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Abstract

We assess the variability of protein function in protein sequence and structure space. Various regions in this space exhibit
considerable difference in the local conservation of molecular function. We analyze and capture local function conservation
by means of logistic curves. Based on this analysis, we propose a method for predicting molecular function of a query
protein with known structure but unknown function. The prediction method is rigorously assessed and compared with a
previously published function predictor. Furthermore, we apply the method to 500 functionally unannotated PDB structures
and discuss selected examples. The proposed approach provides a simple yet consistent statistical model for the complex
relations between protein sequence, structure, and function. The GOdot method is available online (http://godot.bioinf.mpi-
inf.mpg.de).
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Introduction

Protein structure databases are growing at a rapid rate and, in

recent years, structural genomics initiatives have increased the

growth rate further. Yet many protein structures remain without

functional annotations. Low coverage of functional annotations

substantiates the necessity of reliable automated methods for

predicting the functions of proteins.

A widely accepted vocabulary for characterizing gene and

protein function is maintained by the Gene Ontology (GO)

Consortium [1]. To understand protein function, information is

typically inferred from evolutionarily related proteins. Evolution-

ary relation can be determined by sequence similarity. Enzymes,

for example, tend to have a conserved function, when they share

more than 40%–50% sequence identity [2–4]. Inference accord-

ing to only sequence similarity is not very reliable for accurate

function prediction, in particular for remote homology [5,6].

Some function prediction methods transfer function from

similar sequences, such as GOtcha [7], Blast2GO [8], or PFP

[9]. Phylogenomic methods, such as SIFTER [10] and Orthos-

trapper [11], additionally consider knowledge on the evolution of

homologous proteins. Motif databases, such as EMOTIF [12],

PROSITE [13], and PINTS [14] are used to extract functionally

relevant signatures of proteins. Gene3D [15] compiles Hidden

Markov Model signatures for CATH families and links these

signatures to GO functions. FSSA [16] and PHUNCTIONER

[17] use structural signatures derived from proteins of similar

function to predict molecular function of uncharacterized proteins.

Some approaches use different types of structural features to

predict function [18,19]. Other methods employ sequence-derived

protein features [20], genomic context [21], and GO term co-

occurrence [22]. Some approaches to function prediction combine

several features derived from the protein, or combine predictions

from different methods [23–25]. Two recent reviews [18,26]

provide an overview of state-of-the-art predictors and discuss

many of the aforementioned methods in detail.

The underlying idea of similarity based function transfer is that

proteins with similar sequence and structural features are likely to

perform the same function [27–29]. We take this principle one

step further by examining groups of similar proteins. Such a group

can be seen as a local region within the protein universe. A

molecular function that is shared by all proteins in a local region is

considered to be conserved. Local regions may be interspersed

with proteins not annotated with this function and function

conservation can vary between different regions [30,31]. There-

fore, we use the frequency of functionally identical proteins within

a local region to determine the extent to which a function is

conserved in the respective region of protein space. The degree of

local function conservation is regarded as a confidence measure for

the prediction, high conservation implying high confidence that

the respective function is correct. This quantitative estimate yields

a differentiated view on function conservation, enabling us to

predict protein molecular function more accurately.

Results/Discussion

We estimate the rate of errors made when inferring protein

function annotations based on protein sequence and structure

similarity. On a representative set of protein domains, the error

rates when inferring function naively are considerable. Addition-

ally we analyze how inference is potentially improved by

combining different measures for protein similarity.

Within the space spanned by the set of representative protein

domains, we identify regions where function is locally conserved.
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The information how well a molecular function is conserved in a

protein neighborhood is captured and used for predicting protein

function for new proteins falling into that neighborhood. The

prediction method is extensively assessed and we compare its

performance with the published PHUNCTIONER method [17].

Finally, we apply the method to 500 uncharacterized structural

genomics targets from the PDB and discuss some of the findings in

detail.

Error Rates for Function Inference
The analysis is based on a set of 7290 representative protein

domains with maximal 40% sequence identity as provided by the

ASTRAL Compendium [32]. Molecular function annotations for

the proteins were taken from the Gene Ontology Annotation

(GOA) Project [33,34] (see Methods for details).

Of the 7290 representative protein domains, 86% are annotated

with at least one molecular function GO term and 84% are

annotated with a molecular function GO term from level three, or

more specific (see Methods for the definition of GO levels). Some

GOA annotations cannot be resolved to domain precision.

Therefore, we reduced the domain set to single domain structures

(see Methods for details). Out of this reduced set of 4099 single

domain structures, 3449 (84%) domains are annotated with

molecular function GO terms. The subsequent analyses are

performed on this set of 3449 protein domains. These 3449

protein domains are annotated with 0 to 11 level three GO terms

(with a first quartile of 1, a mean of 1.96, and a third quartile of 3

GO terms).

The domains are compared against each other with different

measures for protein similarity (see Methods for details): for

measuring similarity we use two sequence-based programs, namely

local profile alignment (LP) and global profile alignment (GP) [35],

and two structure-based programs, namely Combinatorial Exten-

sion (CE) [36] and TM-align (TM) [37].

How reliably can functional annotations be inferred from the

neighboring proteins of a protein according to each similarity

measure? This question is analyzed for GO level three. With a

leave-one-out cross-validation for each protein we assess the errors

made when inferring GO terms from the nearest neighbor to each

protein. The average percentage of correct annotation inferences

ranges from 51% to 62%, depending on the similarity measure

(55% for CE, 51% for TM, 62% for LP, 62% for GP). Compared

to other studies [28,29], we observe slightly lower error rates.

In Figure 1A the inferred annotations are sorted according to

the similarity measures and then binned such that each bin

contains an equal number of counts (ca. 670 annotations). This

allows for comparing the number of errors in inference according

to different similarity measures, where the different similarity

measures are operating at different scales. Even for very similar

proteins, in the highest scoring bins, we observe a maximum of

only 83% annotations being correctly inferred. Consequently,

when inferring annotations from nearest neighbors without further

analysis, at least 17% of the annotations are predicted falsely. The

situation is even worse for lower similarity ranges. These errors

can be attributed to the local properties in sequence and structure

space. They demonstrate the difficulty of function annotation

transfers at different similarity ranges.

Combining Similarity Measures for Sequence and
Structure

We broaden the above analysis to all GO levels, and examine to

which extent function prediction can potentially benefit from

combinations of protein similarity measures. The Venn diagram in

Figure 2 shows how the set of GO annotations decomposes into

subsets that can be inferred from protein neighbors according to

different similarity measures. Altogether, there are 1806 distinct

GO terms attached to 3449 proteins, yielding 28774 annotations.

Of these, 8907 annotations are not found at a nearest neighbor

according to any similarity measure. The remaining 19867 GO

annotations are found at the nearest neighbor according to at least

one similarity measure.

The numbers of annotations that could be inferred by one

similarity measure alone range from 15499 (53% for CE) to 17216

(60% for GP). Thus, if only one of the similarity measures were

used for function inference, one would miss between 2651 (9%)

and 4368 (15%) correct annotations that could be inferred using

all four similarity measures. The diagram demonstrates clearly that

there is potential in the combination of several similarity measures

for predicting GO terms.

GOdot: Using Local Function Conservation for Predicting
Molecular Function

In the previous sections, we demonstrated that inferring

function according to annotations attached to the nearest

neighbors is useful but prone to errors. We also showed that

combining different similarity measures yields a potentially better

coverage of predicted GO terms. Here, we propose the GOdot

method which combines the information from several similarity

measures and assesses local function conservation in protein

sequence and structure space in order to predict GO molecular

function.

GOdot: method overview. The GOdot method comprises

two stages: a training stage which is performed only once, and a

prediction stage that is run once for each unknown query protein.

The complete protocol is illustrated in Figures 3 and 4 and

explained in full detail in the Methods section.

The training is performed on the above-mentioned set of

protein domains with no more than 40% sequence identity.

Within the space of these proteins, the method looks for regions of

similar domains having the same function. The degree of function

conservation in such regions can vary considerably depending on

Author Summary

Proteins are an essential class of molecules playing a
variety of roles within a cell. They can be described in
various ways: amongst others, by sequence, structure, and
function. Determining protein function by wet lab
procedures is challenging and tedious. Simultaneously,
sequencing and structural genomics projects turn out ever
increasing numbers of protein sequences and structures,
which are largely lacking functional characterization. As a
consequence, there is a growing demand for computa-
tional methods that can assist human experts in the
functional annotation of proteins. We present a method
for protein function prediction based on a novel concept,
called local function conservation. Local function conser-
vation in sequence and structure is determined by
rigorously analyzing the variability of protein function
with respect to sequence and structure similarity. Our
method predicts protein function even if the protein to be
functionally annotated has only distant relatives. Further-
more, we estimate the reliability of the function prediction.
With this approach, we advance automated function
prediction and contribute to a better understanding of
the complex relations between protein sequence, struc-
ture, and function.

Local Function Conservation
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the type of molecular function, the number of protein domains

having that function, and the metric used to calculate protein

similarity. Therefore, we estimate the degree of function

conservation separately for each GO molecular function in the

region around each protein domain. Analyzing the region of 200

nearest neighbor proteins and using logistic regression, we obtain

one logistic curve for each GO term, capturing the extent of

functional conservation in the region around the protein domain.

The logistic regression is done separately for each similarity

measure.
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Figure 1. Assessing Similarity-Based Inference. (A) The plot serves to assess the errors made when inferring GO terms from the nearest
neighbor of each protein. The inferred annotations are sorted according to the similarity measures (CE, TM, LP, GP) and then binned such that each
bin contains an equal number of annotation counts (ca. 670 annotations). This allows for comparing the number of errors for the inference according
to different similarity measures which are operating on different scales. The x-axis denotes the range of similarity measure scores falling into that bin,
the y-axis the ratio of correct annotations in that range. (B) In contrast to (A), the inferred annotations are sorted according to raw function
conservation scores, based on the similarity measures (CE, TM, LP, GP). The x-axis denotes the range of raw function conservation scores falling into
that bin, the y-axis the ratio of correct annotations in that range.
doi:10.1371/journal.pcbi.1000105.g001
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In the prediction phase, the method predicts the molecular

functions for an unknown query protein using the pre-computed

logistic curves. Initially, the uncharacterized query protein is

compared to all protein domains in the training set. The logistic

curves of the most similar proteins in the data set are used to

predict the molecular functions of the query: if the logistic curve of

one of these nearest neighbors indicates high function conservation

for a specific GO term in the region of the query, the GO term is

predicted with a corresponding raw function conservation score.

Raw function conservation scores are deduced from the logistic

curves based on the similarity of the query to the nearest

neighbors. The method computes several raw conservation scores

for the query structure, one for every GO term annotated to the

nearest neighbors. Usually, there exist several raw function

conservation scores for one and the same GO term, either from

different nearest neighbors with the same functions, or from one

protein domain selected as nearest neighbor by different similarity

measures. In order to assign one score to each of the predicted GO

terms, we have developed two alternative schemes of combining

raw function conservation scores along the GO graph: selective

combination and consensus combination. Both combination

schemes ensure that a GO term is predicted together with all its

ancestors in the GO hierarchy, and that parental GO terms obtain

scores that are at least as high as those of their GO descendants.

This approach is in compliance with the GO true path rule, which

states that ‘‘the pathway from a child term all the way up to its top-

level parent(s) must always be true’’ (http://www.geneontology.

org/GO.usage.shtml#truePathRule). The combined scores pro-

vide an estimate for the reliability of the predicted GO terms.

GOdot: illustration of the method with a sample

query. We illustrate the GOdot function prediction

mechanism for a sample query protein with PDB ID 1ve3, for

which a crystal structure is available from a structural genomics

initiative. In the representative set, the nearest neighbors

according to CE, TM, LP, and GP are the protein domains

d1p91a (CE score 5.9), d1vlma (TM score 0.74), d1vl5a (LP score

188), and d1qama (GP score 136). For each of these, the

surrounding space was pre-analyzed. In Figure 4A, the

surrounding region is depicted for d1vlma according to TM

similarity. The domain d1vlma has molecular functions

GO:0003824, GO:0008168, GO:0008757, GO:0016740, and

GO:0016741 attached. Here, we focus on GO:0008757 (S-

adenosylmethionine -dependent methyltransferase activity). In

Figure 4A, protein domains having function GO:0008757 are

colored yellow, domains not annotated with this function are

colored grey. The domains with this function form a cluster within

which we find the query protein.

Numerically, local function conservation is captured with the

raw function conservation score. As depicted in Figure 4B, the

neighbors of d1vlma are sorted according to the TM scores with

respect to d1vlma, and a logistic curve is fit. Evaluating the logistic

curve at a TM score of 0.74 (from 1ve3 to d1vlma), yields a raw

function conservation score of 0.9955. Similarly, measuring with

CE, LP, and GP, the raw function conservation scores for GO

term GO:0008757 are 0.9817, 0.9980, and 0.9998, respectively.

These are computed from the above-mentioned nearest neighbors,

which are all annotated with this molecular function.

Using the combination schemes, the raw function conservation

scores are combined selectively into 0.9998 (which is the

maximum of the above raw function conservation values), and

into <1–10211 according to the consensus combination (which is

12(120.9817)?(120.9955)?(120.9980)?(120.9998)). For the sake

of simplicity, we have not included any GO term of the nearest

neighbors more specific than GO:0008757 into the above

calculations.

Assessment of the GOdot Method
To assess the performance of the GOdot method for function

prediction, we compare four variants of function predictors:

function inference based on protein similarity alone (as discussed

above), function inference based on raw function conservation

scores, function inference based on selectively combined function

conservation scores, and function inference based on consensus

combined function conservation scores.

Reliability of raw function conservation scores. Do raw

function conservation scores improve the performance when

predicting function? In Figure 1A, we sorted the inferred

annotations according to similarity measure scores. In Figure 1B,

annotations are sorted according to raw function conservation

scores. Again, the inferred annotations are binned such that each

bin contains an equal number of counts. The two figures

(Figure 1A and Figure 1B) are directly comparable. For high

raw function conservation scores, the rates of correctly predicted

annotations range from 90% to 95% (compared to rates of 80% to

83% in Figure 1A). For low raw function conservation scores, the

rates of correctly predicted annotations are below 50%. Compared

to Figure 1A, the separation between correct and incorrect

function inferences is much better. Consequently, the raw function

conservation score adequately reflects the confidence that we have

into a prediction.

Assessing combined function conservation scores. How

good is the quality of function inference based on combined

function conservation scores compared to inference based on raw

function conservation or to the naive inference based on the

similarity measures alone? In Figure 1A the correct and incorrect

annotations obtained for a similarity score were assessed with a

229
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Figure 2. Impact of Different Similarity Measures on Inferring
Function. The four-set Venn diagram covers the correct GO term
inferred from the neighbors based on the individual similarity measures.
Each ellipse represents the number of GO terms correctly inferred using
one similarity measure. The numbers of GO terms correctly inferred by
several similarity measures are shown in the intersections between one
or more ellipses.
doi:10.1371/journal.pcbi.1000105.g002
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leave-one-out cross-validation for annotations of GO level three.

By thresholding according to the scores and evaluating the true

positive rate versus the false positive rate, we produce one ROC

curve for each similarity measure. The black curve in Figure 5

displays the average ROC curve for the four similarity measures

(CE, TM, LP, GP); the boxplots attached serve to estimate the

observed spread. This curve summarizes the four plots in

Figure 1A. The average area under the ROC curve (AUC) is 0.71.

Similarly, when sorting according to raw function conservation

scores, as in Figure 1B, we obtain four ROC curves, the average of

which is shown as green curve along with the estimated spread

(AUC 0.79). When merging the information into one combined

consensus score, one obtains only one score per inferred

annotation and consequently only one ROC curve. In Figure 5,

this curve is marked in violet for the selective combination and in

blue for the consensus combination. We observe that the

combined score outperforms the raw function conservation score,

which in turn outperforms the use of similarity measures. The

consensus combination (AUC 0.87) outperforms the selective

combination (AUC 0.86) slightly (the difference between the

combination schemes is significant as we discuss in the Text S1

and Figure S1). The selective combined score is typically identical

for the highest scoring GO term and its GO generalizations (as the

maximum scores are propagated up along the GO hierarchy, see

Methods for details). The score combined by consensus integrates

the conservation scores of all GO descendants of a GO term to be

scored, producing a more differentiated ranking of GO terms.

Employing the function conservation concept clearly improves

the prediction performance. The two GOdot predictors using

function conservation scores significantly perform better than the

reference predictors.

Additional assessment on high-quality annotations. The

Gene Ontology Annotation Project (GOA) keeps track of the sources

of their functional annotations by use of evidence codes. An overview

of the Evidence codes used by GOA is provided in Table 1. Curated

function assignments can stem from direct experiments (evidence

codes IDA, IEP, IGI, IMP, IPI), literature (TAS, NAS), or

computational methods validated manually (ISS, IGC, IGC). GOA

collects electronically inferred annotations (IEA) using various

computer-based resources (http://www.ebi.ac.uk/GOA/goaHelp.

html), such as the Ensembl Compara method [35], or BLAST

homology searches with a conservative E-value of 10250 (http://

www.geneontology.org/cgi-bin/references.cgi). The exact IEA origin

is only tracked for function assignments made after May 2007.

On the previously studied set of 3449 representative domains

there is the following evidence for function annotations: 8% are

A1.
Calculate similarities between all proteins in the 
dataset .

template 1 (t1)

template 3 (t3)
template 2 (t2)

template 4 (t4)
1

1

1

1

.7

.8

.4

.4

.2

.6

A2.
Derive all-against-all similarity matrix based on the 
similarity space

t1

t2

t3

t4

t1 t4t3t2

similarity0.8 0.6 0.4 0.2 0
0

1

A3.
Fit logistic curves to all functions of each template

B2.
Predict raw scores based on local function 
conservation of nearest neighbors to q.

B1.
Calculate similarities between query protein and 
template proteins in dataset.

query (q)

t1

t3
t2

t4

B3.
Combine raw function conservation scores 
and obtain a ranking of GO terms .

0.6 0.4 0.5

0.7

0.7

0.6

0.720.76

0.95 

similarity0.8 0.6 0.4 0.2 0
0

1

0.5

0.6

0.75 .95 .3 .5

t1 t4 t3 t2

template 5 (t5)

t5

t5

.55

t5

.3

.75

.3

.5

1

t5

Figure 3. Overview of the GOdot Method. We exemplify the GOdot method on a set of five template proteins (t1–t5) having two different
molecular functions (drawn in yellow and red, respectively). The training procedure (top row) consists of similarity calculations (A1), yielding four
different similarity matrices one of which is shown (A2). Based on these similarities, logistic curves are fitted for each molecular function in the dataset
(A3). The prediction (bottom row) comprises similarity computations between the query protein and the proteins in our dataset (B1), which are then
used to predict the conservation of molecular functions in the queries proximity (B2). The final ranking of GO terms is obtained using combination
schemes along the GO graph structure (B3). See Methods section for details.
doi:10.1371/journal.pcbi.1000105.g003

Local Function Conservation

PLoS Computational Biology | www.ploscompbiol.org 5 July 2008 | Volume 4 | Issue 7 | e1000105



based on direct experiments, another 8% are based on literature

statements, and less than 1% are found by curators based on

computational evidence. The rest (83%) of the annotations is

based on automatic electronic inference.

When using these functional annotations for training a new

computational method like GOdot, there is an obvious trade-off

between quality and coverage: the higher the number of annotated

proteins used, the lower is the ratio of manually curated

annotations on these. The previously described set strives for

maximum coverage, as this is the aim in a typical application

scenario. We also tested the method on a second set based on high-

quality annotation data.

The high-quality data set is restricted to annotations that stem

traceably form literature (evidence code TAS) or from direct

experiments (evidence codes IDA, IEP, IGI, IMP, IPI), leaving

945 proteins with curated experimental annotations. We repeated

the analyses described in the previous section on this high-quality

subset. The results are summarized in Figure 6 and Figure S2.

Compared to the high-coverage data set shown in Figure 5, all

performance curves in Figure 6 are lower. Due to the subsampling,

nearest neighbors are farther apart and harder to detect, making

predictions more difficult. Nevertheless, the same trends are

clearly visible: the GOdot raw function conservation scores (AUC

0.73) are better suited for function inference than plain similarity

measures (AUC 0.64), and combining the raw function conserva-

tion scores further improves the performance (AUC 0.78 and

AUC 0.80 for selective and consensus combination). Figure S2 is

an analog to Figure 1, but based on the high-quality subset. It

outlines the errors of function inference made using similarity

measures alone (A) and raw function conservation scores (B).

The results based on high-quality data confirm our observations

made on the larger high-coverage data set. Since the higher

coverage enables predictions for a broader range of GO functions

and a more diverse set of query proteins, we have used it

throughout this article. It is important to note that IEA

annotations from GOA are based on very closely related proteins

with high sequence and structure similarity. GOdot overcomes this

limitation by exploiting distant relations of pairwise sequence

identities below 40%, thereby going beyond current IEA

approaches.

Assessment according to the PHUNCTIONER

protocol. Finally, we assessed the GOdot method according

to the protocol published with the PHUNCTIONER method

[17]. The PHUNCTIONER method uses structural multiple

alignments of functionally similar proteins to derive position

specific scoring matrices (PSSMs) for specific GO functions;

structures with unknown function are scanned against a library of

PSSMs to assign function to the structure. PHUNCTIONER can

predict 121 molecular function GO terms from different levels of

the GO hierarchy. For a query protein, it predicts one of these GO

terms along with a score. The list of predicted GO terms is sorted

according to the scores from likely to unlikely. The assessment of

the PHUNCTIONER method was previously performed with

ROC plots [17]. These ROC plots are GO-level specific and were

constructed as follows. For GO level three, only the highest scoring

level-3 GO term from the prediction list is considered for one

query and evaluated to be either true or false. Sorting predictions

for multiple queries according to their scores one obtains a ROC

curve. The PHUNCTIONER method was assessed this way on

sets of up to 6168 query proteins, where query proteins were
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Figure 4. Sample Neighborhood. (A) Using TM to identify the nearest neighbor of the sample query protein 1ve3 yields protein domain d1vlma.
For d1vlma the TM scores were pre-computed, resulting in the neighborhood illustrated here with Kruskal’s non-metric multidimensional scaling
[44](where similar proteins structures are depicted close). Domain d1vlma has several molecular functions attached, for this illustration we selected
GO:0008757 (S-adenosylmethionine-dependent methyltransferase activity). Protein domains having this function are colored yellow, domains not
annotated with this function are colored in grey. (B) TM scores with respect to d1vlma are sorted along the x-axis. Protein domains annotated with
molecular function GO:0008757 are assigned a y coordinate of 1 (drawn in yellow), domains not annotated with this function are assigned a y
coordinate of 0 (drawn in grey). Unlabeled domains are from the 200 nearest neighbors of d1vlma. A logistic curve is fit through these points (drawn
in orange). The logistic curve can be evaluated for the raw function conservation score for a given TM score.
doi:10.1371/journal.pcbi.1000105.g004
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selected such that at least one of their annotated GO terms was

predictable by the PHUNCTIONER method. We have repeated

this evaluation procedure in an analogous fashion on the set of

3449 protein domains also employed in our other experiments.

The resulting ROC curves for the GOdot method are shown in

Figure 7. The two GOdot predictors, using selective and consensus

combination of scores, are compared to a baseline reference

Figure 5. Comparing Similarity Scores to Raw and Combined
Function Conservation Scores. The ROC plot serves to analyze the
reliability when inferring GO level three functional annotations from the
nearest protein neighbors. For each protein domain, nearest neighbors
are sought according to the four similarity measures (CE, TM, LP, GP).
The GO terms attached to these nearest neighbors can be potentially
inferred for a query protein. By sorting annotation transfers according
to the similarity scores and evaluating the true positive rate versus the
false positive rate, a ROC curve is derived.The black curve displays the
average ROC curve for the four similarity measures (CE, TM, LP, GP); the
boxplots attached serve to estimate the observed spread. Similarly,
when sorting according to raw function conservation scores, we obtain
four ROC curves, the average of which is shown as green curve along
with the estimated spread as boxplots. Merging the information into a
combined consensus score yields one score per inferred annotation;
The corresponding ROC curve is plotted in violet for selective
combination and in blue for consensus combination.
doi:10.1371/journal.pcbi.1000105.g005

Table 1. Evidence Codes Used by the Gene Ontology Annotation Project.

Curator-Assigned Evidence Codes

IDA Inferred from Direct Assay Experimental

IPI Inferred from Physical Interaction Experimental

IMP Inferred from Mutant Phenotype Experimental

IGI Inferred from Genetic Interaction Experimental

IEP Inferred from Expression Pattern Experimental

ISS Inferred from Sequence or Structural Similarity Curated Computational Analysis

IGC Inferred from Genomic Context Curated Computational Analysis

RCA Inferred from Reviewed Computational Analysis Curated Computational Analysis

TAS Traceable Author Statement Author Statement

NAS Non-traceable Author Statement Author Statement

IC Inferred by Curator Curator Statement

ND No biological Data available Curator Statement

Automatically Assigned Evidence Codes

IEA Inferred from Electronic Annotation Automatically Assigned

The table lists evidence codes as defined by the Gene Ontology Consortium (http://www.geneontology.org/GO.evidence.shtml). It shows the evidence codes,
corresponding phrases, and broader categories describing how the evidence codes are associated with gene products.
doi:10.1371/journal.pcbi.1000105.t001

Figure 6. On Experimental Annotation Data Only. Comparing
similarity scores to raw and combined function conservation scores.
ROC analysis on a reduced high quality data set containing only
experimental annotation data (evidence codes IDA, IEP, IGI, IMP, IPI) for
629 proteins. The black curve displays the average ROC curve for the
four similarity measures (CE, TM, LP, GP); the boxplots are an estimate of
the observed spread. The green curve corresponds to the average of
the four raw function conservation scores. The ROC performance of
selective and consensus combination is shown with the violet and blue
curves, respectively.
doi:10.1371/journal.pcbi.1000105.g006
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predictor. The reference predictor predicts GO terms based on

their background frequencies within the dataset. The curve of an

optimal predictor would pass through the upper left corner of the

plot, a diagonal line in the ROC plot indicates random

performance. Indeed, the background reference predictor matches

the diagonal closely. The GOdot selective and consensus

predictors are clearly superior to the reference predictor.

The performance comparison with PHUNCTIONER underlies

the following restrictions: (i) Since the PHUNCTIONER method

is not available to us we had to use the previously published results

[17] on the validation of the method. (ii) Since the benchmark

dataset for the published validation of PHUNCTIONER is not

accessible to us in the form used for the validation we have to

compare the performances of the two methods on differing

datasets. Taking this into account, we realized a scenario which

makes it harder for GOdot, in principle, to attain the same true

positive rate for a given false positive rate. We did so by assessing

the performance of GOdot on the full set of 1806 GO terms

(compared to only 121 GO terms for PHUNCTIONER). The

performance we observe for GOdot is higher than that reported

for PHUNCTIONER. As a point in case, a comparison of Figure 7

with Figure 2B of [17] shows that, at a false positive rate of 10%,

PHUNCTIONER achieves approximately 36% true positive

rate (true positive rateosensitivity, false positive rateo12specifi-

city). The GOdot method reaches 53% true positive rate at that

false positive rate.

Application to Structural Genomics Proteins
GOdot was applied to 500 query proteins corresponding to

PDB entries labeled with unknown function and obtained by

structural genomics initiatives. We analyzed the GOdot results for

the subset of these proteins having four or more GO terms with a

consensus combined score .1–10210 (49 in total). For 13 of these

proteins the predictions included at least one problematic GO

term. In most of these cases the problematic GO term was

annotated to protein neighbors that were multidomain proteins.

These GO terms corresponded to the molecular function of a

particular domain outside the region of sequence or structure

similarity. Four additional proteins remain uncharacterized

according to public annotation databases. The corresponding

GOdot predictions were not necessarily incorrect, but they only

included GO terms that were not very informative. Most of the

GOdot predictions (32 proteins) were consistent with additional

functional information that had been made available in the

UniProt [38] database or in the literature.

Direct experimental evidence for the function annotation was

usually not available for these proteins with consistent GOdot

predictions. One case with experimental evidence is Cytochrome

P450 from Sulfolobus tokodaii [39], PDB ID 1ue8. In other cases the

structural model provides direct evidence for the molecular function,

for instance if the model includes a ligand binding to the protein. The

PH0226 protein from Pyrococcus horikoshii (PDB ID 1ve3) is such an

example. The crystal structure includes the cofactor S-adenosyl-L-

methionine (SAM) bound to the protein. The protein also shows

significant structural similarity to other SAM-dependent methyl-

transferases, and is a member of the Methyltransferase homologous

family, as identified by Pfam [40]. This evidence is consistent with

the GOdot prediction of S-adenosylmethionine-dependent methyl-

transferase activity (GO:0008757) with a combined consensus score

of 1–10211. This same query was used to illustrate the GOdot

function prediction process in Figure 4. In other cases the available

annotation is scarce and relies heavily on the detection of

relationships to other proteins using either sequence or structure

comparison methods. GOdot complements these approaches by

providing an estimate for the function conservation given the extent

of sequence and structure similarity.

The hypothetical protein TT1426 from Thermus thermophilus

provides an example of GOdot results complementing previous

functional analysis. TT1426 has been identified in Pfam as a

member of the Phosphoribosyl transferase domain family. The

structure has been determined [41], PDB ID 1wd5, and predicted to

be a phosphoribosyl transferase type I based on structural similarity

to other proteins of the same family. GOdot predicts TT1426 to

have a glycosyltransferase activity (GO:0016757) with high reliability

(combined consensus score is 1–5?10211, as expected for a

phosphoribosyl transferase. Figure 8A shows the structural relation-

ships between the query and the structural neighbors according to

TM, which are used to make GOdot predictions. The structural

neighbors of the query are all glycosyltransferases, with structural

subgroupings corresponding to distinct substrates. In Figure 8B, the

structure of the query is compared to the nearest neighbor (a

xanthine phosphoribosyltransferase). Both, the fold and the

phosphoribosyl pyrophosphate-binding motif are conserved in the

two proteins indicating that they share a phosphoribosyltransferase

function. The differences in peripheral secondary structure elements

indicate that they might have different substrates.

In summary, the manual inspection revealed 13 problematic

cases (out of 49 proteins) for which a function was predicted falsely

due to an invalid transfer of function from a multidomain protein.

Four proteins could be neither confirmed nor refuted. For 32

proteins the GOdot predictions were manually confirmed with

various other sequence or structure-based methods. See Table S1

for further details.

Conclusions
We propose the GOdot method for predicting molecular

function of proteins. The method uses functionally conserved

regions as a new concept. These functional conservations are

Figure 7. Evaluation According to PHUNCTIONER Protocol.
Following the protocol described for evaluation of the PHUNCTIONER
method in [17], the ROC curve considers only the highest scoring
predicted level three GO term for each query protein. A diagonal line in
the ROC plot indicates random predictor performance. Optimal
performance is demonstrated by a curve passing through the upper
left corner.
doi:10.1371/journal.pcbi.1000105.g007
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determined by statistical learning on a representative set of protein

domains. Protein sequence and structure information of an

unannotated protein are used as input to GOdot, which then

predicts a list of GO terms. Each of the predicted GO terms has a

reliability estimate attached which is computed based on the

previously determined functionally conserved regions.

Both, the assessment using cross-validation on a representative

dataset and the comparison with PHUNCTIONER [17] demon-

strate that the analysis of functionally conserved regions is a

powerful tool for function prediction: reference function predictors

are considerably outperformed by the GOdot method. A high

function conservation score is shown to indicate a high likelihood

that a predicted GO term is correct. Consequently, function

conservation scores can be used as reliability estimates within the

prediction procedure.

To our knowledge, the GOdot method is the first approach that

directly addresses the problem of estimating varying local function

conservation in protein space with respect to different measures for

protein similarity. For each similarity measure, each GO term and

each protein domain in the representative training set, function

conservation is captured with a logistic curve. The result is a large

number of mutually intertwined and overlapping logistic curves.

The set of logistic curves offers a new view on the relation between

sequence and structure on the one hand and function on the other

hand. We regard the analysis of functionally conserved regions as

an important contribution to current function prediction efforts,

and we expect forthcoming developments in this field to uncover

more detailed insights into the sequence-structure-function space.

Local function conservation within protein space can be

determined with respect to other protein similarity measures,

such as shape or surface properties of protein binding sites, for

example. The GOdot method can be easily extended to include

other quantitative measures of protein similarity. For any new

similarity measure one would simply perform an all-against-all

comparison on the training set of proteins. Local function

conservation can then be determined for that similarity measure.

We are working on extending the GOdot method with new

similarity measures to further improve its performance.

The GOdot method is available online as a web-server (http://

godot.bioinf.mpi-inf.mpg.de), to which one can submit uncharacter-

ized PDB structures. The method performs sequence and structure

comparisons of the query protein to each entry from the

representative set of protein domains. GO terms are predicted and

function conservation scores are computed as reliability estimates. A

ranked list of predicted GO terms is the output of the web-server.

Methods

The Functionally Annotated Protein Data Set
The analysis is based on a representative set of protein sequences

and structures annotated with function data. We downloaded a set of

7290 protein domains with no more than 40% sequence identity

from the ASTRAL compendium (version SCOP 1.69) [42]. These

protein domains were assigned to the respective PDB structures. The

PDB structures were mapped to UniProt sequences using the

PDBSWS [43]. UniProt sequences were annotated with GO terms

using the Gene Ontology Annotation (GOA) UniProt Gene

association file (version 36.0) [33,34]. We removed all domains

having no GO annotation or being part of multidomain proteins

according to SCOP. This representative set comprises 3449 protein

domains annotated with 1806 distinct GO terms.

On GO levels. The GO vocabulary is structured as a directed

acyclic graph (DAG). A GO term can have several parent terms.

The annotation of a specific GO term to a protein then implies the

Figure 8. Query TT1426 (PDB 1wd5). A) Structural neighbors of hypothetical protein TT1426 (PDB 1wd5) according to TM-align. The image was
generated by multidimensional scaling in the same way as Figure 4A. Proteins annotated with GO term GO:0016757 (glycosyltransferase activity) are
colored yellow and they form a large group on the lower left, where the query is also located. The glycosyltransferase group is subdivided into
subgroups. In general these subgroups are associated with different substrates, in particular adenine phosphoribosyltransferase (d1l1qa, d1g2qa),
uracil phosphoribosyltransferase (d1o5oa, d1a3c), or xanthine/hypoxanthine/guanine phosphoribosyltransferases (d1nula, d1hgxa, d1dqna, d1j7ja,
d1bzya). Proteins not annotated with GO:0016757 are colored grey. They are less structurally related to the query than the glycosyltransferases, and
accordingly they group separately on the right and top. B) Structural superposition of query TT1426 (PDB 1wd5 [41] in light blue) and the nearest
neighbor, xanthine phosphoribosyltransferase (ASTRAL d1nula [45] in gold). The conserved 5-phosphoribosyl-1-pyrophosphate (PRPP)-binding motif
characteristic of type I PRTases is colored pink in 1wd5, and violet in d1nula. Residues Arg32 and Lys56 in the query 1wd5 are shown in blue sticks.
They are likely to be functionally relevant (involved in binding the pyrophosphate [41]). The structurally equivalent residues in the nearest neighbor
are shown in orange. The structural differences in helices a3 and a4, as well as in the substrate binding C-terminal hood region (helices a7 and a8),
indicates that they might have different substrates.
doi:10.1371/journal.pcbi.1000105.g008
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annotation of all parent terms to that protein as well (this is

referred to as the GO true path rule). As the GO vocabulary is

organized as a DAG, a particular term can have several paths of

different lengths to the root node; the term can occur on multiple

levels of the ontology.

Performance comparisons across GO terms from different levels

of specificity are hazardous. Therefore, in our studies we focus

mostly on GO terms from level three, where the GO root is

defined as being at level zero and GO ‘molecular function’ as level

one. We consider a GO term to belong to level three, if it has any

path of length three to the root node. An example of a level three

GO term is ‘transferase activity’ (GO:015972), which has the

parent ‘catalytic activity’ (GO:052747), which is in turn a direct

child of ‘molecular function’ (GO:161526).

Learning Molecular Function from Sequence and
Structure Data

Similarity between proteins is measured using different distance

measures. We refer to observing a specific protein function

consistently within a neighborhood of proteins in protein space as

function conservation. We used different measures of similarity

between proteins and describe a mathematical model for capturing

function conservation. This model can be computed in a pre-

processing step and later be used to predict protein function.

Computing similarities between proteins. For a pair of

protein domains p,r, we compute similarities sim(p,r) using four

different methods. The CE [36] and TM-align [37] programs

compute structure-based similarity scores (simCE and simTM).

Global profile (GP) and local profile (LP) alignments [35]

capture the similarities (simGP and simLP) of the proteins’

sequences as a whole or as the best partial match, respectively.

Fitting curves using logistic regression. We have

determined conservation of molecular function with respect to

the four similarity measures mentioned above. For each similarity

measure sim, we apply the following training procedure to all

protein domains in the dataset. Each protein domain p is

annotated with a set gt(p) of molecular function GO terms. Let

f [gt pð Þ denote one of these terms. Note that, by the true path

rule, gt(p) contains all of f’s parent terms.

For each term f annotated to a domain p, we determine

conservation based on the occurrence of f among the nearest

neighbors of domain p. The more neighbors of p have the same

molecular function term f and the closer these neighbors are to p,

the higher is the local conservation of f around p. We represent

local function conservation using logistic regression as follows. Let

r1,…rk denote the k nearest neighbors to p according to sim. In the

experiments, we chose k = 200. Let X be the real-valued vector of

similarities X = [sim(p,r1),…,sim(p,rk)]. Let Y denote the binary

vector of observations describing for each of the nearest neighbors

ri, whether f or more specific terms among its descendants are

annotated to ri

yi~
1 if f [gt rið Þ
0 else

�
:

The logistic regression relates the similarities X between proteins

and their neighbors to the log-odds that the respective neighbors

are annotated with the same GO term (as indicated by Y). This

relation is mathematically modeled by the logistic curve

lcb0,b1
xð Þ~ 1

1zexp { b0zb1xð Þð Þ ,

that is characterized by two parameters b0 and b1. Given X and Y,

logistic regression yields b0 and b1. We fit such a logistic curve for

each annotation of a GO term to each protein in the dataset. The

multitude of logistic curves provides a view on the distribution of

functional conservation.

Predicting Protein Molecular Function
The GOdot method takes a query protein as input and predicts

scores for a number of GO terms. For a query, we first predict

scores representing the degree of GO function conservation. These

scores are based on the local function conservation of the terms

annotated to the query’s nearest neighbors. The predicted scores

are combined to account for multiple occurrences of related GO

terms. Finally, ranking the GO terms according to the combined

scores, the method produces a sorted list of GO terms.

Using logistic curves to estimate local function conservation.

A typical function prediction commences with a query protein q

of unknown function. We identify q’s nearest neighbor with respect

to the similarity measures, for example with simCE as mentioned

above. Let x = simCE(q,r) be the similarity between q and the nearest

neighbor r. The logistic curve previously computed for the

neighbor r and one GO term f is used to estimate the likelihood

of the GO term f occurring at similarity x to r. For a given

similarity x and one GO term f, the raw function conservation score yCE
f

is defined as

yCE
f ~

lcb0,b1
xð Þ if f [gt rð Þ

0 else

�

where b0 and b1 are the parameters representing the logistic curve

for the particular GO term f attached to the particular nearest

neighbor r. Thus, yf can be interpreted as estimated probability of

q having the same GO term f, given a similarity x to the neighbor r.

For the other similarity measures simTM, simGP, simLP, the raw

function scores are defined accordingly.

Combining raw function conservation scores along the GO

graph structure.

For a query protein q, the different similarity measures point to

potentially different nearest neighbors. These nearest neighbors

are annotated with one or several GO terms. For each of these

GO terms the raw function score provides an estimate of the

likelihood that the transfer to the query is valid, at the given

similarity. Thus, for a specific GO term f, we have four raw

function scores attached to a protein, which we refer to as support

yCE
f ,yTM

f ,yGP
f ,yLP

f

n o
. As the GO terms are interconnected via

the GO hierarchy, the support partially relates to each other and

needs to be combined.

We merge several raw function conservation scores into one

combined function conservation score per GO term. To this end, we

propose the following score combination schemes which are

applied to each GO term and incorporate the raw conservation

scores of descendant GO terms. These combination schemes also

ensure that GO terms obtain scores that are at least as high as

those of their descendants.

The selective score combination scheme computes the combined

function conservation vsel
f of a GO term f as the maximum raw

function conservation score within the support of all its

descendants f9 as follows:

vsel
f ~ max

f 0[f|desc fð Þ
max

sim[ CE,TM,GP,LPf g
ysim

f 0

This selective score combination scheme is illustrated in Figure 9A.

Local Function Conservation
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The consensus score combination scheme computes the combined

function conservation vcons
f . As mentioned before, the function

conservation scores can be interpreted as probabilities. The

probability of a GO term being correct is computed from the

probabilities of the descendant GO terms being correct. The

probability of a term being correct is one minus the probability

that all descendant terms are incorrect. Assuming independence,

the probability for all descendant terms being incorrect is the

product of their individual probabilities for being incorrect.

Consequently, we define the combined consensus function

conservation score as

vcons
f ~1{ P

f 0[f|desc fð Þ
P

sim[ CE,TM,GP,LPf g
1{ysim

f 0

� �
:

The combined consensus score depends on the number of

descendants and the support observed for the descendants. High

combined scores are caused by many descendants with high raw

scores. The consensus score combination scheme is illustrated in

Figure 9B.

Each of the combination schemes above produces one

combined score per GO term. These combined scores are

estimates of the reliability of the predicted GO terms. The GO

terms predicted for one query are ranked with respect to the

combined scores yielding a sorted list. We refer to a combination

scheme producing such a list as predictor. The assessment of the

predictors is described in the next section.

Performance Assessment
We assess the GOdot method’s performance by cross-valida-

tion. The selective and consensus predictors are compared to a

baseline predictor using precision-recall graphs.

Cross-validation scheme.

We perform a leave-one-out cross-validation. Predictors are

trained for each protein ignoring the annotations attached to that

protein. In the Text S1 and Figure S1, we perform an additional

significance analysis using ten-fold cross-validation.

Performance plots. We assess a predictor’s performance

with ROC plots. All GO terms that can be inferred from the

nearest neighbors are considered and scored. An imaginary

threshold is shifted from top to bottom over the list of ranked GO

terms, treating all terms above the threshold as predicted. At each

rank the number of true positives (TPocorrect GO terms predicted),

false positives (FPoincorrect GO terms predicted), true negatives

(TNoincorrect GO terms not predicted) and false negatives

(FNocorrect GO terms not predicted) is counted. These counts

are combined into the performance measures true positive rate and

false positive rate. At each rank, the true positive rate is the fraction

of true positive predictions from all positive samples and the false

positive rate is the ratio of false positive predictions divided by the

number of negative samples:

true positive rate~
TP

TPzFN

false positive rate~
FP

FPzTN
:

As a result we obtain pairs of true positive rate and false positive rate

values for each rank in the list, yielding a ROC curve.

Runtime Considerations
Predicting functions for a new query protein requires comparing

the query to the set of representatives. Comparison of one protein

to all 3449 protein domains in the set of representatives takes on

average 4 hours for CE, 5 minutes for TM, and 2 minutes for

profile alignment on a modern PC. With a compute cluster as

Figure 9. Selective and Consensus Combination Schemes. Examples of selective (A) and consensus (B) raw score combinations. (A) and (B)
both show a subgraph of the full gene ontology. Raw function conservation scores were mapped to specific GO terms (red). We compute combined
function conservation scores for more general GO terms (orange) using the selective and consensus combination schemes. Grey nodes indicate GO
terms, that were not predicted by the method.
doi:10.1371/journal.pcbi.1000105.g009
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back-end to the GOdot web-server, we provide answers typically

within 20 to 60 minutes. In the training stage, establishing the

protein space requires all-against-all comparisons, which is quite

expensive (300 CPU days). When the distances are available,

computing the logistic curves for 28774 annotations (of all-level

GO terms to 3449 proteins) takes 9 minutes and is negligible in

comparison.

Supporting Information

Table S1 Details on Application to Structural Genomics

Proteins. The table provides details on the 49 cases described in

the paper, including PDB identifiers.

Found at: doi:10.1371/journal.pcbi.1000105.s001 (0.06 MB PDF)

Text S1 Significance Analysis. Additional evaluation of the

significance of the findings, based on an extended ROC-analysis /

cross-validation

Found at: doi:10.1371/journal.pcbi.1000105.s002 (0.06 MB PDF)

Figure S1 Performance assessment of consensus combination vs.

selective combination. We use precision-recall graphs to compare

the different predictors resulting from consensus score combina-

tion and selective score combination with predictors employing

mere protein similarity measures and a background predictor. The

plot is based on the cross-validation results, each curve describing

the median performance of one distinct predictor. The boxes

indicate 25% and 75% quantiles, the whiskers represent the

maximum deviation from the median. The predictors employing

protein similarity measures only, have a performance worse than

the background predictor for very low recall rates. For very similar

proteins, GO terms are predicted as likely, regardless of their level

within the GO hierarchy. This leads to false terms predicted as

very likely and thus to a precision of below 1 for recall 0.

Found at: doi:10.1371/journal.pcbi.1000105.s003 (0.28 MB PDF)

Figure S2 Assessing similarity based inference on the high-

quality data set. We entirely repeated the estimates and

calculations performed for the high-coverage data set in the main

manuscript on a high-quality data set. This high-quality data set is

restricted to annotations that stem traceably from literature

(evidence code TAS) or from direct experiments (evidence codes

IDA, IEP, IGI, IMP, IPI), leaving 945 proteins with curated

experimental annotations. This figure corresponds to Figure 1 in

the main paper, with the evaluation performed on high-quality

annotations.

Found at: doi:10.1371/journal.pcbi.1000105.s004 (0.17 MB PDF)
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