update was used for efficiency

the results are essentially identical for continuous time update. The

code for the all the simulations is available in Dataset S1.

Analysis
The mossy fibre inputs to the granule cell layer are expansion-

recoded as parallel fibre signals pi (note that these signals are

assumed to be carried by modulation of a tonic firing rate so that

both positive and negative signal values can be coded). These

parallel fibre inputs are re-combined by the Purkinje cell to

produce its output

z~
X

wipi: ð1Þ

If the desired output is cs (i.e., the required gain is c), the error in

PC output is z2cs. Learning stability requires that the climbing

fibre input e is an approximation to this output error; that is,

e<z2cs. The level of approximation required is that these

quantities be related by a strictly positive real transfer function

[49]. It has been shown that in recurrent architecture e can be an

error in task space, that is, a sensory error, while forward

architectures such as feedback-error learning require that e be a

motor error signal. This distinction (discussed further in [15,16]) is

not relevant to the phenomena discussed here. The learning rule is

the covariance learning rule

_wwi~{bSepiT: ð2Þ

If the strict positive realness condition is satisfied this learning rule

can be shown to minimise mean square error E = Æe2æ.
We consider an illustrative situation in which each parallel fibre

carries a combination of the signal of interest s and uncorrelated

noise ni

pi~aiszni, Ss2T~1, Sn2
i T~s2

i ð3Þ

(the noise sources are assumed to be pairwise uncorrelated). The

mean square error has the form

E~
X

wjaj{c
� �2

z
X

s2
j w2

j ð4Þ

whose minimum is at

w�i ~
ai

�
s2

i

cz
P

a2
j

.
s2

j

ð5Þ

so that the optimal weights are in the ratios

w�i : w�j ~
ai

s2
i

:
aj

s2
j

ð6Þ

Note that in general the optimal weights give an optimal gainP
w�i ai, which is smaller than c, this is due to the usual trade-off

between bias and variance for an optimal estimator.

The rate of approach to the optimal weights is determined by

the covariance learning rule which takes the form

_wwi~{b
X

wjaj{c
� �

aizs2
i wi

� �
: ð7Þ

Rigorous bounds on the time constants of this system can be

obtained using the eigenvalue interlacing theorem [50], here we

use a simpler heuristic approach. Suppose there was zero noise.

Then weight update would take place entirely in the direction (ai)

with time constant

Tfast~
1

b
P

a2
j

: ð8Þ
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Superimposed on this is a motion in each coordinate direction

generated by the noise term with time constants

T i
slow~

1

bs2
i

ð9Þ

(given subscripts fast and slow because noise power will usually be

much smaller than signal power). The ratio of the slow to fast time

constants is thus determined by the signal to noise ratio:

Tslow

Ti
fast

~

P
a2

j

s2
i

: ð10Þ

Supporting Information

Dataset S1 Zipped folder containg MatLab code to generate

Figures 3–6.

Found at: doi:10.1371/journal.pcbi.1000085.s001 (1.23 MB ZIP)
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