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Abstract

This paper introduces a time- and state-dependent measure of integrated information, w, which captures the repertoire of
causal states available to a system as a whole. Specifically, w quantifies how much information is generated (uncertainty is
reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the
information generated independently by its parts. Such mathematical characterization is motivated by the observation that
integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of
conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling
out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be
decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated
information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples
indicates the following: (i) w varies depending on the state entered by a network, being higher if active and inactive
elements are balanced and lower if the network is inactive or hyperactive. (ii) w varies for systems with identical or similar
surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity
states. (iii) w varies as a function of network architecture. High w values can be obtained by architectures that conjoin
functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high w
because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable
of generating high w but are inefficient. (iv) In Hopfield networks, w is low for attractor states and neutral states, but
increases if the networks are optimized to achieve tension between local and global interactions. These basic examples
appear to match well against neurobiological evidence concerning the neural substrates of consciousness. More generally,
w appears to be a useful metric to characterize the capacity of any physical system to integrate information.
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Introduction

Scientists and engineers are usually interested in how informa-

tion can be transmitted or stored from the perspective of a user.

However, it is just as important to consider information, in the

classic sense of reduction of uncertainty, from the perspective of an

autonomous system. How much information is generated when

the system enters a particular state by virtue of causal interactions

among its elements? And to what extent is the information

generated by the system as a whole, as opposed to the information

generated independently by its parts? Addressing these questions

requires the development of a new framework that is based on the

notion of integrated information [1,2].

The need for such a framework is not merely academic. Indeed,

it was initially motivated by one of the most baffling scientific

problems – the generation of conscious experience by the brain.

We know that certain regions of the brain, for example the

thalamocortical system [3], are essential for consciousness,

whereas other regions, such as the cerebellum, are not, though

the cerebellum has even more neurons and is seemingly just as

complicated. We also know that consciousness fades during sleep

early in the night, although neurons in the thalamocortical system

remain just as active as during quiet wakefulness. During

generalized seizures neurons fire even more strongly and

synchronously, yet consciousness is suspended or much reduced.

Why is this the case? Specifically, what are the necessary and

sufficient conditions for a physical system to generate experience?

This problem – also known as the first problem of consciousness –

is thought to be rather hard, as it is not easy to see how

‘‘subjective’’ experience could be squeezed out of a collection of

physical elements.

The integrated information theory of consciousness represents

an attempt to address the first problem of consciousness from first

principles [4,5]. The theory argues that consciousness is integrated

information, starting from a phenomenological analysis. It

proceeds by defining integrated information and suggesting how

it can be measured for stationary systems. Finally, it shows that the

integrated information perspective can provide a parsimonious

account for several key empirical facts about the relationship

between consciousness and the brain.

In the present work, our goal is to provide a definition and

measure of integrated information for systems of discrete elements

that evolve through time. This extension provides a framework for

integrated information that is fully general and can be applied in

PLoS Computational Biology | www.ploscompbiol.org 1 June 2008 | Volume 4 | Issue 6 | e1000091



principle to any kind of physical system. It also permits further

predictions concerning the relationships between brain processes

and consciousness. Finally, irrespective of the relevance for

understanding consciousness, the notion of integrated information

presented here may be useful for characterizing computational

systems not merely as processors or stores of information, but as

integrators of information.

It is useful to briefly examine the phenomenological observa-

tions that motivate the integrated information approach to

consciousness. From a first-person perspective – the perspective

of the system that is actually capable of generating subjective

experience – two fundamental properties of consciousness are

apparent: i) there is a large repertoire of conscious experiences.

This means that, when one particular experience occurs, it

generates a lot of information; ii) each experience is integrated, i.e.

it appears as a whole that cannot be decomposed into independent

parts [4,5]. Since we tend to take consciousness for granted, these

two properties are best understood by resorting to thought

experiments: one involving a photodiode and the other a digital

camera.

Information. Consider the following: You are facing a blank

screen that is alternately on and off, and you have been instructed

to say ‘‘light’’ when the screen turns on and ‘‘dark’’ when it turns

off. A photodiode – a very simple light-sensitive device – has also

been placed in front of the screen, and is set up to beep when the

screen emits light and to stay silent when it does not. The first

problem of consciousness reduces to this: when you distinguish

between the screen being on or off, you have the subjective

experience of seeing light or dark. The photodiode can also

distinguish between the screen being on or off, but presumably it

does not have a subjective experience of light and dark. What is

the key difference between you and the photodiode?

According to the theory, the difference has to do with how

much information is generated when that distinction is made.

Information is classically defined as reduction of uncertainty when

a particular outcome occurs out of a repertoire of alternative

outcomes: the more numerous the outcomes, the greater the

reduction of uncertainty, and thus the information. When the

blank screen turns off, the photodiode enters one of its two possible

states and beeps, yielding 1 bit of information. However, when you

see the blank screen turn off, the state you enter rules out a very

large number of possible states. Imagine that, instead of turning

homogeneously off, the screen were to display at random every

frame from every movie that was ever produced. Without any

effort, each of these frames would cause you to enter a different

state and see a different image. This means that when you enter

the particular state (‘‘seeing pure darkness’’) you rule out not just

‘‘seeing light,’’ but an extraordinarily large number of alternative

possibilities. Whether or not you think of the bewildering number

of alternatives (you won’t and you can’t), this corresponds to an

extraordinary amount of information. Importantly, this informa-

tion has nothing to do with how complicated the scene is – pure

darkness or a busy city street – but only with the number of

alternative outcomes.

Integration. While the ability to distinguish among a large

number of states is a fundamental difference between you and the

photodiode, by itself it is not enough to account for the presence of

consciousness. To see why, consider an idealized megapixel digital

camera, whose sensor chip is essentially a collection of a million

photodiodes. Even if each photodiode in the sensor chip were just

binary, the camera could distinguish among 21,000,000 states, an

immense number, corresponding to 1,000,000 bits of information.

Indeed, the camera would enter a different state for every frame

from every movie that was ever produced. Yet few would argue

that the camera is conscious. What is the key difference between

you and the camera?

According to the theory, the difference has to do with integrated

information. An external observer may consider the camera chip

as a single system with a repertoire of 21,000,000 states. In reality,

however, the chip is not an integrated entity: since its 1,000,000

photodiodes have no way to interact, the state of each photodiode

is causally independent of that of the others: in reality, the chip is a

collection of 1,000,000 independent photodiodes, each with a

repertoire of 2 states. This is easy to prove: if the sensor chip were

cut down into its individual photodiodes, the performance of the

camera would not change at all. By contrast, your vast repertoire

of conscious states truly belongs to an integrated system, since it

cannot be subdivided into repertoires of states available to

independent components. Thus, a conscious image is always

experienced as an integrated whole: no matter how hard you try,

you cannot experience the left half of the visual field of view

independently of the right half, or colors independent of shapes.

Underlying this unity of experience are causal interactions within

your brain, which make the state of each element causally

dependent on that of other elements. Indeed, unlike the camera,

your brain’s performance breaks down if its elements are

disconnected. And so does consciousness: for example, splitting

the brain in two along the corpus callosum prevents causal

interactions between the two hemispheres and splits experience in

two – the right half of the visual field is experienced independently

of the left.

This phenomenological analysis suggests that, to generate

consciousness, a physical system must have a large repertoire of

available states (information) and it must be unified, i.e. it should

not be decomposable into a collection of causally independent

subsystems (integration). How can one establish the size of the

repertoire of states available to a unified system?

Our goal is to provide a way to measure how much information

is generated when a physical system enters one particular state out

of a repertoire of possible states, but only to the extent that the

information is generated by the system as a whole, above and

beyond the information generated independently by its parts.

Previous work [2,4,5] focused on neural systems modeled as

stationary multidimensional Gaussian processes. This had the

advantage that analytical results could be obtained, but suffered

from the drawback that time and the changing dynamics of the

Author Summary

We have suggested that consciousness has to do with a
system’s capacity to generate integrated information. This
suggestion stems from considering two basic properties of
consciousness: (i) each conscious experience generates a
large amount of information, by ruling out alternative
experiences; and (ii) the information is integrated, meaning
that it cannot be decomposed into independent parts. We
introduce a measure that quantifies how much integrated
information is generated by a discrete dynamical system in
the process of transitioning from one state to the next. The
measure captures the information generated by the causal
interactions among the elements of the system, above and
beyond the information generated independently by its
parts. We present numerical analyses of basic examples,
which match well against neurobiological evidence
concerning the neural substrates of consciousness. The
framework establishes an observer-independent view of
information by taking an intrinsic perspective on interac-
tions.
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systems were not taken into account. In this paper, we extend the

theory to include time as a discrete variable. We apply the theory

to simple examples, discrete systems of a dozen or fewer elements.

Although these systems are too small to be considered at all

realistic, we choose them to illustrate the relationship between

integrated information and the anatomical connectivity, causal

architecture, dynamics, and noise levels of the networks.

Models

To evaluate how much integrated information is generated

when a system enters a particular state, we consider simple systems

composed of a few interacting elements. Though the present

framework is meant to be general, it is convenient to think of

neural elements that can be active (fire) or inactive and can

communicate through directed connections.

Let X be a system consisting of n elements, which are taken to be

abstract indivisible units. Each element is assumed to have a finite

repertoire of outputs, with no accessible internal structure. In the

examples below the repertoire of the elements will typically consist

of two outputs: 0 or 1, corresponding to silence or firing. The

internal states of the elements are irrelevant because it is only

through outputs that an element can causally affect the rest of the

system.

Elements are linked by connections to form a directed graph,

specifying which source elements are capable of affecting which

target elements. Each target element is endowed with a

‘‘mechanism’’ or rule through which it determines its next output

based on the inputs it receives. These mechanisms are assumed to

be elementary, for example AND, XOR; they can also be

probabilistic.

Time is assumed to pass in discrete instants, which could

correspond to milliseconds for example. We use the word state to

refer to the total output of a given subset of a discrete system at a

given instant in time. Finally, the elements are memoryless,

meaning they are modeled as first order Markov processes: the

output of an element at time t depends only on the inputs at time

t21. In future work we will extend the framework to include

elements with memory and explain how the natural time frame

over which a system generates integrated information is specified.

Notation. We refer to systems and subsets of systems by

capital letters: X, S and so forth. Uppercase letters with subscripts

(X0, S0) denote probability distributions of perturbations that are

physically imposed on the outputs of a subset at a given time, e.g.

at t = 0. Lowercase letters with subscripts (x1, s1) denote events: the

actual output of the subset in question at a particular time, e.g. at

t = 1.

Information
First, we need to evaluate how much information is generated

by a system when it enters a particular state, x1, out of its repertoire

(a repertoire is a probability distribution on the set of output states

of a system). The information generated should be a function of

how large the repertoire of possible states is, and how much

uncertainty about the repertoire is reduced by entering state x1.

Also, the reduction of uncertainty must be produced by

interactions among the elements of the system acting through

their causal mechanisms, which is why we call it effective information.

Let us first consider an isolated system, as in Figure 1. The

system consists of three AND-gates and transitions from state

x0 = 110 at time zero to state x1 = 001 at time one. How much

effective information does the system generate? To answer the

question we need to precisely describe: i) the alternative states

available to the system (the a priori repertoire); ii) those states that

the architecture of the system specifies as causes of x1 (the a

posteriori repertoire). Effective information captures the information

generated by the system by measuring the difference between

these two repertoires.

Effective information is defined as the entropy of the a

posteriori repertoire relative to the a priori repertoire, which we write

as:

ei X0?x1ð Þ :~H p X0?x1ð Þ pmax X0ð Þk½ �: ð1AÞ

The a priori repertoire is the probability distribution on the

set of possible outputs of the elements considered independently,

with each output equally likely. This repertoire includes all

possible states of the system prior to considering the effects of its

causal architecture and the fact that it entered state x1. This

distribution is imposed onto the system, i.e. we perform a

perturbation in the sense of [6]. The a priori repertoire coincides

with the maximum entropy (maxent) distribution on the states of

the system; we denote it by pmax(X0). No perturbation can be ruled

out a priori, since it is only by passing a state through the

mechanism that the system generates information. The maximum

entropy distribution formalizes the notion of complete ignorance

[7]. In Figure 1 the a priori repertoire distribution assigns equal

probability to each of the 23 = 8 possible outputs of the system.

The a posteriori repertoire p(X0 R x1) is the repertoire of

states that could have led to x1 through causal interactions. We

determine the a posteriori repertoire by forcibly intervening in the

system and imposing each state in the a priori repertoire, thus we

implement a perturbational approach [1,2,4,6]; see also [8,9]

which apply perturbations to measure the average interaction

between subsets for general distributions. Considering each a priori

perturbation in turn we find that some perturbations could have

caused (led to) x1 and others not (either deterministically or with a

certain probability). The a posteriori repertoire is formally captured

by Bayes’ rule, which keeps track of which perturbations cause

(lead to) the given effect (see Text S1, section 3). In Figure 1 x0 is

the unique perturbation that causes x1, so the a posteriori repertoire

assigns weight 1 to x0 and weight 0 to all other perturbations.

Relative entropy (also known as Kullback-Leibler divergence,

see Text S1, section 1) is the uncertainty reduction provided by an

a posteriori repertoire with respect to an a priori repertoire. It is

always non-negative, and is zero if and only if the repertoires are

identical. In our case the information is generated by the system

when, through causal interactions among its elements, it enters

Figure 1. Effective information generated by entering a
particular state. A system of three connected AND-gates transitions
from state x0 = 110 at time zero to x1 = 001 at time one. The a priori
repertoire is the uniform distribution on the 8 possible outputs of the
elements of the system. The causal architecture of the system specifies
that state 110 is the unique cause of x1, so the a posteriori repertoire
(shown in cyan) assigns probability 1 to state 110 and 0 to all other
states. Effective information generated by the system transitioning to x1

is 3 bits.
doi:10.1371/journal.pcbi.1000091.g001
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state x1 and thereby specifies an a posteriori distribution with respect

to an a priori distribution. By comparing the a priori and a posteriori

repertoires effective information measures those ‘‘differences that

make a difference’’ [10].

Given that the second term is a maximum entropy distribution,

Equation 1A can be more simply written as a difference of

entropies, so that

ei X0 ? x1ð Þ~ H pmax X0ð Þð Þ{ H p X0 ? x1ð Þð Þ: ð1BÞ

Here H(p(2))is the entropy of probability distribution p. Entropy

of the a priori repertoire n bits in a system of n binary elements. The

second term is the entropy of the a posteriori repertoire, and lies

between 0 and n bits depending on the state x1 and the

architecture of the system. It follows that a system of n binary

elements generates at most n bits of information.

In Figure 1 the entropy of the a priori repertoire is 3 bits and that

of the a posteriori is 0 bits, so 3 bits of effective information are

generated by the system when it enters x1: one out of eight

perturbations is specified by the system as a cause of its current

state, and the other 7 perturbations are ruled out, thus reducing

uncertainty (generating information).

In Figure 2, we show that effective information depends both

on the size of the repertoire and on how much uncertainty is

reduced by the mechanisms of the system. Figure 2A depicts a

system of two elements. The a priori repertoire is smaller than in

Figure 1, and effective information is reduced to 2 bits. Figure 2B

shows the AND-gate system entering state x1 = 000. In this case the

a posteriori repertoire specified by the system contains four

perturbations that cannot be distinguished by its causal architec-

ture, since each of the four perturbations leads to 000. Fewer

alternatives from the a priori repertoire are ruled out, so effective

information is 1 bit.

Finally, Figure 2C and 2D illustrate two systems that generate

no effective information. In Figure 2C the elements fire no matter

how the system is perturbed, so the system always enters state

x1 = 111. The process of entering x1 does not rule out any

alternative states, so the a posteriori repertoire coincides with the a

priori repertoire and effective information is zero. In Figure 2D the

elements fire or not with 50% probability no matter how the

system is perturbed. In other words, the behavior of the system is

completely dominated by noise. Again, the process of entering x1

does not rule out any alternative states, so the a posteriori repertoire

coincides with the a priori repertoire and effective information is

zero.
Effective information in systems that are not

isolated. Up to now we have exclusively considered isolated

systems. Suppose we embed X in some larger system W that forms

the ‘‘world’’ of X. Inputs from the environment, E = W \ X, to X

cannot be accounted for by X internally. From X’s point of view

they are a source of extrinsic noise, since the information

generated by the system must be due to causal interactions within

the system. In general, to compute effective information one

should average over all possible external inputs with the maximum

entropy distribution (see Text S1, section 3, for details).

Integrated information
Next, we must evaluate how much information is generated by a

system above and beyond what can be accounted for by its parts

acting independently.

Consider Figure 3A. Effective information ei(X0 R x1) generated

by the system, considered as a single entity, is 4 bits. In this case,

however, it is clear that the two couples do not constitute a single

entity at all: since there are no causal interactions between them,

each of the disjoint couples generates 2 bits of information

independently (Figure 3B). Effective information tells us how much

information is generated without taking into account the extent to

which the information is integrated. What we need to know, instead,

is how much information is generated by the system as a whole,

over and above the information generated independently by its

parts, that is, we need to measure integrated information.

Integrated information w (I for information and O for

integration) is defined as the entropy of the a posteriori repertoire of

the system relative to the combined a posteriori repertoires of the parts:

w x1ð Þ~ H p X0 ? x1ð Þ
Y

Mk[PMIP

p Mk
0 ? mk

1

� ������
" #

, ð2AÞ

where M and m stand for parts, and PMIP is the minimum

information partition, which represents the natural decomposition of

the system into parts.

The a posteriori repertoires of the parts are found by

considering each part as a system in its own right (averaging over

inputs from other parts and extrinsic to the system, Figure 4). Each

part has an a priori repertoire, given by the maximum entropy

distribution. The product of the a priori repertoires of the parts is

the same as the a priori repertoire of the system, since the elements

are treated independently in both cases. The a posteriori repertoire

p Mk
0 ? mk

1

� �
of each part Mk is specified (as for the whole, X, in

the previous section) by its causal architecture and current state mk
1 ,

after averaging over external inputs. Thus the rest of the system is

treated as a source of extrinsic noise by each part. The effective

information generated independently by the parts, shown in red in

Figure 4, is the sum of the entropies of their a priori repertoires

relative to their a posteriori repertoires.

Integrated information, shown in dark blue, measures the

information generated by the system through causal interactions

among its elements (its a posteriori repertoire) with respect to (over

and above) the information generated independently by its parts

(their combined a posteriori repertoires). In particular, integrated

information is zero if and only if the system can be decomposed

into a collection of independent parts. Thus, w(x1) of a system

captures how much ‘‘the whole is more than the sum (or rather the

product) of its parts.’’

To exemplify, consider again the system of Figure 3, where the

natural decomposition into parts is given by the subsets M1 and M2,

as shown in Figure 3B. The a posteriori repertoire p M1
0 ? m1

1

� �
specifies perturbation 10. Similarly the a posteriori repertoire of M2

specifies perturbation 01. The combined a posteriori repertoire of the

parts specifies perturbation 1001 (red notch), coinciding with the a

posteriori perturbation specified by the entire system. No alternatives

are ruled out by the system as a whole, so integrated information is

w x1ð Þ :~ H p X0 ? x1ð Þ p M1
0 ? m1

1

� �
:p M2

0 ? m2
1

� ���� �
~ 0 bits:

The system generates no information as a whole, over and

above that generated by its parts.

Of note, a related measure is stochastic interaction [11], which

quantifies the average interactions between subsets of a system.

Briefly, our approach is distinguished by comparing the whole to

the parts, rather than the parts to one another; see Text S1, section

8, for detailed discussion and technical motivation.

The minimum information partition. In the case of the

two couples the natural decomposition of the system into parts is

captured by partition PMIP. Considering other partitions, for

Integrated Information in Discrete Systems
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example partition P ~ M
1
,M

2
n o

in Figure 3C, would miss the

obvious decomposition of the system into independent parts and

lead to erroneous estimates of integrated information. This

example suggests that, for any system, we need to find the

informational ‘‘weakest link’’, i.e. the decomposition into those

parts that are most independent (least integrated). This weakest

link is given by the minimum information partition PMIP, which

can be found by searching over all partitions of the system after

appropriate normalization.

To do so, let us define the effective information across an arbitrary

partition P ~ Mk
� �m

k~1
as

ei X0 ? x1=Pð Þ~ H p X0 ? x1ð Þ
Y

Mk[P

p Mk
0 ? mk

1

� ������
" #

,

where the parts are mutually disjoint and collectively pave the

system. A special case to consider is the total partition P = {X}.

Since the part is the entire system, the a posteriori repertoire of the

Figure 2. Effective information: a few examples. Each panel depicts a different system, which has entered a particular state. The a priori and a
posteriori repertoires are shown and effective information is measured. (A) is a simple system of two elements that copy each other’s previous
outputs (a couple). Effective information is 2 bits, less than for the system in Figure 1 since the repertoire of outputs is smaller. (B) shows the AND-
gate system of Figure 1 entering the state 000. This state is less informative than 001 since the a posteriori repertoire specified by the system includes
four perturbations; effective information is reduced to 1 bit. The systems in (C) and (D) generate no effective information. In (C) the elements always
fire regardless of their inputs, corresponding to an inescapable fixed point. In (D) the elements fire or are silent at random, so that the prior state is
irrelevant. In both cases the a posteriori repertoire is the maximum entropy distribution since no alternatives have been ruled out, so effective
information is zero.
doi:10.1371/journal.pcbi.1000091.g002
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part equals that of the system, so if we apply Equation (2A) to the

total partition we always obtain zero. Thus we define effective

information across the total partition to be effective information

generated by the entire system, as in Equation 1A. For a system

containing no elements with self-connections effective information

generated by the system (across the total partition) and effective

information across the partition into individual elements

coincide.

Normalization. Normalization is necessary because effective

information across an asymmetric bipartition where one part

contains a single element and the second part contains the rest will

typically be less than across a symmetric partition into two parts of

equal size. Similarly, effective information across partitions into

many parts tends to be higher than across partitions into few parts.

To fairly compare different partitions we therefore introduce the

normalization:

Figure 3. Integrated information for a system of two disjoint couples. The panels analyze the same system of two disjoint couples from
three different perspectives. The interactions in the system are displayed in cyan. Those interactions that occur within a part are shown in red, and
those between parts are in dark blue. (A) computes effective information for the entire system X, finding it to be 4 bits. (B) computes effective
information generated by each of the couples independently and then computes integrated information w(x1), finding it to be 0 bits since the two
couples do not interact. Notice that the combined a posteriori repertoire of the parts coincides with the a posteriori repertoire of the system; the parts
account for all the interactions within X. (C) considers a partition of the system other than the minimum information partition. Since M

2
is not

isolated it cannot account for the effect of interactions with M
1

internally; they are treated as extrinsic noise and result in M
2

specifying a maximum
entropy a posteriori repertoire. Effective information generated across the partition is 4 bits.
doi:10.1371/journal.pcbi.1000091.g003

Integrated Information in Discrete Systems
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NP ~ m { 1ð Þ:min
k

Hmax Mk
0

� �� �
,

where m is the number of parts in the partition. The normalization

is the size of the smallest a priori repertoire of a part multiplied by

the number of other parts. In particular, for a partition into two

parts NP is the size of the smaller a priori repertoire. The

normalization for the total partition is NP = Hmax(X0).

The minimum information partition (MIP) can then be defined as the

partition for which normalized effective information is a minimum:

PMIP ~ arg min
P

ei X0 ? x1=Pð Þ
NP

� 	
:

If there is more than one partition that attains the minimum

normalized value, we select those partitions that generate the

lowest un-normalized quantity of effective information to be the

minimum information partition(s). Once the minimum informa-

tion partition has been found, integrated information can be

simply expressed as

w x1ð Þ~ ei X0 ? x1



PMIP

� �
: ð2BÞ

Integrated information is bounded. For a discrete system

composed of n binary elements w(x1)#n bits. This follows since the

normalization is largest for the total partition, and for this partition

effective information is H pmax X0ð Þð Þ{ H p X0 ? x1ð Þð Þƒ n
bits.

Complexes
For any given system X, we are now in a position to identify

those subsets that are capable of integrating information, the

complexes. A subset S of X forms a complex when it enters state s1 if

w(s1).0 and S is not contained in some larger set with strictly

higher w. A complex whose subsets have strictly lower w is called a

main complex. For instance, the complex in a given system with the

maximum value of w necessarily forms a main complex.

S 5 X is a complex iff
w s1ð Þw 0

w t1ð Þƒ w s1ð Þ for all T 6 S

� 	
: ð3AÞ

In addition,

S 5 X is a main complex iff
S is a complex

w r1ð Þv w s1ð Þ for all R 5 S

� 	
: ð3BÞ

At each instant in time any system of elements can be

decomposed into its constituent complexes, which form its

fundamental units. Indeed, only a complex can be properly

considered to form a single entity. For a complex, and only for a

complex, it is meaningful to say that, when it enters a particular

state out of its repertoire, it generates an amount of integrated

information corresponding to its w value.

Decomposing a system into complexes. Figure 5 shows

how a system X can be analyzed to find its constituent complexes,

shown in shades of gray. From the figure, we see that complexes

have the following properties: i) the same element can belong to

more than one complex, and complexes can overlap; in particular,

a smaller complex of high w (main complex) may be contained

within a larger complex of low w; ii) a complex can be causally

connected to elements that are not part of it (the input and output

elements of a complex are called ports-in and ports-out,

respectively); iii) groups of elements with identical causal

architectures can generate different amounts of integrated

information depending on their ports-in and ports-out (subsets A

and B in Figure 5).

Elements independently driven by a complex do not

generate integrated information. Figure 6 shows a system of

interacting elements, A, with three additional elements attached

that copy its outputs. In its current state, subset A forms a main

complex, and generates 3 bits of integrated information. However,

the entire system does not form a complex: w(x1) = 0 since the

interactions outside of A are redundant. Elements {n4, n5, n6} are

analogous to photodiodes in a digital camera, taking a snapshot of

A’s state. The snapshot generates no integrated information over

and above the original. Clearly an interaction occurs between

elements n3 and n6, but from the perspective of the entire system it

is redundant. Restricting attention to subset B, the couple, we see

that integrated information generated by B is 1 bit.

Complexes must be analyzed at the level of elementary

components and operations. Finding the integrated

information generated by a system requires analyzing it into

complexes from the ground up in terms of elementary components

and elementary mechanisms or operations. Figure 7 shows two

examples of systems that appear to generate a large amount of

integrated information, but on closer analysis dissolve into many

weakly interacting components with low w.

Consider the system in Figure 7A. If we ignore internal

structure, we might assume that the system is made up of two

components, each with a repertoire of 2n outputs. If the lower

component copies the output of the upper in the previous time step

then this two unit system generates n bits of integrated information

– it would seem to be trivial to implement systems with arbitrarily

large values of w. However, we need to consider how such

components could be built. Figure 7B depicts a simple construc-

Figure 4. Effective information generated across the minimum
information partition. (A) depicts the interactions within the system
that are quantified by effective information of the entire system. (B)
disentangles the interactions, showing interactions within parts in red,
and interactions between parts in dark blue. (C) is a schematic of the
relationship between the repertoires specified by the system and the
parts. Effective information, represented by the arrows, is the entropy of
a lower repertoire relative to an upper one. w(x1) is the entropy of the a
posteriori repertoire of the system relative to the combined a posteriori
repertoire of the minimal parts.
doi:10.1371/journal.pcbi.1000091.g004
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tion: each component contains n binary elements, and the

connection between the components decomposes into couplings

between pairs of elements. Analyzing the system at this more

detailed level uncovers a collection of disjoint couples each of

which forms an independent complex and generates 1 bit of

integrated information. Since the system as a whole is disconnect-

ed, w = 0 bits. The dotted elliptic components have been artificially

imposed on the system and do not reflect the underlying causal

interactions, resulting in an incorrect value of w in the higher-level

analysis. Note that, if we attempt to address this problem by

adding horizontal connections between elements, so that the

components are integrated within, we introduce a second problem:

the horizontal couplings shrink the a posteriori repertoires of the

components, reducing effective information between them. We

discuss a related example, and similar considerations for

continuous systems, in Text S1, sections 10 and 11.

Figure 7C presents a similar situation. The system contains nine

binary components, with a single component receiving inputs from

the other eight; the component fires if all eight inputs are active in

the previous time step. The minimum information partition is the

total partition P = {X} and w(x1) = 8 bits when the top component

is firing, since it uniquely specifies the prior state of the other eight

components. Increasing the number of inputs feeding into the top

component while maintaining the same rule – fire if and only if all

inputs are active – seems to provide a method for constructing

systems with high w using binary components. The difficulty once

again lies in physically implementing a component that processes n

inputs at a single point in space and at a single instant in time for

large n. Figure 7D shows a possible internal architecture of the

component, constructed using a hierarchy of logical AND-gates.

When analyzed at this level, it is apparent that the system

generates 1 bit of integrated information regardless of the number

of inputs that feed into the top component, since the bipartition

framed by the red cut forms a bottleneck.

The examples in this paper assume that the elements are

abstract indivisible objects and that the rules are simple (logic

gates, threshold functions and variations thereof). In future work

we will investigate the internal structure of elements and determine

the conditions under which they can be considered to be

indivisible.

Extrinsic inputs can contribute to integrated information

within a complex. The a posteriori repertoire of a complex X is

specified using only information that is intrinsic to the complex;

extrinsic inputs from the environment E = W \ X are averaged

over and treated as extrinsic noise. At first glance it appears that

environmental inputs cannot meaningfully contribute to the

integrated information generated by X, however this is not the case.

Consider the cartoon example shown in Figure 8. The gray box

is a main complex, with environmental inputs (red arrows)

entering at the bottom. The bulk of the main complex (the black

zig-zag) is not shown. The portion depicted can be considered, for

example, as an idealization of the visual center of the mammalian

cortex. It is dominated by strong feedforward connections driving

the elements, with weak feedback and lateral connections. The

system enters state x1. To what extent does the a posteriori repertoire

of the system reflect environmental inputs?

We answer the question by considering the contribution of the

current state of three rows of interest, labeled Ra through Rc, to the

a posteriori repertoire. State ra
1 is entirely determined by the

feedforward connections from the environment. External inputs

are treated as noise, so the state ra
1 does nothing to reduce

uncertainty regarding the a priori repertoire of states on X. Now

consider the state rb
1. As shown, Rb simply copies Ra, so rb

1 exactly

specifies the prior state of Ra. If Ra is also copying its inputs, then

the environmental inputs contribute to the information integrated

by the system, albeit one temporal and spatial step removed. Row

Ra indirectly contributes to the total integrated information

through the effect it has on Rb. Finally Rc specifies higher-order

invariants in the a priori states of Rb by combining them in some

non-trivial manner. The a posteriori repertoire p(X0 R x1) reflects

environmental inputs from time t = 21, and extracts higher-order

invariants from environmental inputs at time t = 22. Therefore, a

complex can reflect environmental inputs once they have resulted

in causal interactions among its own elements.

Figure 5. Decomposing systems into overlapping complexes. In
this example elements are parity gates: they fire if they receive an odd
number of spikes. Links without arrows are bidirectional. The system is
decomposed into three of its complexes, shown in shades of gray.
Observe that: i) complexes can overlap; ii) a complex can interact
causally with elements not part of it; iii) groups of elements with
identical architectures generate different amounts of integrated
information, depending on their ports-in and ports-out (compare
subset A, the dark gray filled-in circle, with subset B, the right-hand
circle).
doi:10.1371/journal.pcbi.1000091.g005

Figure 6. Elements driven by a complex do not contribute to
integrated information. The system is constructed using the AND-
gate system of Figure 1, with the addition of three elements copying
the inner triple. The AND-triple forms a main complex, as do the
couples. However, the entire system generates no integrated informa-
tion and does not form a complex, since X generates no information
over and above that generated by subset A.
doi:10.1371/journal.pcbi.1000091.g006
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Results

We present examples and discussion, investigating the relation-

ship between integrated information and network dynamics,

causal architecture, and connectivity. Unless otherwise specified,

for computational reasons we measure integrated information by

considering all bipartitions rather than all partitions of a system. It is

reasonable to do so since, as shown in the Text S1, section 6,

restricting to bipartitions provides a lower bound on the expected

value of integrated information. Further, in analyzing the basic

examples below we are primarily interested in how causal

interactions change as a function of network properties, rather

than in the precise nature of the optimal modularization.

Integrated Information Is a Function of Network
Dynamics, Under a Fixed Causal Architecture

Figure 9 shows four discrete systems. Elements fire if they

receive two or more spikes. We refer to the number of elements

firing as the firing rate of the system. Graphed alongside each

system is integrated information, computed across bipartitions, as

a function of the firing rate. The graph shows average integrated

information, averaged over all output states (that can arise from

the dynamics of the system) with the given firing rate.

w is low in inactive and hyperactive states, and high when

firing patterns are balanced. It can be seen from the 4 panels

in the figure that inactive states – with no elements firing – are

typically associated with low values of integrated information. This

is because AND--gates generate less information when silent than

when spiking (compare Figure 1 and Figure 2B).

On the other hand, integrated information also decreases

dramatically when the system is in a hyperactive state, with all

elements firing. In Figure 9A and 9C no information is integrated

because too many elements are firing. This obtains despite the fact that

individual AND-gates generate more information when they are

spiking than when they are silent. The reason integrated

information is low when all elements are firing is that the system

is ‘‘over-determined’’ and the whole adds nothing to the

information generated by the parts. The highest values of w occur

for states with intermediate firing rates, which we refer to as

balanced states (as connection density increases in the networks,

the peak shifts towards higher firing rates). High w means that

many alternatives are ruled out by the entire system, and the parts

are comparatively ineffective at specifying causes. Balanced states

generate high w because the output state of the system is highly

flexible in its local causes and extremely rigid globally. The

delicate trade-off between local flexibility and global rigidity

justifies the term balanced.

Note that the systems in the figure generate (minimal amounts

of) integrated information even when they remain inactive for long

periods. Remaining in the inactive state requires that the elements

rule out alternatives from the a priori repertoire. In contrast, when

hyperactive the systems in Figure 9A and 9C generate no

Figure 7. Analyzing systems in terms of elementary components. (A) and (C) show systems that on the surface appear to generate a large
amount of integrated information. The units in (A) have a repertoire of 2n outputs, with the bottom unit copying the top. Integrated information is n
bits. Analyzing the internal structure of the system in (B) we find n disjoint couples, each integrating 1 bit of information; the entire system however is
not integrated. (C) shows a system of binary units. The top unit receives inputs from 8 other units and performs an AND-gate like operation, firing if
and only if all 8 inputs are spikes. Increasing the number of inputs appears to easily increase w without limit. (D) examines a possible implementation
of the internal architecture of the top unit using binary AND-gates. The architecture has a bottleneck, shown in red, so that w = 1 bit no matter the
number of input units.
doi:10.1371/journal.pcbi.1000091.g007
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integrated information. Thus, depending on the architecture of the

system in question, integrated information may potentially be

generated even when the system is in a fixed state and appears to

be doing nothing.

To a first approximation, cortical neurons can be considered to

be roughly analogous to the AND-gates in the figure: they fire if a

sufficiently large number of inputs are active within a given

window of time. Thus, these observations may have some

relevance concerning the relationship between neuronal firing

rates in the thalamocortical system and consciousness. Conscious-

ness is typically reduced when neuronal activity in the human

brain is severely depressed, as under deep anesthesia or in certain

comatose states. Though changes in brain function that occur in

these conditions are not limited to a reduction in neuronal firing

rates, the analysis of the figure indicates that integrated

information would certainly suffer.

Consciousness also lapses when neuronal activity is excessive

and hypersynchronous, as is the case in generalized seizures. The

simple models shown in the figure suggest that the brain’s capacity

to generate integrated information would collapse also when the

great majority of neurons were firing simultaneously.

Under normal conditions, cortical neurons in vivo operate in a

finely balanced regime, hovering near their spiking threshold, with

excitatory and inhibitory inputs approximately canceling each

other out [12–15]. Maintaining a balanced level of firing must be

exceedingly important for brain function, as the largest fraction of

the brain’s energy budget is devoted to sustaining spontaneous

activity [16,17]. The analysis of Figure 9 suggests that a fine

balance between excitation and inhibition is required for a system

to have high w. Perhaps one reason why spontaneous activity is so

important is that, by ensuring the availability of a large repertoire

of causal states, it represents a necessary condition for a high level

of consciousness.

High values of w cannot be sustained under bistable

dynamics. Figure 10 investigates a modified version of the

network in Figure 9C. The connectivity is unchanged, but the

rules are altered to implement a bistable dynamics. The

hyperactive and inactive states are made unstable, resulting in

the system oscillating between the two extremes; see figure legend

Figure 8. Integrated information and extrinsic inputs. The gray
box represents a main complex. Red arrows are input from the
environment. Black arrows depict strong feedforward connections; gray
arrows are weaker modulatory connections. The black zig-zag
represents the bulk of the main complex. The current state of row Ra

is determined by extrinsic inputs, which are treated as extrinsic noise.
However the current state of row Rb together with the feedforward
architecture of the system together specify the prior state of Ra, so that
the system is able to distinguish extrinsic inputs once they have caused
an interaction between elements within the main complex. Similarly row
Rc specifies higher-order invariants in the prior state of row Rb.
doi:10.1371/journal.pcbi.1000091.g008

Figure 9. Integrated information peaks in balanced states. (A–D) show four discrete systems; lines represent bi-directional connections.
Elements fire if they receive two or more spikes. The graph shows integrated information as a function of the number of elements firing. Integrated
information is computed by averaging over all states with a particular number of elements firing. Integrated information is low for hyperactive and
inactive states when too many or too few elements are firing, and high for balanced states lying between the two extremes. Note that in (A) the value
of w for 7 elements firing is undefined, since no state with seven elements firing is possible given the causal architecture.
doi:10.1371/journal.pcbi.1000091.g009
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for details. The red curve in Figure 10 shows the percentage of

elements firing. The network tends to remain at low firing rates for

a while, until a threshold of three or more elements firing is

reached. Elements are then rapidly recruited into the firing pattern

until the system approaches a hyperactive state and activity is shut

down. The blue curve shows w, which reflects the bistable

dynamics. w peaks when a few of the elements are firing. However,

it collapses to nearly zero when the system is hyperactive, or when

the elements are shut down. The jagged form of the curve is a

consequence of the network having only eight elements, resulting

in abrupt dynamics.

Despite its simplistic implementation, the bistable behavior of

the simulated network bears some resemblance to that of

thalamocortical circuits during slow wave sleep [18]. Throughout

slow wave sleep, all cortical neurons alternate between a

depolarized UP state during which spikes are generated, and a

hyperpolarized DOWN states during which there is complete

synaptic inactivity. The alternation between UP and DOWN

states, which happens on average once a second, reflects the

underlying bistability of cortical circuits, as suggested both by

experimental perturbations [19] and by detailed models [20].

During wakefulness, by contrast, thalamocortical circuits return to

a state of balanced depolarization and tonic firing. Based on the

present analysis, it would appear that, when thalamocortical

circuits become bistable, they cannot sustain high levels of

integrated information, which could in principle account for the

fading of consciousness during early sleep [21].

Integrated Information Is a Function of Causal
Architecture Under a Fixed Network Dynamics

w can vary in systems with identical surface dynamics

(cycling through the same states in the same sequence)

depending on the presence/absence of causal

interactions. Figure 11 depicts a system of four elements.

Suppose the system cycles through all 16 possible firing patterns as

follows: 0000, 0001,…,1111, 0000, counting in binary from 0 to

15 and then repeating. Consider two ways in which the dynamics

could be implemented. The first uses memoryless elements, with

connectivity as shown in the figure. For example element n2 has

afferents from itself and n1, and fires if it receives input pattern (n1,

n2) = (0,1) or (1,0), and is silent otherwise. Alternatively, the same

dynamics can be achieved with no interactions between the

elements, as in Figure 11C. Element n1 alternates between firing 0

and 1. Element n2 alternates firing 00 and 11, and so forth.

Element n1 has a memory of one time step, and element n4, which

alternates firing eight consecutive zeros and ones, has a memory of

eight time steps. The two implementations (with correct initial

conditions) produce identical dynamics, and cannot be

distinguished by observing the systems. Nevertheless, in the first

case w = 4 (across the total partition) or w = .19 bits, depending on

the current state, and in the second case it is zero for all states.

More generally, suppose we have two systems exhibiting

complex, yet identical, behavior. The first contains many

interacting elements, the second is a ‘‘replay’’: each element is

given a list of outputs that it runs through, reproducing the original

behavior. Passively observing the two systems and computing

correlations, mutual information or related quantities does not

distinguish between causal interactions and mere replay. In

contrast, perturbing the systems and measuring integrated

information does discriminate between the two situations. No

integrated information is generated by the replay, and (potentially)

high integrated information is generated by the causally

interacting system.

w can vary in systems with similar surface dynamics

(cycling through the same states in a different sequence)

depending on the complexity of the causal

interactions. Behaviors that appear qualitatively similar may

require very different causal architectures. Suppose we scramble

the sequence of firing patterns to the following:

0 ? 8 ? 14 ? 6 ? 2 ? 7 ? 5 ? 10 ? 9 ?

3 ? 13 ? 11 ? 4 ? 15 ? 12 ? 1 ? 0

where 0 corresponds to firing pattern 0000, 6 to 0110, and so

forth. The dynamics are qualitatively the same in that the system

cycles through all 16 possible firing patterns as before; all that has

changed is the sequence. Nevertheless, computing w for this

network we find that it is 4 bits for all states, with the total partition

as the MIP. The original counting sequence was implemented in a

memoryless system using the connectivity shown in Figure 11. The

Boolean functions implemented by the elements become

progressively more complicated going from n1 to n4 as the

elements require more information to keep track of their position

Figure 10. Bistable dynamics. The system has connectivity as in
Figure 9C, with altered element behavior. If an element receives less
than two spikes it fires with probability .15. If it receives 2 or more
spikes it fires with certainty, unless more than half the elements fired in
the two times step prior, in which case all elements are silent. The graph
plots w and the percentage of elements firing, as the system is run for
120 time steps. The system implements a bistable dynamics, and is
unable to sustain high values of w.
doi:10.1371/journal.pcbi.1000091.g010

Figure 11. System cycling (via binary counting) through 16
firing patterns. The system cycles through the firing patterns 0000,
0001, 0010, …, 1101, 1110, 1111; counting in binary from 0 to 15 and
repeating. (A) and (B) show the system, implemented with interacting
memoryless elements, in two different states. (C) shows a system with
identical dynamics, implemented using four elements independently
replaying a list of instructions. Since there are no causal interactions, the
replay generates no integrated information, in contrast to the
memoryless system.
doi:10.1371/journal.pcbi.1000091.g011
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in the sequence. Nevertheless the system admits a simple

description – binary counting – which the architecture reflects.

The scrambled sequence does not admit a simple description and

implementing it with memoryless elements requires denser wiring

and more complicated Boolean functions (see Text S1, section 12).

From a dynamical systems point of view the counting sequence

and the scrambled version are difficult to distinguish. The phase

space is a four dimensional hypercube with 16 vertices

corresponding to the 16 firing patterns. In both cases the system

cycles through all the points in the hypercube. The difference,

which w is sensitive to, is in the details of the specific firing patterns

and the causal interactions which lead to the system transitioning

from one state to another. It is not immediately obvious from the

dynamics how complicated the underlying interactions are, or

indeed, whether the dynamics are a result of interactions at all.

Integrated information captures the extent to which a systems

dynamics are due to causal interactions within a single entity. This

suggests that w is related to the notion of an e-machine [22]

introduced in computational mechanics, which captures the

minimal causal architecture that can generate a given pattern.

Similarly, the algorithmic complexity [23] of the processing within

a system, where the algorithmic complexity of an object (in our

case the interactions within the system) is a measure of the

computational resources required to describe it, should be related

to the integrated information generated by the system.

Integrated Information Is a Function of Causal
Architecture

High w requires functionally integrated and functionally

specialized networks. We have seen that, for a fixed causal

architecture, the dynamics of a system determines the quantity of

integrated information generated. This section shifts the emphasis

and considers how integrated information depends on the

underlying causal architecture. A system optimized to generate

high w using simple rules (AND-gates) is shown in Figure 12. The

elements in the network are limited to receiving exactly two inputs

(or zero in the case of the two ‘‘sources’’). The system generates

w = 3.75 bits for the firing pattern shown. The network is densely

and heterogeneously connected. Although every element applies

the same rule, they are functionally specialized by virtue of their

varying connectivity: the elements play distinct functional roles in

the network, receiving unique sets of inputs, and thus specifying

the a posteriori repertoire in different ways. The system is

functionally integrated since it does not decompose into

disconnected pieces or into weakly connected modules: the

architecture tightly binds the elements, in spite of the sparse

connectivity. Further, the optimized architecture is recurrent:

there are multiple feedback loops embedded in the system.

It was not possible to scale the architecture up to more than a

few elements because of the computational burden entailed in

optimizing w for large systems, although there is evidence to

suggest that architectures balancing functional specialization with

functional integration produce complex dynamics [24], and so

may be able to generate high w. In the remainder of the section we

investigate the general consequences of imposing structural

restrictions on the class of networks under consideration (imposing

strongly modular or homogeneous architectures for example) and

describe the resulting information-theoretic bottlenecks, regardless

of network size.

w is low for strongly modular systems. Figure 3 presented

an example of a perfectly modular system: the two couples were

disconnected. Each couple formed a complex and no integrated

information was generated by the entire system. More generally,

we can consider strongly modular systems, in which there are weak

or sparse connections between highly integrated modules.

Figure 13 shows a strongly modular system of four modules,

with all elements silent. Each module is reciprocally connected to

two of the others. Integrated information is low; in particular, each

of the modules generates w(m1) = 1.2 bits of integrated information.

In contrast to the couples, the whole system does form a complex,

but w is .7 bits, even lower than for the modules. Simply

connecting a collection of large integrated modules together does

not ensure the resulting system will have high w. It is necessary that

the modules be properly integrated with one another. In strongly

modular systems the weak or limited interactions between modules

forms a bottleneck, keeping w low as in the figure.

w is at most one bit for homogeneous networks with

binary elements. Strongly modular systems suffer from the

defect that they are insufficiently integrated. At the opposite end of

the spectrum are homogeneous systems, which lack specialization.

A homogeneous network has all-to-all connectivity, including self-

connections. There are no limitations on the computational power

of the elements, and connections efferent to different elements can

have different weights, but we require that all the connections

efferent to a given element be identical and that all elements

implement the same computation. Under these conditions, the

maximum expected integrated information generated by the

system is 1 bit (see Text S1, section 6).

Figure 14A is an example of a homogeneous system, the parity

system. Elements fire if they receive an odd number of spikes and

are silent otherwise, so that perturbing any element changes the

output of every element in the next time step. It follows that no

part is independently able to rule out any alternatives: the a

posteriori repertoires of the parts is the maximum entropy

distribution, and w x1ð Þ~ ei X0 ? x1ð Þ. The a posteriori repertoire

of the system specifies whether the prior state was even or odd,

generating 1 bit of information, thus for the parity system, w = 1

bit. Increasing the number of elements in the parity system

makes no difference to the amount of integrated information it

generates.

Figure 14B shows a second homogeneous system, operating

according to a majority rule: elements fire if more than half fired in

the previous instant. The minimum information partition is given

by a vertical or horizontal bipartition, shown in the figure. In

Figure 12. Optimized network of AND-gates. The network is
optimized to generate high integrated information in a single state,
that shown. Each element implements an AND-gate.
doi:10.1371/journal.pcbi.1000091.g012
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contrast to the parity system the parts are able to partially reduce

uncertainty independently, so w is even lower, .79 bits.

w is at most proportional to n for an n6n lattice of binary

elements. Figure 15 shows two causal architectures that can be

implemented on two-dimensional lattices. Figure 15A shows a grid

consisting of XOR-gates. The XOR-grid has minimum information

bipartition given by a horizontal or vertical mid-partition, so for a

system with n2 elements we find w = n bits, regardless of the state

the system enters. The main complex is the entire grid.

Figures 15B and 15C show integrated information generated by

a Game of Life grid [25] in two different configurations. As with

the XOR-grid, w on n6n Game of Life grid is approximately

(depending on the configuration) proportional to n. It is known

that a universal Turing machine can be built on an infinite Game

of Life grid. Thus we should not be surprised that w can increase

without bound as a function of grid size: there is no limit to the

computational power that can be embedded in lattice architec-

tures. In particular, for the Game of Life, this suggests that certain

configurations act in concert so the system admits a higher-order

description. Forthcoming work will present a framework for

analyzing systems at different spatiotemporal scales and apply it to

uncover higher-order structure in the Game of Life; we will further

show that the XOR-grid possesses no higher-order structure.

It is possible, but inefficient, to build systems with high w using

grid architectures. As a point of comparison, the 8-element

AND-gate network in Figure 12 generates w = 3.75 bits, consider-

ably more than the maximum attained (2.3 bits) by a 363 grid of

AND-gates. The inefficiency increases with the size of the grid; for

example an XOR-grid of a million elements is needed to generate

1000 bits of integrated information. w of a grid is limited by the

interactions occurring along the perimeters of the parts, so that the

expected value of w for an n6n grid is proportional to n (see Text

S1, section 6). More generally, in a three-dimensional lattice

interactions occur along the surfaces of the parts, so w will be

Figure 13. Integrated information in a strongly modular
network. The system is composed of three four-element modules.
The elements fire if they receive two or more spikes. The entire system
forms a complex (light gray) with w(x1) = .7 bits; however, the
architecture is strongly modular so that the main complexes (dark
gray) are the modules, each generating w = 1.2 bits of integrated
information across the total partition, more than the system as a whole.
doi:10.1371/journal.pcbi.1000091.g013

Figure 14. Integrated information in homogeneous systems. The systems have all-to-all connectivity, including self-connections. (A) shows a
parity system: each element fires if it receives an odd number of spikes and is silent otherwise. The MIP is the total partition and integrated
information is 1 bit. (B) shows a majority-rule system where elements fire if they receive three or more spikes. The MIP is the bipartition shown. The a
posteriori repertoire specified by each part contains three perturbations, with weights .09, .09, and .8 respectively. The combined a posteriori
repertoire contains 9 perturbations of varying weights, as shown. The a posteriori repertoire of the system contains 5 equally weighted perturbations.
Integrated information is .79 bits.
doi:10.1371/journal.pcbi.1000091.g014
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proportional to their surface area, a phenomenon similar to the

holographic principle [26].

Introducing longer range connections, as in Figure 15D, short-

circuits the perimeter bottleneck by exposing the interiors of the

minimal parts to interactions with one another, and may

(depending on the elements) increase w. These additional

connections are biologically realistic: neurons in the cortex have

dense local connectivity and sparser links to distal regions, and can

be idealized as forming a grid with long-range connections.

Strict feedforward architectures are inefficient for

generating integrated information. Strictly feedforward

networks, Figure 16, are commonly used in pattern recognition

tasks. A sensory sheet below the network feeds inputs into the

system. Effective information between the system in Figure 16A

and the sensory sheet is 1.6 bits or 8 bits, if all or none of the

elements in the bottom layer is firing respectively. A more realistic

network could be designed using more elements with greater

computational power, resulting in higher values of effective

information generated across the sensory sheet. However, the

sensory sheet does not determine the integrated information

generated by the system; instead we need to find the minimum

information partition. In Figure 16A the MIP is given the cut

separating the grandmother element n1 from its inputs. w = .3 bits

when no elements are firing and w = 1 bit when all elements are

firing. Increasing the size of the network makes no significant

difference so long as the bottleneck introduced by the tree-like

hierarchical architecture is in place.

Figure 16B and 16C consider the effect of adding additional

elements and connections to create a second grandmother cell. If

the second grandmother is redundant, extracting identical

invariants to the first, Figure 16B, then w = 0 bits. If the second

grandmother extracts different invariants, as in Figure 16C, then

integrated information increases from w = .3 to w = .5.

Finally in Figure 16D and 16E we consider grid-like feedfor-

ward architectures that have additional connections breaking the

tree structure of the previous examples. These networks do not

suffer from a bottleneck at the grandmother cell, and w increases

with network size. However the networks are diagonal sections of a

grid, and so are similarly inefficient at generating integrated

information. Adding feedback and lateral connections to a

feedforward network can potentially increase the integrated

information generated by a system by increasing the number of

non-redundant causal interactions.

Integrated Information for Probabilistic Systems
(Hopfield Networks)

Small synchronously updated Hopfield networks [27,28]

provide a class of examples that are computationally tractable

and have interesting dynamics. Hopfield networks are probabilistic

systems constructed so that for any initial condition the network

tends to one of a few stable firing patterns called attractors. The

integrated information generated by a firing pattern depends, in

an interesting way, on the relationship between the firing pattern

and the attractors embedded in the network.

A Hopfield network consists of N elements with all-to-all

connectivity. The probability of the ith element firing at time t is

given by

pi(t) ~
e

b
P

j

Cij nj (t{1)

e
b
P

j

Cij nj (t{1)

z e
{b
P

j

Cij nj (t{1)
,

where nj(t21) is 0 or 1 according to whether the jth element fired at

time t21; and b = 1/T The temperature T is a measure of the

amount of indeterminacy in the system: higher temperatures correspond

to more noise. The connection matrix Cij is constructed so that the

network contains certain attractors. For each attractor stored

deliberately there will be additional ‘‘spurious’’ attractors: for

example a network designed to store the firing pattern

{0…01…1} will also contain its mirror image {1…10…0}. This

is a quirk of the Hopfield network design. The construction is as

follows. Suppose we wish to store attractor states j1,…jP. Set

Cij ~
Xp

m~1

2jm
i { 1

� �
2jm

j { 1
� �

: With this connection matrix

and the probabilistic firing rule above the network will typically –

depending largely on the temperature – settle into one of the

attractor states (including the spurious states) given any initial

condition. The construction crucially depends on the near

orthogonality of the attractors considered as vectors in the N

dimensional space determined by the network. Choosing N to be

large – hundreds of elements – and picking the attractors

randomly, most easily arranges this near orthogonality. Since

Hopfield networks possess all-to-all connectivity and identical

elements they are similar to homogeneous systems. The crucial

difference is that the weights on the arrows afferent to each

element vary.

Figure 17 depicts a Hopfield network consisting of 8 elements

with 6 embedded attractors. Since we work with a small network

randomly chosen attractors will not be orthogonal; instead we

carefully choose the attractors so the patterns do no interfere with

one another. The attractors are 00001111, 00110011, 01010101,

and their mirror images. A sample run is shown at temperature

T = .45 and initial state 11111111. The network quickly relaxes

Figure 15. Integrated information for lattice architectures. (A) is
an n6n XOR-lattice. The minimum information partition is given by a
vertical or horizontal midpartition. Integrated information is n bits; and
so can be increased without limit by scaling up the (highly inefficient)
architecture. (B) and (C) show integrated information for a Game of Life
grid in two different configurations. Cells in the grid are either ON or
OFF. Each cell has 8 neighbors, the grid is assumed to wrap around to
form a torus. A cell that is OFF switches to ON in the next time step if
exactly 3 of its neighbors are ON. An ON cell remains ON if two or three
neighbors are ON; otherwise it switches to OFF. (D) shows long-range
connections short-circuiting the perimeter bottleneck intrinsic to lattice
architectures.
doi:10.1371/journal.pcbi.1000091.g015
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into an attractor. The graphs show integrated information as a

function of temperature, which ranges between .05 and 2. We

analyze integrated information generated by the system in detail

for different states to better understand how integrated informa-

tion and the repertoire reflect the dynamics.

The specific choice of attractors has an interesting consequence.

Notice that the pairs of elements n1 and n8 have opposite outputs in

all 6 attractors. Similarly for the pairs {n2, n7}, {n3, n6}, and {n4,

n5}. It turns out that the connection matrix for the Hopfield

network (embedding the 6 attractors above) has stronger

connections within each couple than between them. The couples

are the dominant small-scale feature of the network, a structural

feature that will be reflected in the integrated information

generated by the system.

w varies with temperature in a Hopfield network. First,

the graphs in Figure 17 show that w decreases as temperature goes

up. The increase in noise reduces the systems’ ability to specify

their a posteriori repertoires. Second, the trend across panels is that

the size of the main complex decreases with increased

temperature. In Figure 17B the main complex shrinks from the

entire system to a 6 element subset, and in Figure 17A and 17D it

decomposes into a collection of couples. Intuitively, at higher

temperatures the system is less able to cohere: it becomes less and

less reasonable to treat it as a single entity. This is reflected in the

decreased values of w and more fundamentally in the reduction in

size of the main complex.

w is low for attractor states and neutral states in a

Hopfield network. Of all the Hopfield network’s 256 possible

firing patterns, integrated information is lowest when the system is

in the states depicted in Figure 17A and 17D. The 6 attractors are

the firing patterns with the lowest w. If we take an attractor state

and alter it minimally, respecting the couple structure, we find we

have to change two elements at once. There are 8 ways of doing

this, producing firing patterns such as 00011110, 00101011 and so

forth. These form the category of firing patterns providing the

second lowest values of w, along with a second group that we now

describe. The second group contains 16 firing patterns, including

11111111; we term states in this category neutral states. The

defining characteristic of neutral states is that both elements in

each couple have the same output.

Why do attractors and their neighbors generate low integrated

information? When the system is in an attractor all of its elements

are acting in concert to reinforce the current state. The parts are

able to independently rule out most a priori states, and the

interactions between the parts provide little extra information.

Neutral states are far removed from the attractor states, and the

causal architecture of the system is strongly biased against these

states occurring, particularly in systems with low temperature.

They are highly unstable. Nevertheless, unlike the tense states

described below, w is low. Neutral states are locally incompatible

with the architecture of the system, since the elements in each

couple have the same state, an outcome in opposition to the

network’s connectivity. The elements are working against each

other locally (at the level of couples), and so the system does not

cohere as a single global entity.

w is high for tense states in a Hopfield network. Tense

states are the opposite of neutral states: they are locally compatible

with the architecture of the system, but globally incompatible. The

global tension is grounded and amplified by the local

compatibility. The tense states are 01101001 and 10010110.

These resemble the attractors in that each couple is in its natural,

internally opposed, state. However, of all states that respect the

internal structure of the couples, they are the most different from

the attractor states, differing in 4 elements. Thus, the state is

compatible with the couples’ causal architecture, but highly

incompatible with the architecture of the entire system (the

Figure 16. Integrated information in feedforward networks. (A) shows a tree-like hierarchical feedforward network. Effective information from
the sensory sheet below the grid (not shown) is high, 1.6 bits, but the ability of the network to integrate information is limited by the bottleneck at
the grandmother cell n1. (B) and (C) show the network with an additional grandmother cell (the network is flattened out, so the second grandmother
appears at the bottom). A redundant grandmother results in zero integrated information, whereas if the grandmother is not redundant w increase to
.5 bits. (D) and (E) depict a grid-like feedforward architecture that does not suffer from the bottleneck of (A). Integrated information increases with
network size.
doi:10.1371/journal.pcbi.1000091.g016

Integrated Information in Discrete Systems

PLoS Computational Biology | www.ploscompbiol.org 15 June 2008 | Volume 4 | Issue 6 | e1000091



relations between couples). The state depicted in Figure 17C is a

near-tense state, differing from a tense state in a single element,

and thus generates a large amount of integrated information.

A functionally integrated and functionally specialized

probabilistic network can sustain high w. A massive

Hopfield network with many embedded attractors may have

high values of w in certain states, but w will rapidly decrease as the

system relaxes into an attractor. The system is too tightly bound to

sustain interesting dynamics: the elements act in concert to push

the system into its attractors. To sustain high w it is necessary to

change the connectivity so that elements act antagonistically.

The network in Figure 18 has Hopfield-like elements. The

system differs from Hopfield networks in that it is not constructed

to store attractor patterns. It was optimized using a genetic

algorithm, searching through networks with approximately 50% of

full connectivity to find those most capable of sustaining high

values of w. The algorithm compares different networks by

initializing them with a random firing pattern, running for 125

time steps and calculating w for 10 odd firing patterns that occur.

The temperature is fixed at T = .35 throughout. Over an 800 time

step simulation we find that 109 of the 256 possible firing patterns

arise. Of these, the 14 most common occupy slightly more than

half of the running time. The system does not possess any

attractors, but the dynamics are dominated by a small number of

characteristic firing patterns. For each time step we compute w,

which varies with the state the system enters. The graph shows w
as a function of time; values range between .25 and 2.9 bits. Values

greater than 1.1 bits occur 70% of the time, and w of over .7 bits is

generated 90% of the time. Contrast to a Hopfield network, which

would remain close to an attractor over the entire run, with w
around .3 bits.

From this example it appears that the optimization produces a

similar architecture to that shown in Figure 12. The introduction

of noise produces a looser system that does not become trapped in

fixed-points; with the trade-off being a reduced ability to specify

sharp a posteriori repertoires. Again, although the elements all

implement the same rule, the heterogeneous connectivity results in

functional specialization. In addition the network is densely

connected, leading to functional integration. The asymmetric,

antagonistic connectivity prevents the system from relaxing into an

attractor state and produces sustained ‘‘tense’’ dynamics in the

network, and the system is thus able to consistently generate high

values of integrated information. This suggests that metastable

systems [29] – characterized by antagonism between the

connectivity within and across neuronal groups, and capable of

switching rapidly between states – may form an interesting class of

systems with high w.

Figure 17. Integrated information in a Hopfield network. (A-D) show a sample run of a Hopfield network with 8 elements and all-to-all
connectivity. The network has embedded attractors 11110000, 11001100, 10101010 and their mirror images. A sample run is depicted at T = .45 and
initial state 11111111. (E-G) show integrated information as a function of temperature (computed using bipartitions) for the corresponding states; the
colored enclosures are matched with the graphs. The system forms a complex for low temperatures (blue), but breaks down for higher temperatures
(red), so that subcomplexes arise.
doi:10.1371/journal.pcbi.1000091.g017

Figure 18. A functionally integrated and functionally special-
ized probabilistic network can sustain high w. (A) shows a
functionally integrated and functionally specialized network; black
arrows represent connections of weight $.5 and red arrows connec-
tions with weight #2.5. Weaker connections are not shown to reduce
clutter; see Text S1, section 13. The elements operate according to the
rules of a Hopfield network with T = .35. The network is initialized with a
random firing patter and allowed to run for 800 time steps. (B) shows w
for each firing pattern that occurs during the run.
doi:10.1371/journal.pcbi.1000091.g018
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Discussion

In the paper we have extended the notions of effective

information and integrated information to discrete non-stationary

systems. Integrated information, w, measures the information

generated by a system above and beyond what can be accounted

for by its parts acting independently. The subsets of a system

capable of generating integrated information form complexes,

which constitute individual entities and are the fundamental units

into which a system decomposes. Finding the integrated

information generated by a physical system requires analyzing it

from the ground up, without preconception regarding the nature

of its elementary units.

In the applications we analyzed a variety of systems to uncover

how w reflects network dynamics and architecture. A few broad

lessons can be extracted. First, the integrated information

generated by a system depends on the current state of the system.

In general, integrated information is higher when there is a

balance between the number of active and inactive elements of a

system. By contrast, when a system is completely inactive or

hyperactive, w values are low. Second, integrated information can

differ substantially for systems with identical or similar surface

dynamics, because the latter does not necessarily reflect the causal

architecture of a system. For instance, a system composed of

causally interacting elements can generate large amounts of

integrated information, while a mere copy or ‘‘replay’’ of its

surface dynamics generates none. More generally, integrated

information appears to be a function of the complexity of the

interactions leading to the observed dynamics. Third, we observed

that certain classes of network architectures have low w. Modular

and homogeneous systems are unable to generate high w because

the former lack integration whereas the latter lack information.

Feedforward and lattice architectures are capable of generating

high w, but they are extremely inefficient. Everything else being

equal, it appears that high values of integrated information can be

obtained by architectures that conjoin functional specialization

with functional integration. Finally, from the probabilistic

(Hopfield-style network) examples we conclude that high w can

be produced by tension between local and global interactions.

Conventional Hopfield networks relax into attractor states and so

cannot sustain high w. However, random Hopfield networks can

be optimized to maintain higher values of w over the course of

their dynamics.

The notion of integrated information is motivated by the need

for a measure that captures the two basic phenomenological

properties of consciousness: i) each conscious experience generates

a huge amount of information by virtue of being one of a vast

repertoire of alternatives; and ii) each conscious state is integrated,

meaning that it is experienced as a whole and does not decompose

into independent parts. We have shown that the way w behaves in

simple simulated networks differing in causal architecture and

dynamics fits available neurobiological evidence concerning the

neural substrates of consciousness. For example, w is low for simple

network analogues of inactive (‘‘comatose’’) and hyperactive

(‘‘epileptic’’) states, in line with the loss of consciousness when

the brain enters such states. Conversely, high w requires balanced

states similar to those observed when the brain is spontaneously

active during waking consciousness. We also saw that a simplified

model of bistable dynamics, loosely resembling slow-wave sleep

early in the night, when consciousness fades, is not able to sustain

high values of integrated information. We provided evidence that,

everything else being equal, causal architectures characterized by a

coexistence of functional specialization and integration are best

suited to generating high values of w, whereas strongly modular

systems fare much less well. Neurobiological evidence suggests that

human consciousness is generated by the thalamocortical system

[3], the paradigmatic example of a functionally specialized and

functionally integrated network. The cerebellum, which is instead

organized into strong local modules with little communication

among them, does not seem to contribute to consciousness, though

it is as rich in neurons and connections as the cerebral cortex.

Finally, the analysis of Hopfield networks shows that tension

between the local and global connectivity of a system results in

high w. This suggests that metastable systems, which arise when a

collection of neuronal groups are loosely coupled, may be highly

integrated. Intriguingly, some initial evidence obtained with

multiunit recordings suggests that in awake, behaving animals

populations of neurons may undergo a similar metastable

dynamics [30,31].

A few general observations about the present measure of

integrated information are also in order. First, w measures a

process: integrated information is generated by a system

transitioning from one state to the next – it does not make sense

to ask about the information value of the state of a system per se.

Second, w is a causal measure: integrated information is generated

only to the extent that the system transitions into a given state due

to causal interactions among its elements. Thus, a system that

enters a particular state due to extrinsic noise generates no

integrated information, as in Figure 2D. The same is true for a

system whose elements update their state without interacting, as in

Figure 11. Importantly, causal interactions can only be made

explicit by perturbing the system in all possible ways. Third, w
captures an intrinsic property of a system: integrated information

is a function of the possible causal interactions within a system,

independent of external observers. In this sense, integrated

information is closer to other intrinsic properties of physical

systems, such as charge or spin, than to observer-dependent

properties that vary with the frame of reference, such as position or

velocity. Specifically, integrated information is associated with and

indeed identifies complexes – sets of elements that cannot be

meaningfully decomposed into independent parts – independently

of external observers. For example, elements forming two

independent complexes may be lumped together into an externally

defined ‘‘system’’ by an observer, as in Figure 7, but such arbitrary

entities generate no integrated information – from an ‘‘intrinsic’’

perspective, they do not really exist. The intrinsic nature of

integrated information, which only exists to the extent that it

makes a difference from the perspective of the complex itself, is

usefully contrasted with the traditional, observer-dependent

definition of information, in which a set of signals are transmitted

from a source to a receiver across a channel (or stored in a

medium), and their ‘‘integration’’ is left to an external human

interpreter.

Finally, we should mention some of the many limitations of the

present work. Foremost among them is that our examples are

restricted to small-scale models, so it is unclear to what extent the

principles suggested by our partial explorations would scale with

larger networks. The impossibility of measuring integrated

information for larger systems is due to the combinatorial

explosion in the partitions of a system as the number of elements

is increased. An inevitable consequence is that computing w for

parts of the human brain, even if the connectivity and causal

architecture of the neurons were known, is not a feasible

undertaking, though heuristics, estimates, and relative compari-

sons remain possible. Applying the measure to biological system

also introduces the practical issue of correctly identifying the

causal architecture and a priori repertoire, a difficult empirical

problem (for example, when dealing with neural networks, should
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all possible firing patterns be considered, including those differing

by just a millisecond, or should they be lumped together?) From a

theoretical perspective this problem should be addressed according

to what may be called a principle of ‘‘causal ontology’’: only those

differences that make a difference within a system matter;

differences between a priori perturbations that cannot be detected

by the system can be considered as if not existing. There are a

number of further issues that will be addressed in future work. A

limitation of the present work is the exclusive focus on the amount

of information integrated by a given network, with no consider-

ation given to the kind of informational relationships among its

elements. To address this we will move beyond quantifying

integrated information as a single number and investigate the

informational relationships between interacting parts by exposing

the geometry of the causal interactions. Another shortcoming is

that it focuses exclusively on memoryless systems, in which

integrated information can only be generated over one time

step. In a forthcoming paper we will coarse-grain discrete

systems and develop techniques to find the natural spatiotemporal

scale at which a system generates integrated information. This

will allow us to deal with systems with memory, as well as to

make a first step towards analyzing large-scale, hierarchically

organized systems. Finally, the networks considered here were

analyzed as isolated entities, without consideration for their

environment (or rather by averaging over possible extrinsic

inputs). In future work we will discuss how discrete systems

interact with and incorporate information from the environment,

as well as the relationship between integrated information and

learning.
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