
Circadian Phase Resetting via Single and Multiple
Control Targets
Neda Bagheri1, Jörg Stelling2, Francis J. Doyle III1,3*

1 Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America, 2 Institute of

Computational Science and Swiss Institute of Bioinformatics, Zurich, Switzerland, 3 Department of Chemical Engineering, University of California Santa Barbara, Santa

Barbara, California, United States of America

Abstract

Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day.
Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To
date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for
phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous
manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by
nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant
phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies
prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In
particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness.
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Introduction

Control theoretic tools have been used to model mRNA

transcriptional/translational regulatory feedback mechanisms [1],

to analyze nonlinear phenomena [2,3], and to control complex

biological behavior [4,5]. In our research, we couple systems

theoretic tools (such as sensitivity analysis) with model predictive

control, to better address phase resetting properties of nonlinear

biological oscillators. Our work aims to alleviate circadian-related

disorders (such as jet lag and advanced/delayed sleep phase

syndromes) by investigating the phase resetting properties of an

example circadian mathematical model. More specifically, we

manipulate multiple control inputs (or target parameters) to drive

the dynamic behavior of the system.

Many researchers have shown that the systematic application of

light pulses may reset the phase of circadian clocks. This light pulse

(input) to induced phase-shift (output) mapping is most notably

characterized by the phase response curve (PRC). Daan and

Pittendrigh studied the PRC to establish a relationship among

circadian behavior (nocturnal vs. diurnal activity), free-running

period, and maximum phase advance/delay [6]. The free-running

period of an organism reflects its circadian behavior without the

influence of entrainment factors such as environmental light:dark

cycles. The free-running period of nocturnal animals, for instance,

is often less than 24 hours such that dusk triggers a phase delay

and the onset of activity. Conversely, diurnal animals often exhibit

free-running periods greater than 24 hours such that dawn triggers

a phase advance and the onset of activity [6]. Other researchers

have made use of PRCs to establish light as a means to accelerate

circadian entrainment [7], or as a means to start, stop, and reset

the phase of simplified circadian models [8–11].

In a previous study, we develop a closed-loop nonlinear model

predictive control (MPC) algorithm that minimizes the phase

difference between a reference and a controlled system (each

modeled as a single deterministic oscillator) through the systematic

application of continuous light. Through use of MPC, circadian

phase is recovered in almost half the time required by the natural

open-loop sun cycles [4]. Next, we investigated how the MPC

algorithm’s tuning parameters might affect the model’s phase

resetting dynamics [12]. Here, we make use of sensitivity analysis

to identify additional control inputs (or drug targets) that, when

used by the MPC algorithm, outperform light-based circadian

phase resetting. The target identification of single and multiple

control inputs, coupled with the analysis of their respective

performance, parallels efforts in the pharmaceutical industry to

yield the greatest behavioral response with respect to the smallest

system perturbation. In other words, our methodology may be

used to identify optimal (and arguably non-intuitive) drug targets

for therapy.

To establish an upper bound relating to the time required to

recover phase differences, we begin by evaluating the open-loop

control algorithm in the Open-Loop Phase Recovery section. The

identification and manipulation of a set of single, dual, and triple

control inputs are then used to minimize phase recovery dynamics

of a wild-type circadian system (as described in the Single, Dual, and

Triple Target Phase Resetting sections, respectively). This case is most

similar to resetting a healthy organism’s phase when subject to an

environmental disturbance such as jet lag. In the Short and Long
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Period Mutants section, we further investigate how MPC may be

used to alleviate chronic circadian disorders. More specifically, we

apply the algorithm to circadian oscillator models that exhibit

either short or long-period mutant phenotypes. Results suggest

that organisms with such syndromes may track regular 24 hour

rhythms through the systematic application of light. Our findings

support this unique application of systematic drug target

identification coupled with model predictive control for use in

medicine and pharmacology (see the Discussion section). In the

Methods section, we describe the employed model predictive

control algorithm and the state-based sensitivity analysis used to

identify single and multiple parametric control inputs.

Results

A 10-state, 38-parameter Drosophila melanogaster (fruit fly)

circadian model serves as the example system. This stable

nonlinear limit cycle oscillator consists of two coupled negative

feedback loops that characterize the transcriptional regulation of

period and timeless mRNA and protein dynamics [13]. per and tim

genes are transcribed in the nucleus, after which their mRNAs are

transported into the cytosol where they serve as a template for

protein synthesis. The doubly phosphorylated proteins form a

heterodimer, PER-TIM, that enters the nucleus and inhibits gene

expression, closing the feedback loop. Researchers find that

environmental light increases the rate of TIM protein degradation:

in this model, light targets the system by magnifying ndT, the

doubly phosphorylated TIM protein degradation rate [13].

The phase response of this model as a function of light is shown

via the dash-dotted line in Figure 1. This curve maps the circadian

time of the entraining stimulus (light pulses) against the resulting

change in phase of an organism kept in a free-running

environment. The circadian time index repeats every 24 hours

with CT0 defining the commencement of dawn and CT12 that of

dusk. It is important to note that the magnitude of light-induced

phase changes (the quantitative dynamics of the PRC) may vary

with respect to the intensity of light. While this model does not

account for the complexity of the real network that, for instance,

includes additional positive feedback loops [14,15], it has been

experimentally validated [15] and is widely employed as a

reference model [3,16].

Open-Loop Phase Recovery
Due to the inherent nonlinear phase response of circadian

rhythms when subject to environmental/parametric perturbations,

phase recovery dynamics are characterized as a function of the

initial condition (IC, the circadian time at which control or

entrainment begins), and initial phase difference (IP, the amount of

circadian time to be recovered). To establish a phase resetting set

point or upper bound (the maximum amount of time required to

recover a given phase difference), we evaluate the open-loop

control algorithm, where environmental light:dark cycles serve as

the only mechanism for phase re-entrainment. The phase recovery

surface (Figure 2) displays the time required for the open-loop case

to recover from any possible initial condition and initial phase

difference. The asymmetry of the surface may be attributed to the

nonlinear effects of light, as characterized by the PRC. The input

(light) to output (induced phase shift) mapping of the PRC is

seldom symmetric. In Drosophila melanogaster, a 15 minute pulse of

light has shown to induce up to 3.6 hours of phase advance and

4.2 hours of phase delay [13]. Recent studies suggest that the

change in phase is less sensitive to the duration of the light, and

more sensitive to its time-profile [17]. Phase recovery times (for

both open and closed-loop simulations) are evaluated with respect

to initial conditions and phase differences discretized at 3 hour

intervals. Thus, given the integers i,j M [0,7], IC = 3i and IP = 3j.

The open-loop entrainment strategy requires at most 183 hours

to reset the observed states of the controlled system (cumulative
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Figure 1. Circadian phase response behavior. Phase response
curves traditionally characterize the light pulse to induced phase
mapping of the input admitted to a free-running circadian oscillator.
Here, phase response dynamics of the four system parameters
exhibiting greatest state sensitivity is depicted: ns (mRNA transcription),
nm (mRNA degradation), ks (protein translation), and nd (protein
degradation). The x-axis denotes the time at which the 2 hour pulse
is given (where CT0 reflects dawn and CT12 dusk), and the y-axis
describes the induced phase shift. A positive shift reflects a phase
advance. Since light targets TIM specific protein degradation, ndT, the
light-based PRC of the Drosophila model is represented via the dash-
dotted line.
doi:10.1371/journal.pcbi.1000104.g001

Author Summary

The robust timing, or phase, of the circadian clock is critical
in directing and synchronizing molecular, cellular, and
organismal behaviors. The clock’s failure to maintain
precision and adaption is associated with sleeping
disorders, depression, and cancer. To better study and
control the timing of circadian rhythms, we make use of
systems theoretic tools such as sensitivity analysis and
model predictive control (MPC). Sensitivity analysis is used
to identify key driving mechanisms without having to fully
understand or investigate the detailed mechanistic inter-
connections of the large complex circadian network.
Contrary to intuition, sensitivity analysis of the circadian
model highlights several non-photic control inputs (such
as transcriptional regulation) that outperform light-based
circadian phase resetting – light is known to accelerate
protein degradation. Aside from targeting individual
parameters as control inputs, our methods identify combi-
nations of control targets that may further the efficiency of
entrainment. We compare the phase resetting performance
of our MPC algorithm among cases involving individual and
multiple simultaneous control targets (in wild-type simula-
tions). We then tailor the algorithm to correct continuously
the phase mismatch that occurs in short and long period
mutant phenotypes. Through use of the presented tools,
our algorithm is robust in the presence of model mismatch
and outperforms the natural in silico sun-cycle–based phase
recovery strategy by nearly 3-fold.

Target-Based Circadian Phase Resetting
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protein complex concentrations) to within 15% of the reference

trajectories. Mandating the convergence of state trajectories is a

tighter constraint than mandating only phase trajectories, since it

incorporates amplitude characteristics. The algorithm, however,

may be tuned to consider only strict phase measures. The

maximum open-loop recovery time refers to a 9 hour initial phase

difference whose control action begins at an initial condition of

15 hours. The initial condition, or start of entrainment, is

described with respect to circadian time (CT). Interestingly, there

is a stark difference between resetting a 3 to 6 hour initial phase

difference versus an 18 to 21 hour initial phase difference (a 26 to

23 hour phase difference). In the former, phase recovers in over

100 hours; in the latter, phase recovers in fewer than 60 hours.

Additionally, the open-loop algorithm recovers 9 hour phase

differences in a fraction of the time required to correct for smaller

phase difference. These properties may be attributed to the nature

of the phase response curve and are discussed further in the

Discussion section. Experimental studies in mammalian SCN cells

support this asymmetry: Reddy et al. show that circadian clock

resetting from a 6 hour phase advance (IP6) is accompanied by

dissociation of cellular gene expression and may take up to 1 week

to recover [18]. Conversely, resetting a 6 hour phase delay (IP18)

is accompanied by coordinated gene expression and requires only

2 days of recovery [18]. Our simulations support these

experimental conclusions as the cumulative protein concentrations

in the former case diverge and require several days to converge to

the nominal trajectory. In the latter, cumulative protein concen-

trations oscillate with smaller amplitude until they converge to the

nominal trajectory within a couple days. An example of the

corresponding simulations is presented in Figure S1.

Closed-Loop Phase Recovery
The MPC algorithm (described in the Model Predictive Control

section) minimizes the normalized difference between the

cumulative protein complex concentration over a prediction

horizon of 48 hours, by admitting control action during the first

8 hours of the simulated trajectory. This control action is

multiplicative, allowing the algorithm to increase/decrease the

nominal parameter by a factor of 2. The control profile defined

within the move horizon is updated every 2 hours. Through use of

MPC, the re-synchronization rate of the controlled system is

increased nearly 3-fold through the control of light, or ndT.

Although light serves as a powerful control input, we show that the

manipulation of parameters such as transcription and mRNA

degradation rates (ns and nm, respectively) may provide more

immediate phase resetting. Since we make use of the symmetric

version of the mathematical model [13], we do not differentiate

between per or tim specific functions. Instead, we assume that the

isolated control of nsP is equivalent to the isolated control of nsT, for

instance.

Parametric sensitivity analysis quantifies the relative change of

system behavior with respect to an isolated parametric perturba-

tion. A large sensitivity to a parameter, for instance, suggests that

the system’s performance is subject to greater change with small

variations in the given parameter. We make use of the Fisher

Information Matrix (FIM) to evaluate the effect of parametric

perturbations on the circadian system’s state trajectories [19].

Investigation of the diagonal values, off diagonal values, and

singular value decomposition of the FIM points out the relative

order, or rank, of parametric sensitivity measures. This relative

ordering highlights sets of control inputs whose manipulation may

further reduce phase recovery times. The three greatest diagonal

values, for instance, identify the most prominent individual control

targets (ranked from most to least sensitive);

N ns (the mRNA transcription rate),

N nm (the mRNA degradation rate),

N ks (the protein translation rate), and

N nd (the doubly phosphorylated protein degradation rate).

Recall that ndT is the target parameter of environmental light in

Drosophila. Interestingly, the rate of mRNA transcription is the

target of environmental light in Mus (via per genes) [20,21] and

Neurospora (via frq genes) [22]. Furthermore, in our previous studies

of Mus and Drosophila circadian networks, mRNA transcription

rates were among the most sensitive parameters with respect to

both the state- and phase-based sensitivity analysis of two

independent network representations [2].

The greatest off diagonal values identify the most prominent

pairs of control targets (ranked accordingly);

N ns and nm, and

N ns and KI (the threshold constants for repression).

Since the manipulation of more than 1 parameter voids the

symmetry argument, we target tim specific parameters in the

implementation of multiple control targets.

The greatest input directions of the singular value decomposi-

tion identify the most prominent set of three control targets

(ranked accordingly);

N ns, nm, and KI, and

N nm, nd, and k2 (the nucleus to cytoplasm rate of transport).

Single Target Phase Resetting
We investigate the phase recovery dynamics corresponding to

four independent isolated control inputs with respect to the initial

condition and initial phase difference (Figure 3). Results show that

control targets identified via sensitivity analysis (Figure 3(A)–3(C))

serve as more effective re-entrainment factors than light

(Figure 3(D)). More specifically, the maximum recovery time
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Figure 2. Natural phase entrainment. Open-loop phase resetting
dynamics are plotted as a function of the initial phase difference (x-axis)
and the initial condition (y-axis). The intensity of the color reflects the
amount of time required to reset a given phase via the light:dark cycles
calibrated to the initial condition: the lighter the color, the longer the
recovery time. The mapping of color intensity to phase recovery times
(in hours) is shown in the vertical color bar.
doi:10.1371/journal.pcbi.1000104.g002
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corresponding to a control input of ns is 44 hours (at IC9 and

IP12/IP15), nm is 50 hours (at IC21 and IP15), ks is 59 hours (at

IC12 and IP15), and nd (the light target) is 60 hours (at IC12 and

IP15, or IC9 and IP12). The control profiles and state response

dynamics relating to the phase recovery of IC9 and IP12 are

provided in Figure S2 and Figure S3.

There is a subtle similarity among the single-input phase

recovery data; namely, the sudden drop in recovery time with

respect to the initial condition for initial phase differences of 0 to

15 hours. We attribute this steep recovery gradient to the PRC as

it depicts a greater region of phase delay than it does a phase

advance. For this reason, it is more beneficial if the organism

delays its phase to recover from a 12 hour initial phase difference.

Furthermore, recall that a phase delay is incurred if the organism

is to receive a photic input in the late evening hours. Hence,

recovering from a phase difference via a set of delaying control

inputs is most efficient if control action begins around the late

subjective evening. Thus, if we observe phase resetting behavior

corresponding to a small phase difference (such that the subjective

day of the controlled system and reference are similar), we expect

it to have the shortest recovery time near an initial condition of

12 hours, or dusk (Figure 3(D)). Interestingly, each of the control

inputs exhibits this property. We attribute this similarity to the

unique PRC of each control input (Figure 1).

Dual target phase resetting. Allowing the MPC algorithm

to manipulate two variables simultaneously provides more

immediate phase resetting since the controller has greater

flexibility. For instance, the simultaneous use of ns and nm

requires a maximum phase recovery of 43 hours to recover a

12 hour initial phase difference entrained from an initial condition

of 6 or 9 hours (Figure 4(A)). Similarly, the simultaneous control of

ns and KI requires a maximum phase recovery of 46 hours to

recover a 15 hour initial phase difference (Figure 4B).

Given that the common input is ns, we expect the dual control

input phase recovery dynamics to be just as good (if not better)

than the results generated from the single ns input algorithm.

Although the dual control input strategy provides similar

maximum phase recovery times, the greatest recovery time

‘‘plateau’’ is smaller. Therefore, the dual ns and nm input strategy

is more effective at recovering an initial phase differences of

15 hours from IC6, while the ns and KI pair is more effective at

recovering a 12 hour initial phase difference from IC9 (compare

Figure 3(A) to Figure 4(A)–4(B)). We would even argue that the

recovery times associated with the dual input strategy may lessen if

the genetic algorithm based optimizer were run over a greater

number of generations. We limit the number of generations in the

genetic algorithm – 15 for the single input, 75 for the dual input,

and 250 for the triple input – to reflect the limited resources and

time constraints evident in real world applications.

Triple target phase resetting. Just as the dual input case,

we expect the triple input strategy to recover phase just as

effectively as the single input strategy. The ns, nm, and KI input

strategy requires at most 39 hours to recover an initial phase

difference of 12 hours at IC9 (Figure 4(C)). Interestingly, the

maximum recovery time corresponding to the use of nm, nd, and k2

as simultaneous control inputs is 59 hours to recover a 3 hour

phase difference at IC12 (Figure 4(D)). We attribute this

abnormally high recovery time to the possibility of numerical

errors associated with the optimization algorithm since nm requires

no more than 30 hours to recover from a 3 hour phase difference,

while nd requires no more than 54 hours. If we omit this data point

as an outlier, this triple input strategy requires 42 hours to recover

a 12 hour phase difference beginning at IC6. Assuming abundant

computational resources and time, the triple input strategy may

further outperform the dual input strategy since the MPC

algorithm acquires greater flexibility (a greater number of
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Figure 3. Single input control. Closed-loop phase resetting dynamics for single control targets (ordered according to their relative sensitivity) are
described as a function of the initial phase difference (x-axis) and the initial condition (y-axis). The intensity of the color gradient reflects the amount
of time required to recover from the given control conditions: the lighter the color, the longer the phase recovery. Each color bar is calibrated
according to a minimum recovery time of 0 hours and maximum of 60 hours. (A) ns Single Control Target (B) nm Single Control Target (C) ks Single
Control Target (D) nd Single Control Target.
doi:10.1371/journal.pcbi.1000104.g003
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control options) with each additional target. Each of these control

inputs produces a unique PRC that allows the algorithm to further

manipulate the set of targets such that the combination may yield

a phase delay or advance at any time of the circadian day. In the

case of a single light (or nd target) input, for instance, the algorithm

must wait for the subjective morning to force a phase advance, or

the subjective night to force a delay. The advantage gained

through additional control targets, however, is not clear. Given the

finite horizon over which the algorithm optimizes phase

synchrony, in addition to the nonlinear response of the model,

we can not expect a monotonic improvement of phase recovery

dynamics with an increase in the number of manipulated

variables. For instance, the algorithm may choose a sequence of

multiple inputs that yields lower cost in the short term (as

compared to a single input) with a greater cost in the long term,

leading to a point of no return. This scenario may also attribute to

the 59 hour recovery observed in Figure 4(D).

Short and Long Period Mutants
Mutant phenotypes of the circadian oscillator represent cases in

which nominal light:dark cycles are unable to maintain synchrony.

For this reason, the MPC tuning parameters must be re-evaluated

according to this phase resetting problem. In wild-type, for

instance, we can afford to be more aggressive with control

penalties since nominal light:dark cycles (or, no control) will

eventually entrain the system. In mutants, the weights used to

penalize the state error and control inputs prove to be more

influential since nominal light:dark cycles will not entrain the

system. Therefore, we set both the move and prediction horizon to

24 hours and reduce the penalty of state error and control to ones.

To counter the computational expense incurred with a longer

move horizon, we set the time step to 4 hours. Through MPC, we

identify a more suitable light:dark cycle that synchronizes

organisms exhibiting abnormally short and long free-running

periods (22 and 27 hours, respectively, as shown in Figure 5).

Determining the complete range of entrainment (which is likely

wider than the 22 to 27 hour period) is non-trivial. In a previous

study, we found that (i) the predicted range of entrainment may be

very sensitive to the employed performance metric, and (ii) the

control/light input strength may also play a dominant role in

defining the bounds of this range [23].

Given that the PRC characterizing the behavior of Drosophila

melanogaster consists of phase delays during the late subjective

evening, we expect short-period mutant phenotypes to require

bright light after subjective dusk. Similarly, we expect long-period

mutant phenotypes to require bright light in the early subjective

morning to advance the cycle. Our results confirm this hypothesis.

In Figure 2, we demonstrate how bright light, admitted during the

environmental night, resets the phase of short-period mutants such

that it matches that of its environment. Given that the controlled

system is 2 hours short, the occurrence of light during the night

overlaps with the advance region of the system’s PRC. Similarly,

the onset of bright light at dawn overlaps with the delay region of

long-period mutant PRCs (Figure 2). Our ability to maintain

appropriate phase relationships between mutant phenotypes

(models characterized by non-nominal parameters) and the

environment (the nominal case) further proves the robustness of

the algorithm despite model mismatch.

Discussion

Circadian Phase Response
As implied by the PRC (Figure 1), a 3 hour phase difference

may be recovered immediately through admission of light at

CT15. Hence, for open-loop control action to be most effective,

environmental daylight should occur during the controlled
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Figure 4. Multiple input control. Closed-loop phase resetting dynamics for dual ((A) and (B)), and triple ((C) and (D)) control targets are shown
with respect to the initial phase difference (x-axis) and the initial condition (y-axis). The phase recovery time is denoted by the intensity of the color at
each given data point: the lighter the color, the longer the recovery time. The mapping of color intensity to the recovery time (in hours) is reflected in
the color bar. Each color bar is calibrated according to a minimum recovery time of 0 hours and maximum of 60 hours. (A) ns and nm Dual Control
Targets (B) ns and KI Dual Control Targets (C) ns, nm, and KI Triple Control Targets (D) nm, nd, and k2 Triple Control Targets.
doi:10.1371/journal.pcbi.1000104.g004
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system’s subjective night (at CT15). In cases with small initial

phase difference (such that the subject’s internal time is nearly

equal to environmental time), however, daylight begins entrain-

ment once the subjective day is around CT12, by inducing small

phase delays. This delay reduces the overlap between environ-

mental daylight and the subjective night since re-entrainment of

the initial phase difference began before subjective night. The

opposite occurs with small negative phase differences, where an

18 hour (or 26 hour) phase difference may be recovered via a

light pulse admitted at CT21. In this case, environmental daylight

affects the controlled system at the start of day while it has not yet

begun entrainment, maximizing the phase advancing effect of

light. For this reason, open-loop entrainment via phase advances

requires less recovery time despite the fact that a single pulse of

light may induce a greater phase delay than advance.

More generally, we find that any given initial phase difference is

more readily recovered if open-loop entrainment begins between

CT0 and CT9; the rate of re-entrainment depends on the initial

condition. To correct initial phase differences of 0 to 9 hours (by

inducing a phase delay), daylight is most effective at the end of the

day, suggesting greater performance if the algorithm were to begin

control action around CT6. To correct initial phase differences of

0 to 26 hours (by inducing phase advances), daylight is most

effective at the start of the day, suggesting greater performance if

the algorithm were to begin around CT0. In the former case,

daylight overlaps with the delay region of the subject’s PRC, while

in the latter it overlaps with the advance region. Resetting an

initial condition of 12 to 15 hours, however, presents an

interesting control dilemma as environmental daylight may induce

both a phase delay and phase advance. For this reason, the open-

loop control algorithm requires several days to correct for such

phase differences. If light were accessible to entrain the system

continuously throughout the day and night (in other words, if we

were to close the loop), phase recovery dynamics would be less

extreme since phase resetting would rely less on the initial

condition.

Additional phase resetting properties may be inferred through

investigation of the simulated PRCs. For instance, in the single

input case, ns and ks exhibit similar recovery dynamics with the

exception that ns is more effective at resetting initial phase

differences of 15 to 21 hours. This quality may be associated with

the fact that manipulating ks exhibits a strikingly similar phase

response as ns where their input to output mapping is shifted by

about 5 hours (Figure 1). This similarity may be attributed to the

fact ks and ns are directly involved with the irreversible production,

and transcriptional/translational regulation, of clock-specific

genes/proteins. Additionally, the ‘‘active’’ region of the ns and

nm PRCs are wider than those of ks and nd (or, their dead zones are

shorter than those of ks and nd), suggesting that their perturbation-

induced phase shifts are accessible throughout a greater portion of

the circadian day.

Minimizing Control Action
Of the single control input results, the manipulation of ns,

identified as the most sensitive parameter, provides the shortest

phase recovery times. Despite these results, nd or light-based control

is most efficient. In Figure 6, we relate the cumulative control input

(a unitless measure that integrates the multiplicative control target

action) to the convergence of phase via the PER-TIM complex state

error. The data shown reflects the recovery of an initial phase

difference of 15 hours from IC12. Analyzing this relationship may

provide a basis from which the pharmaceutical industry might select

one drug over another. If two different drug targets demonstrate

similar response, the one that requires the least number of doses
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Figure 5. Model mis-match. Continuous phase resetting for the short-period mutant phenotype (dotted lines) and long-period mutant phenotype
(dashed lines) are depicted with respect to an initial condition of 0 and 12 hours. Upper subplots describe the observed state trajectory (cumulative
PER-TIM protein complex concentrations) as a function of controlled light pulses, shown in the lower subplots. The nominal response (denoted by
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should be admitted, minimizing cost and the potential for drug

related side-effects. Moreover, if the symptoms of illness are more

severe than the potential for side effect, the drug that minimizes the

state error may be preferred over others. The assessment of system

convergence and the corresponding admitted control is key to the

identification and application of control targets.

Circadian Alignment and Illness
In our modern ‘‘24/7’’ work world, social and commercial

pressures often oppose our natural circadian timekeeping, causing

a source of circadian stress that may lead to chronic illnesses such

as cardiovascular disease and cancer [24]. Numerous studies seem

to show the effect of circadian rhythms on processes such as cell

proliferation and apoptosis that eventually lead to proper growth

control [25–27]. For instance, components of the cell cycle that

dictate the G1-S and G2-M transition phase have been associated

with circadian transcriptional regulation [28,29]. Also in certain

conditions, cancer can be a direct consequence of the absence of

the circadian regulation [25,26,30]. A review of circadian related

clinical disorders describes how mutations in some clock genes are

associated with alcoholism, sleeping disorders, hypertension, and

morbidity [24,31]. Most commonly, poor circadian regulation

leads to advanced sleep phase syndrome, delayed sleep phase

syndrome, non-24-hour sleep-wake syndrome, and irregular sleep-

wake pattern [32]. In each of these cases, poor circadian phase

resetting may be achieved through the systematic admission of

controlled light pulses.

Assuming we have access to drugs that specifically target

circadian genes, we can identify the targets whose manipulation

yields the most effective and immediate response through

investigation of each control’s phase dynamics (as shown in

Figure 1). Or, it is possible to minimize the use of control and

choose targets that require the least number of doses. We may also

tailor the MPC algorithm to correct phase more readily through

simultaneous manipulation of multiple control targets. Even

further, we may reduce the computational expense by enumer-

ating the control solutions over a grid in the solution space (light

magnitude as a function of time), and choosing the optimal control

sequence via an exhaustive search. The algorithm approaches a

globally optimal solution as the total possible quantization steps of

the control input increases. We tested the efficacy of the algorithm

with respect to a quantization of 2, 4, 8, and 16 steps [12]. Results

suggest that the shorter recovery time associated with the finer-grid

enumeration may not outweigh the increase in computation time.

Therefore, we may dramatically reduce computational expense by

investigating control solutions for as few as 2 possible control

values.

Our methods show great promise for use in the pharmaceutical

industry as our theoretical phase entrainment of mutant

phenotypes demonstrates the robustness of the algorithm in the

presence of model mismatch. This robustness alleviates concerns

in the pharmaceutical industry to tailor mathematical represen-

tations of bio-chemical pathways to individual people.

Mammalian Studies
The study of controlled light pulses as a means of correcting

phase is a common area of interest. Studies have shown that

humans are much more sensitive to light than initially suspected

since room light can significantly reset the phase of the human

circadian clock [33,34]. Furthermore, the admission of morning

light has been considered as an antidepressant by realigning the

internal clock with the environment [35].

Additional studies suggest that the human circadian clock

mechanism functions similarly to those of other mammals [34].

This similarity may be attributed to shape/amplitude character-

istics of their respective phase response curves. Humans show

phase-delay shifts of up to 3.6 hours and phase-advance shifts of

up to 2.01 hours (with respect to a 6.7 hour pulse of bright light)

[36], which is both quantitatively and qualitatively similar to other

mammalian species. This parallel motivates the experimental

application of controlled light pulses for phase resetting in

mammals. We have taken this first step by assessing the efficacy

and computational utility of model predictive control as applied to

a detailed 71-state Mus musculus circadian model [37]. Further-

more, melatonin has proven to be a key circadian phase resetting

agent for totally blind people who cannot synchronize to

environmental day:night cycles (or do so at an abnormal time)

[35]. Therefore, melatonin may be used individually (in cases to

treat the totally blind), or in combination with light to provide

more effective phase resetting.

Therapies designed to alleviate circadian load would have an

important impact on morbidity and mortality across the developed

world. Aside from correcting mutant phenotypes, phase resetting

would increase performance in many healthy, or wild-type, cases

such as frequent flyers avoiding jet-lag or astronauts maintaining a

rigorous schedule during space exploration [17]. The real-time

application of the proposed algorithm, however, may be a major

issue; in practice, it will not be feasible to collect the corresponding

protein concentration data at the molecular level. However,

behavioral and/or physiological parameters that are controlled by

(and correlated with) the circadian clock’s dynamics are easily

accessible. Such data may include actograms such as wheel

running data for rodents [6]. Hence, a missing link in the current

work concerns the development of corresponding (non-linear) state
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estimators for reconstructing the molecular dynamics. Given the

discrete nature of MPC (sampling every 4 hours), the proposed

strategy is feasible in practice since sampling rates of such

physiological circadian markers may be much higher.

Methods

A 10-state Drosophila melanogaster circadian limit cycle oscillator

serves as the model system. This model consists of two coupled

auto-regulatory transcription/translation negative feedback loops

that characterize period and timeless gene and protein dynamics

[13]. As demonstrated in previous work, the MPC algorithm may

be applied to any stable limit cycle oscillator, including a more

complex Mus musculus model [4]. Thus, we describe the example

system as a general set of nonlinear ordinary differential equations

with time t, n-length state vector x(t), environmental light input l(t),

additional control inputs u(t), and system dynamics f(x(t), l(t), u(t)):

_xx tð Þ~f x tð Þ, l tð Þ, u tð Þð Þ,
x t0ð Þ~x 0ð Þ:

Given that both environmental light and additional control

variables may be modeled as multiplicative inputs, the nominal

wild-type (sun-cycle entrained) case requires u(t) = 1, while l(t)

oscillates as a square wave with a frequency of 24 hours, between

values 1 and 2. For consistency, the natural sun-cycle environment

(or reference) is characterized by the nominal Drosophila melanogaster

model and denoted by r(t). This reference is pre-entrained to

normal 24 hour light:dark cycles and is not subject to additional

control inputs.

Model Predictive Control
Model predictive control [38] is used to increase the re-

synchronization or entrainment rate of circadian oscillators

through the systematic application of specified control inputs.

The algorithm follows a sample and hold strategy, updating the

prediction and control input every ts = 2 hours, where the discrete

time index k~floor t
ts

� �
, such that a function g(kts) = g[k]. For

simplicity, we refer to k as being equivalent to t
ts

and ignore its

rounding component. The manipulated control variable, u[k],

optimizes an open-loop performance objective on a time interval

extending from the current time k~ t
ts

to the current time plus a

prediction horizon of P = 48 hours, where k~ tzP
ts

. This horizon

allows the algorithm to take control action at the current time in

response to a forecasted error. The move horizon, M = 12 hours,

limits the number of control inputs within the prediction horizon

such that u[k] spans a time interval t
ts

, tzM
ts

h i
. Beyond tzM

ts
hours of

simulation, the predictive model defaults to u[k] = 1. Future

behaviors for a variety of control inputs are computed according

to the mathematical model of the system [13].

The efficacy of the algorithm was evaluated with respect to a

sample and hold time interval of 1, 2, and 3 hours (reflecting a

move horizon of 3, 6, and 9 hours, respectively). Although shorter

light pulses offer a more dynamic manipulated variable profile, it

shortens the move horizon and may reduce the utility of model

predictive control. Conversely, a longer pulse may reduce the

possible control profiles since extended exposure to light leads to

arrhythmic behavior [39]. Thus, we set the sampling rate to

2 hours.

The fitness function penalizes the normalized predicted state

error between the reference and controlled trajectories, ē[k], and

the net control, ū[k], over the prediction horizon. The system

output used to evaluate circadian performance (or, phase

entrainment) is the trajectory defined by the total period and

timeless protein complex concentrations. This state error, e[k], is

normalized with respect to the nominal amplitude of oscillation

while the time dependent control input, u[k], is normalized with

respect to the nominal set of values, 1:

�ee k½ �~ e k½ �
rmax{rmin

���
���,

�uu k½ �~ u k½ �{1m|cj j,

where the state dynamics r[k] characterize the nominal reference.

Note that the vector e[k] is p|1 p~ P
ts

� �
, while the matrix ū[k] is

m6c (m~ M
ts

and c denotes the number of control inputs).

To avoid penalizing transient effects, the state error is weighted

uniformly over the move horizon (reflected in the first m diagonal

values of the p6p matrix Q), and with increasing weight of slope 2

over the prediction horizon (reflected in the p2m to p diagonal

values of Q). The cost of applying a light input is weighted

uniformly with a magnitude of 100 as reflected in the diagonal

values of the m6m matrix R. We can afford to be conservative with

the cost of control in the wild-type case, since we can ensure that

the lack of control (the open-loop algorithm) will eventually entrain

the system. The values contained in R will be re-evaluated when

the algorithm is designed to entrain mutant phenotype models.

The performance of an m-length control input is measured by

J~minu :½ � Q�eeð ÞT Q�eeð Þz R�uuð ÞT R�uuð Þ
h i

:

Only the first move of the lowest cost control sequence evaluated

at time k, u�1 k½ �, is implemented. Therefore, the sequence of

actually implemented control moves may differ significantly from

the sequence of control moves calculated at a particular time step.

This discrepancy disappears as the prediction and move horizons

near infinity. Feedback is incorporated by using the next

measurement to update the optimization problem. Once the

controlled state trajectories converge to within 15% of the

reference state trajectories, the system is considered to have

recovered its phase in Tr = mink[|e[k]|‘#0.15] hours. At this

point, the algorithm defaults to no control since nominal light:dark

cycles will keep the system synchronized to the new environment.

Optimization of the phase synchronizing control sequences is

completed through use of a genetic algorithm [40–42].

Sensitivity Analysis
Parametric sensitivity analysis quantifies the relative change of

system behavior with respect to an isolated parametric perturba-

tion. Parametric state sensitivity analysis assigns a value to each

system parameter that defines how its perturbation affects state

dynamics: Sij tð Þ~ dxi tð Þ
duj

. This tool is often used to identify the

robustness and fragility tradeoffs of regulatory structures [3], and

may be tailored to evaluate specific output performance such as

period, amplitude, or phase characteristics [2].

Assuming the model has n states and r parameters, the FIM is a

r6r matrix describing how any two parametric perturbations

might affect state dynamics. More notably, the diagonal values of

the FIM describe how any single parameter may affect state

dynamics. As a result, we sort the values of the FIM from greatest

to least magnitude and choose the top three individual parameters

(reflected by the sorted diagonal values) and top three pairs of

parameters (reflected by the sorted off-diagonals) whose perturba-

tions yield the greatest change in output.
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We further analyze the FIM via the singular value decompo-

sition [43]. Assuming FIM = F, it may be decomposed as

F = USVT, where S is an n by p diagonal matrix of non-negative

singular values, s, n is the number of states, and p is the total

number of system parameters. Matrices U and V contain the

eigenvectors of FFT and FTF, respectively. U, S, and V are ordered

according to the magnitude of the singular values. Thus, the first

column vector of U (and V) represents the output (and input)

direction with largest amplification. The next most important

direction is associated with the second column vector, and so forth.

We determine the top three parameters associated with the three

greatest input directions in n1 and n2 as ideal inputs for studying

the multiple control input strategy.

Supporting Information

Figure S1 Open loop phase resetting response at IC9. Phase

resetting dynamics for an initial phase difference of 18 hours (or

26 hours) is shown in the blue dotted trajectory; those pertaining

to IP6 are reflected in the red dashed line. The nominal protein

concentration dynamics are depicted in the solid black line, while

environmental sun cycles are shown in the black dotted square

wave. The magnitude of the square wave oscillates between 1 and

2 and does not correspond to the y-axis of the figure.

Found at: doi:10.1371/journal.pcbi.1000104.s001 (0.02 MB EPS)

Figure S2 Single control input to output response for IC9. Phase

resetting dynamics (upper subplot) are depicted as a function of the

individual control input profiles (lower subplot). Nominal, or pre-

entrained, circadian dynamics are shown in solid black. The blue

dotted lines reflect phase resetting with respect to ns, while the red

dashed lines reflect those of nm. Although phase resetting, or state

convergence, among the four different control variable occurs at

similar hours, both the state dynamics and control profiles for each

variable are significantly different.

Found at: doi:10.1371/journal.pcbi.1000104.s002 (0.04 MB EPS)

Figure S3 Single control input to output response for IP12.

Phase resetting dynamics (upper subplot) are depicted as a

function of the individual control input profiles (lower subplot).

Nominal, or pre-entrained, circadian dynamics are shown in solid

black. The blue dotted lines reflect phase resetting with respect to

ks, while the red dashed lines reflect those of nd. Although phase

resetting, or state convergence, among the four different control

variable occurs at similar hours, both the state dynamics and

control profiles for each variable are significantly different.

Found at: doi:10.1371/journal.pcbi.1000104.s003 (0.03 MB EPS)
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