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Abstract

Evolution by natural selection is fundamentally shaped by the fitness landscapes in which it occurs. Yet fitness landscapes
are vast and complex, and thus we know relatively little about the long-range constraints they impose on evolutionary
dynamics. Here, we exhaustively survey the structural landscapes of RNA molecules of lengths 12 to 18 nucleotides, and
develop a network model to describe the relationship between sequence and structure. We find that phenotype
abundance—the number of genotypes producing a particular phenotype—varies in a predictable manner and critically
influences evolutionary dynamics. A study of naturally occurring functional RNA molecules using a new structural statistic
suggests that these molecules are biased toward abundant phenotypes. This supports an ‘‘ascent of the abundant’’
hypothesis, in which evolution yields abundant phenotypes even when they are not the most fit.
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Introduction

Despite its familiar slogan—‘‘survival of the fittest’’— evolution

by natural selection may not always yield optimal organisms. In

particular, it will be fundamentally constrained by the variation

introduced into populations by mutation or migration. If better

traits never arise, then natural selection will never have the

opportunity to favor them. Whereas adaptive constraints are

central to evolutionary theory [1–3], there have been relatively few

empirical characterizations of them [4–8]. Several of these studies

suggest that selection can overcome putative constraints [6–7].

Yet, one study of the enzyme beta-isopropylmalate dehydrogenase

(IMDH) concludes that adaptation is constrained by its spectrum

of mutations [8].

With the introduction of the fitness landscape metaphor, Sewell

Wright was one of the first to argue for the importance of adaptive

constraints [9]. In contrast to Fisher’s panselectionist views [10],

Wright suggested that fitness valleys—low-fitness genotypes

separating high-fitness genotypes—may preclude simple incre-

mental evolution [9]. He argued that adaptation depends on both

the structure of the fitness landscape (that is, the spectrum of

possible mutations) and demographic conditions. Since the 1930s,

the theory of evolutionary constraints has matured, but is largely

premised on hypothetical fitness landscapes or very local estimates

of mutational effects [11,12].

For most phenotypes of interest, we cannot yet model complete

fitness landscapes. It requires knowing the fitnesses across large sets

of genotypes, typically too vast to exhaustively study either

empirically or computationally. There are, however, a few

biologically important phenotypes for which this is tractable. In

particular, Eigen and Schuster pioneered the study of RNA

molecules, using RNA secondary-structure folding algorithms as

tractable genotype-to-phenotype maps [12,13]. In their model, the

genotype of a molecule is its primary sequence and the phenotype

is its predicted minimum free energy secondary structure; fitness is

based entirely on the similarity of a phenotype to an ideal target

structure. Through extensive sampling (that is, folding many

diverse sequences) and evolutionary simulations, this system has

motivated and clarified several important ideas in modern

evolutionary theory, including error catastrophes, quasispecies,

neutral networks, and punctuated equilibria [14–23].

The most influential concept to emerge from these RNA studies

is that of ‘‘neutral networks’’, which are sets of genotypes with

identical fitness that are interconnected by neutral mutations [15].

In the RNA model, the genotypes in a neutral network are

sequences that fold into the same shape and are connected to each

other by paths of neutral point mutations. The neutral networks of

RNA and protein molecules appear to share three basic

characteristics: (i) most neutral networks are small (contain few

genotypes), whereas relatively few are large (contain many

genotypes); (ii) large neutral networks are mutationally adjacent

to a greater diversity of phenotypes than small neutral networks;

and (iii) large neutral networks span the entire sequence space

[15,24–26].

Based on these characteristics, researchers have proposed that

large neutral networks should facilitate evolution by allowing

populations to explore vast regions of regions of fitness landscapes

through neutral drift [15,18,24,26,27]. There is some evidence to

support this assertion, though it is largely based on sampling

studies [15,24,26] or simulation studies with strong assumptions
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about the fitness landscape [26]. Most recently, Wagner (2008)

showed that populations evolving on large neutral networks

sample more alternative phenotypes than those evolving on small

neutral networks, yet these populations were constrained to

explore a single neutral network.

Whether large neutral networks actually facilitate the evolution

of optimal phenotypes fundamentally depends on the global

structure of mutational connections between different neutral

networks. If large neutral networks are almost exclusively

connected to other large neutral networks, then populations will

easily move among common phenotypes, but be unable to evolve

rare phenotypes. Theoretical and computational characterizations

of RNA fitness landscapes suggest that this may, in fact, be the

case. Yet, these predictions are largely based on relatively small

samples of sequences which may include only the most common

phenotypes in the fitness landscape [15,24].

Here, we use the RNA folding model to determine the complete

structure of fitness landscapes and how neutral network size and

adjacencies constrain evolutionary dynamics (for better or for

worse). Specifically, we fold all RNA molecules of lengths 12 to 18

nucleotides, and then develop a network model describing the

patterns of mutational connectivity among the phenotypes

produced by molecules of the same length. We build on previous

characterizations of RNA neutral network structure [15,25,28,29],

and argue that the mutational connectivity among phenotypes

follows simple predictable patterns that fundamentally constrain

evolution.

Materials and Methods

RNA Folding Model
RNA molecules fold into secondary structures that are the

essential scaffolds for functional tertiary structures and are

evolutionarily conserved for most functional RNA molecules

[30]. The formation of secondary structures is relatively well

understood and can be rapidly predicted using thermodynamic

minimization [31–34]. We used the Vienna RNA folding software

[version 1.6.1 with the default parameter set; [33] to predict the

lowest free energy shapes of all RNA molecules of lengths 12–18

nucleotides. We assume that the shape of a molecule is a

reasonable proxy for its fitness [19,21,23] and refer to each map

from sequences of length n to their predicted shapes as an n-mer

fitness landscape.

Simulation Model
We studied evolutionary dynamics on the 12-mer fitness

landscape by computationally simulating a population of evolving

RNA molecules. The molecules stochastically replicate at each

discrete generation in proportion to their fitnesses, and evolve by

point mutations. We and others have used similar models to study

many aspects of RNA evolutionary dynamics [18–23,35]. An

important feature of the RNA system is that the fitness effect of a

point mutation stems from a biologically explicit model of

molecular structure and is not simply selected from a probability

distribution of mutational effects, as in simpler evolutionary

models.

To compute the fitness of a molecule, we first predict its

minimum free energy secondary structure (that is, its groundstate),

and then compare this predicted structure with a pre-specified

target structure. Specifically, if s is the groundstate of a molecule m

and t is the target structure, then the fitness of the molecule W is

given by

W mð Þ~ 1

a z d s, tð Þ=Lð Þb
ð1Þ

where a = 0.01 and b = 1 are scaling constants, d(s,t) is the

Hamming distance between the parenthetical representations of s
and t, (parenthetical notation represents paired bases with pairs of

parentheses and unpaired bases with dots (e.g., (((....))) is a simple

stem-loop structure) and L = 12 is the length of the sequence. The

range of fitness values possible given our choice of parameters is

0.99 - 100.0; except the open-chain shape, which was assigned a

fitness of zero. Several other studies using this computational

model have shown that the qualitative results are largely

insensitive to the choice of parameters and even the shape of the

fitness function [18–21,23].

For every starting structure-target structure combination, we

adapted 20 replicate populations for t = 1,000,000 generations.

The population size was held fixed at N = 1000, which was chosen

both for computational tractability and to limit the effects of

genetic drift. The genomic mutation rate was maintained at

U = 0.0003 (NU = 0.3) for all bases in the RNA alphabet. We used

soft-selection (constant N) to maintain the population size when

genotypes that fold into the open-chain shape occasionally appear.

The expansive and intertwining neutral networks smooth the

fitness landscape so that virtually every phenotype can mutate to at

least one fitter phenotype, except, of course, the optimal (target)

phenotype. Yet the likelihood of finding a more fit mutation while

drifting on a large neutral network may be exceedingly small.

Specifically, 96.7% of all neutral networks have at least one

beneficial mutation (across all fitness functions considered in this

study), and there always exists a path of beneficial and neutral

mutations leading to the target phenotype.

In our simulations, the average time to target was 339111.7

generations; and there is no significant correlation between time to

target and the abundance of the target. The simulations were

allowed to run for approximately three times longer than the

typical time to acquire the target, and 100 times longer than the

evolutionary simulations reported in other studies using this system

[18–21,23]. Two sets of simulations with different parameter sets

(N = 500, U = 0.05, t = 5,000; N = 1000, U = 0.005, t = 250,000)

produced similar results to those reported here (not shown). The

parameters were selected to be biologically reasonable and do not

appear to strongly affect the outcome. Although even the most

unlikely phenotype can evolve given infinite time, we believe that

our results reflect the likely course of evolution.

Rfam Informatics Analysis
Rfam is a curated database of functional RNA genes, which are

those genes in which the RNA molecule itself takes parts in a

biological reaction [36]. Here, we used version 7 (2006) of the

Author Summary

Evolutionary biology tells us much about the immediate
fate of a mutation once it appears, but relatively little
about its long-term evolutionary implications. Major
evolutionary transitions from one trait to another may
depend on a long sequence of interacting mutations, each
arising by chance and surviving natural selection. In this
study, we characterize the network of mutations that
connect diverse molecular structures, and find that this
network biases evolution toward traits that are readily
produced by one or a short sequence of mutations. This
bias may prevent the evolution of optimal traits, a
phenomenon they call the ‘‘ascent of the abundant.’’
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database. We restricted our analysis to families in which the

predicted shape of each sequence in the family was at least 60%

identical to the consensus structure, thereby minimizing the effects

of folding inaccuracies. This included 239 Rfam families (about

50% of the entire database) with representatives of every

functional class in the database.

Abundance estimates were obtained by calculating contiguity

statistics for the secondary structures predicted by thermodynamic

minimization of each sequence in a family. We then determined

the rank percentiles of these abundance estimates in a null

distribution of abundance estimates from random sequences. To

generate the null distributions, we randomized each sequence in a

family 500 times (preserving nucleotide composition), and then

calculated the contiguity statistics of the ground-state shapes of

these random molecules. We finally determined the fraction of

contiguity statistics in the null distributions that were less than the

contiguity statistic from the naturally occurring molecule

(Figure 1).

Receiver Operating Curves
Receiver operating curve (ROC) analysis is a technique for

assessing the performance of classifier models [37]. The area

under an ROC gives the probability that a model correctly

assigns a binary variable (in this case, natural or random

molecule) to its proper group. We used ROC analysis to assess

relative accuracies of thermostability and contiguity for classifying

sequences as natural (taken from the Rfam database) or random,

under the assumption that natural molecules will have higher

contiguity and thermostability than random permutations of

those molecules.

Specifically, we performed logistic regressions of molecule class

(natural or random permutation) on contiguity statistic and

thermostability, and compute the area (A) under the ROC as:

A ~

P
i TPj { TPi

� �
| FPj { FPi

� �� �
P | N

where P and N are the numbers of positive and negative instances

in the data set, TP and FP are the counts of true positive and false

positive classifications between indices i and j. We used the ROCR

package to perform all such calculations in R 2.5.0 [38].

Results

Characteristics of RNA Fitness Landscapes
We have predicted the groundstate structures of all RNA

molecules of lengths 12 through 18 nucleotides; we refer to length

n RNA molecules as n-mers. The map from sequences to shapes is

extremely degenerate with large numbers of sequences (genotypes)

giving rise to identical shapes (phenotypes), as previously observed

[15–17]. We found that the number of unique phenotypes

approximately doubles with each single-base addition, from 59

unique 12-mer shapes to 3211 unique 18-mer shapes. Some of

these shapes are quite common, with many unique genotypes

folding into them, while others are quite rare, formed by few

unique genotypes.
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Figure 1. Contiguity statistic and thermostability percentiles for natural functional molecules from the Rfam database. The blue
circles represent percentiles calculated from consensus structures and individual sequences, respectively. The red squares represent percentiles for
thermostability predictions of molecules folding into the wildtype structures. We used 239 families in which the consensus structure was relatively
well conserved among the individual genotypes. The x-axis gives the fraction of random phenotypes that are predicted to be less abundant (or less
thermostable) than the actual phenotype, based on a comparison to 500 randomized molecules. The functional taxonomy is determined by the Rfam
database.
doi:10.1371/journal.pcbi.1000110.g001
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We define abundance as the number of genotypes that produce a

particular phenotype. The distributions of phenotype abundances

appear similar across all lengths of molecules (roughly exponential

without the 10% of extreme values in each tail), with relatively few

highly abundant phenotypes and many rare ones Figure 2. This is

qualitatively similar to the distributions reported previously for

both protein and larger RNA molecules [15–17,29].

Figure 2 shows a portion of the abundance distribution and a

sample of shapes present in the 12-mer fitness landscape. For the

12-mer to 16-mer sequence lengths, the landscapes are composed

entirely of variations on stem-loop-structures. In the 17- and 18-

mer landscapes, we observe the emergence of sequences folding

into multi-loop shapes, albeit at very low frequencies (on the order

of 0.001% of all sequences). The relatively low structural diversity

is consistent with known constraints on RNA structural motifs, for

example, loops must contain at least three nucleotides [31,33].

A set of genotypes that shares a common phenotype is called the

neutral network of that phenotype (Figure 3) [15]. Neutral networks

may be composed of one or more components. Within any

component, all genotypes are connected to each other by a

sequence of point mutations that remain within the component;

these mutations are, by definition, neutral. For example, in the

bottom network of Figure 3B, the red phenotype has a neutral

network with two components, each of which consists of a set of

red nodes interconnected by red edges. The abundance of a

phenotype is precisely the size of its neutral network.

Counterintuitively, there is only a weak positive relationship

between the abundance of a phenotype and the number of distinct

components in its neutral network (r2 = 0.11, P<0.01). The

majority of the 12-mer RNA neutral networks are dominated by

relatively few large components, which each contain approxi-

mately 8–10% of the sequences in the neutral network; together

these large components account for at least 80% of the neutral

network. Importantly, the large components share many of the

same characteristics as the entire neutral network. In particular,

they are each mutationally connected to the majority of the shapes

that are adjacent to the entire neutral network (typically .75%).

Figure 2 also reports the number of components (Nc), the

maximum Hamming distance between a pair of sequences in a

single component (Dmax), and the maximum shortest path length

between a pair of sequences in a single component (Dspl) for the

neutral networks in the 12-mer landscape. The neutral networks
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. . . .
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40      1525            16      9       21
41      1379            15      7       14
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43      1299            22      8       16
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45      1139            23      8       18
46      860             3       7       13
47      800             3       6       15
48      713             3       7       17
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Figure 2. Phenotype abundance distributions for all fitness landscapes. The graph shows the phenotype abundances (y-axis) for each
phenotype, ranked in order of abundance (x-axis). The most common phenotype is rank 1, the second most common is rank 2, and so on. Also shown
is the distribution of abundances for the 12-mer RNA landscape (at left), along with some representative structures from this landscape.
doi:10.1371/journal.pcbi.1000110.g002
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for the most abundant phenotypes percolate through the entire

space of genotypes.

Characteristics of RNA Mutational Networks
The various phenotypes within a fitness landscape are

connected to each other by mutations. If we aggregate all

genotypes into their respective neutral networks, we create a

mutational network in which each vertex represents a distinct

phenotype and edges connect pairs of vertices when there is at

least one point mutation that converts one phenotype to the other

(Figure 3). For example, consider a two-locus, two-allele, haploid

model with genotypes AB, Ab, aB, and ab (Figure 3A). There are

three unique phenotypes–the two (A-) genotypes produce one

phenotype (blue), aB produces another phenotype (green), and ab

produces a third phenotype (purple). Mutational networks, in turn,

form the underpinnings for fitness landscapes, which depend on

the map from phenotype to fitness. Figure 3B caricatures a higher

dimensional genotype network and its projections to phenotype

and fitness networks. For RNA molecules, the vertices in a

mutational network represent unique shapes and the edges

represent point mutations that cause a molecule to fold into a

new shape.

Roughly speaking, evolution by natural selection moves

populations along the edges in a mutational network from one

phenotype vertex to another. We are therefore interested in how

the structure of mutational networks influences evolutionary

dynamics. Intuitively, the structure of a mutational network may

influence (i) the likelihood that a given phenotype will arise and, (ii)

if it arises, the likelihood that the population can further evolve

other, better phenotypes. Hereafter, we use accessibility to refer to

the likelihood that a phenotype will arise, and evolvability as the

likelihood that a phenotype can further evolve other, better

phenotypes.

The most straightforward measure of a phenotype’s mutational

connectivity is its degree in the mutational network, that is, the

number of other phenotype that can be reached by a single

mutation. For the 12-mer through 18-mer RNA molecules, there

are significant positive correlations between phenotype abundance

and degree [R = 0.88 (12-mer) to R = 0.91 (18-mer); P,2610216].

This has been observed previously and suggests that abundant

phenotypes should be both more evolvable and more accessible

than rare phenotypes [24,26,27].

The degree of a phenotype is, however, a crude indicator of its

mutational connectivity to other phenotypes. It does not reflect the

probability that a mutation will actually yield a new phenotype;

this probability typically declines as the size of the neutral network

increases. Furthermore, the degree does not quantify whether the

non-neutral mutations off a neutral network are evenly divided

among the set alternative phenotypes, or are biased towards a

select few of these phenotypes.

We therefore developed two novel statistics, which provide a

more nuanced perspective on mutational connectivity. Both of

these statistics use the quantity fij ~
nij

Sk=inik

, where nij is the

number of point mutations to genotypes in the neutral network for

phenotype i that create a genotype in the neutral network for

phenotype j, and Sk=inik is the total number of non-neutral point

mutations to genotypes in the neutral network for phenotype i.

BA Simple Mutational Network Complex Mutational Network

aBAB

abAb

A-

aBab

A-

aBab

A-

aBab

Phenotypes

Fitness

Genotypes

Figure 3. Simple mutational networks. (A) a two-locus, two-allele network and (B) a more complex (hypothetical) mutational network. The lower
networks show mutational connections among genotypes; vertices are unique genotypes and edges are point mutations. Colored edges represent
neutral mutations, which connect genotypes with the same phenotype (color); black edges represent non-neutral mutations, which lead to a change
in phenotype. The middle networks show mutational connections among phenotypes. The size of a phenotype vertex is proportional to the number
of genotypes that produce it. Pairs of vertices are connected if there is at least one point mutation that converts one phenotype to the other. The top
networks show possible fitness landscapes in which each phenotype is assigned a fitness value, indicated in grayscale.
doi:10.1371/journal.pcbi.1000110.g003
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Thus, fij is the fraction of non-neutral point mutations to genotypes

in the neutral network for phenotype i that create genotypes in the

neutral network for phenotype j. Large values of this fraction

indicate that phenotype j is relatively easy to find (via random

mutations) from phenotype i. Mutational proximity is often not

symmetric (that is, fij?fji), because the denominators differ.

The first statistic estimates the overall accessibility of phenotype

i from other phenotypes in the landscape using Ai ~ Sj fji. Large

values of Ai indicate that phenotype i is relatively accessible from

throughout the landscape. The second statistic quantifies the

potential for evolution away from phenotype i using a variation on

Simpson’s diversity index: Ei ~ 1 { Sj f
2

ij . This index indicates

the diversity of other phenotypes that can be easily produced by

mutations from a given phenotype, and thus may indicate the

potential for further adaptation away from that phenotype.

Specifically, it gives the probability that two randomly chosen

non-neutral mutations to genotypes within a given neutral network

will result in the same phenotype. The index is large for

phenotypes that are adjacent to many other phenotypes, and its

non-neutral mutations are fairly evenly divided among the

adjacent phenotypes; it is small for phenotypes that primarily

mutate to one or very few alternate phenotypes.

In the 12-mer landscape, A increases significantly with the

abundance of a phenotype (Figure 4, top pane). In other words,

random mutations are more likely to move genotypes to a large

neutral network than to a small neutral network. In contrast, E

decays significantly with phenotype abundance (Figure 4, middle

pane), suggesting that it may be more difficult to evolve away from

large neutral networks than small neutral networks. To provide

more insight into the mutational networks, we also calculated the

average abundance of phenotypes reached by mutation from

phenotype i using Bi ~ Sj

nij

Sk=inik

| jpj j. We find that the

average abundance of neighboring phenotypes significantly

increases with the abundance of a phenotype (Figure 4, bottom

pane), meaning that the majority of non-neutral mutations to

abundant phenotypes produce other abundant phenotypes.

Thus far we have characterized the mutational networks formed

by single point mutations. If we instead considered the mutational

networks formed by all combinations of one, two or three

mutations, then the phenotype network becomes highly intercon-

nected. The number of adjacent phenotypes significantly increases

with multiplicity of mutations considered (mean node degrees are

42.7, 53.6, and 57.2 for the one, two, and three mutant

adjacencies, respectively; P,561023), and the network is nearly

completely connected for triple mutations. Thus, under elevated

mutation rates, populations may be able to attain rare phenotypes

easier than expected based on point mutation adjacencies.

In summary, these observations suggest that abundant pheno-

types may be easy to find but difficult to escape, and thus the

structure of a fitness landscape may significantly constrain

evolutionary dynamics. Whereas the accessibility of abundant

shapes is rather intuitive, the prediction that their vast neutral

networks can hinder further evolution contradicts a large body of

theory, which suggests that large neutral networks should enhance

evolvability [18,26,27]. We note that this evolutionary constraint

was previously proposed for a simple fitness landscape model [39].

Mutational Networks Provide Novel Insights into
Evolutionary Dynamics

To test the hypothesis that highly abundant phenotypes are

readily accessible, yet poorly poised for further evolution, we ran

stochastic simulations of an adapting population of 12-mer RNA

molecules using an established model (see Materials and Methods

for details) [18–21,23]. Since we are interested in the effect of

phenotype abundance on the capacity of selection to acquire the

optimal phenotype, we selected the phenotypes of the founding

populations (henceforth, founding phenotypes) and target shapes

to span the range of abundances found among the 12-mer

phenotypes. We chose ten founding phenotypes [ranks (abun-

dance): 3 (183,791), 8 (117,213), 13 (76,478), 18 (61,699), 23

(39,740), 28 (27,312), 33 (11,354), 38 (2,260), 43 (1,299), 48 (713)]

and randomly selected 20 genotypes from the neutral network of

each founding phenotype to form 200 isogenic founding

populations. Each founding population was composed of a single
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Figure 4. Mutational connectivity among RNA phenotypes.
(Top) The Astatistic (described in text) indicates the likelihood that a
given phenotype will arise through point mutation. Random mutations
are more likely to hit upon larger neutral networks that smaller neutral
networks (r2 = 0.886, P,2.2610216; calculated on log-transformed data).
(Middle) The E statistic (described in text) indicates the likelihood of
given phenotype will produce diverse alternative phenotypes upon
mutation. Point mutations to sequences in large neutral networks are
less likely to yield novelty than point mutations to sequences in small
neutral networks (r2 = 0.265, P = 3.5661025). (Bottom) The B statistic
(described in text) suggests that point mutations to abundant
phenotypes create other abundant phenotypes (r2 = 0.559,
P = 1.58610211).
doi:10.1371/journal.pcbi.1000110.g004
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genotype and, therefore, a single phenotype. In essence, we

simulated adaptation starting from 20 random points in the

neutral network of each founding phenotype.

We separately adapted each founding population to twelve target

phenotypes [ranks (abundance): 2 (218,576), 7 (122,332), 12 (93,866),

17 (61,895), 22 (41,092), 27 (27,522), 32 (15,348), 37 (2,963), 42

(1,368), 47 (800), 52 (240), 57 (109)]. We considered adaptation

successful if the population ever acquired the target phenotype,

regardless of its frequency in the population. In the successful runs,

however, the target phenotype quickly dominates the populations and

rises to frequencies of nearly N (the population size).

The mutational connectivity statistics described above (Ai and

Ei) will only be good indicators of evolutionary dynamics if the

probability of mutating from phenotype i to phenotype j correlates

with the fraction of mutations to i that produce j (fij). To test this

basic assumption, we compared the phenotype mutation rates

observed in the simulations (fraction of mutations to i that produce

j) to fij (the fraction of non-neutral point mutations to genotypes in

the neutral network for phenotype i that create genotypes in the

neutral network for phenotype j). In fact, we find an almost perfect

relationship between the two quantities (Figure 5A), suggesting

that mutational network structure fundamentally constrains

evolution and that Ai and Ei are good indicators of these

constraints.

Across the 2400 simulations, we observed a significant positive

correlation between the abundance of the target phenotype and

the likelihood that a population successfully evolved to the target

(Figure 6A). This is consistent with the positive relationship

between phenotype abundance and mutational accessibility, as

indicated by the A statistic (Figure 4A). Phenotype abundance also

positively correlates with the number of times a phenotype arises

in the evolving populations (Figure 7A). Taken together, these

results support our hypothesis that abundant shapes are more

likely to appear via mutation in evolving populations than are rare

shapes.

We did not, however, observe a relationship between the

founding phenotype abundance and the ultimate evolutionary

outcome (Figure 6B). When a simulation failed to acquire the

target, the population was primarily composed of phenotypes of

greater abundance than both the target phenotype and the

average abundance of a random phenotype, demonstrating that

the structure of mutational networks can steer populations towards

abundant, but non-optimal, phenotypes. As suggested by the

negative relationship between abundance and the E statistic,

evolution away from abundant phenotypes appears to be limited

by the improbability of beneficial mutations. In support of this

explanation, we also find a significant positive correlation between

the abundance of a phenotype and the duration of the phenotype

in the evolving populations (Figure 7B).

These observations appear to be inconsistent with the widely-

held belief that neutral networks facilitate evolution by allowing

populations to traverse large regions of fitness landscapes without

reducing fitness [15,18–20,26,27,40]. In our simulations, popula-

tions readily evolve from one abundant shape to another (that is,

from one large neutral network to another), but are often unable to

evolve rare phenotypes. Thus, while the hypothesis that neutrality

(the fraction of mutations that are neutral) allows populations to

explore phenotype space is true, the evolutionary outcome of such

exploration is generally confined to other abundant phenotypes.

Most of the prior studies addressing this hypothesis are based on

relatively small random samples of sequences from large genotype

spaces, which may consist of exclusively abundant phenotypes.

The conclusion that neutrality facilitates evolution is reasonable

when considering only abundant subsets of fitness landscapes, but

is somewhat misleading when one considers the fitness landscapes

in their entirety.

The ‘‘Ascent of the Abundant’’ and the Evolution of
Natural RNA Molecules

These results suggest the following hypothesis: the evolution of

phenotypes, whether complex whole-organism phenotypes or

RNA shapes, may be biased toward abundant phenotypes, even

if those phenotypes are not optimal. We cannot, however, test this

hypothesis by directly measuring the abundances of complex

organism-level phenotypes since we cannot yet completely

characterize their fitness landscapes. As a first step in this

direction, we have developed a simple structural statistic that

allows us to indirectly estimate the abundances of naturally
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Figure 5. Network connectivity correlates with mutation
frequency in the 12-mer fitness landscape. The rates of mutation
between phenotype i and phenotype j in simulations is nearly identical
to the fraction of nonneutral mutations to i that produce j (fij ). The top
pane depicts this correlation for an abundant phenotype (rank 2,
218567 sequences), whereas the bottom pane shows this for a small
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occurring RNA shapes, which are much larger and more complex

than those considered thus far.

Across the n-mer phenotypes, we observed that longer

contiguous helical stacks (stems) form more frequently than shorter

contiguous stacks and stacks that contain bulges (which break up

helices). We quantify this with a new statistic (Figure 8) given by

Cs ~

log
total length stem� loop regions z number of base pairs

number of contiguous stacks

� �

This contiguity statistic significantly correlates with log phenotype

abundance in the 12- through 18-mer landscapes [r ranges from

r = 0.71 (P = 3.6610210) in the 12-mer landscape to r = 0.69

(P,2.2610216) in the 18-mer landscape]. The utility of the

contiguity statistic is that one genotype is sufficient to estimate the

abundance of its phenotype. We conjecture, therefore, that we can

use the contiguity statistic to ask whether naturally occurring RNA

molecules are biased towards abundant shapes.

We used the contiguity statistic to estimate the abundances of

the RNA molecules in Rfam, a curated database of functional

RNA genes [36]. The Rfam molecules are grouped into families,

and every sequence in a family is thought to code for the same

functional RNA. We compared the contiguity statistics calculated

for the Rfam sequences to null distributions generated by

calculating contiguity statistics for thousands of random permu-

tations of those sequences. Specifically, for each naturally evolved

molecule, we determined whether the contiguity statistics of their

predicted shapes were significantly larger than the contiguity

statistics of random molecules from the same fitness landscape (see

Methods for details).

The structures of the natural RNA molecules indeed have larger

contiguity statistics than randomly chosen structures from the

same fitness landscapes (Figure 1). This observation supports an

‘‘ascent of the abundant’’ hypothesis in which the mutational

networks connecting diverse phenotypes may steer populations

toward abundant, though not necessarily optimal, phenotypes.

Yet, Figure 1 (red squares) shows that natural molecules are also

significantly more thermostable than random molecules. Thus one

must ask whether the high contiguity values of natural molecules

are simply byproducts of the evolution of thermostability (or some

other advantageous structural property) or, in fact, exist because of

mutational biases towards abundant shapes, or both.

The abundances of the natural molecules (as estimated by their

contiguity statistics) are even more statistically pronounced than

their thermostabilities. We used logistic regression analysis to ask

which of contiguity or thermostability better distinguishes

naturally occurring molecules from their random permutations.

We regressed molecule class (natural or random permutation) on

contiguity statistic and (separately) on thermostability. The area

under a receiver operating curve (ROC) gives the probability that

a model correctly assigns a binary variable (natural or random

molecule) to its proper group. The logistic model for contiguity

yielded an area under the ROC of 0.82, which is good; the model

for thermodynamic stability yielded an area under the ROC of

0.62, which is poor. Our results are therefore consistent with an

apparent biases towards abundant phenotypes in both the small

RNA landscapes and natural RNAs are not simply byproducts of

natural selection for thermostability.

Discussion

Evolutionary biologists have long appreciated that the evolu-

tionary potential of a phenotype depends on the breadth of its

neutral network. Eigen’s error catastrophe theory, an extension of

classic mutation-selection balance theory, argues that the evolu-

tionary potential of a phenotype depends on both its fitness relative

to alternative phenotypes and its robustness to mutations [41].

Under high mutation rates, only phenotypes with sufficiently large

and connected neutral networks can persist. The phrase ‘‘survival

of flattest’’ has been used to refer to the evolutionary success of

low-fitness phenotypes with large neutral networks over higher-

fitness phenotypes with small neutral networks [42]. Critically, this

idea assumes that these diverse phenotypes compete directly with

one another in an evolving population.

The relationship between abundance and evolvability that we

have described here is not a simple restatement of this idea.

Instead, the evolutionary tendency towards abundant phenotypes
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results from a biased exploration of phenotype space. Abundant

phenotypes are more discoverable (random mutations are more

likely to produce abundant phenotypes) and more inescapable

(once abundant phenotypes evolve, it is very hard to mutate to

other phenotypes). In our simulations, we observed that, when the

populations failed to acquire the target phenotype, it was not due

to the target shape being lost to mutation pressure or other forces.

In the failed simulations, the target phenotype never appeared in

the first place (not shown).

Our results extend ideas developed in prior studies of both RNA

and protein structural evolution [15,29]. In particular, Schuster et

al. argued that abundant RNA phenotypes are within a few

mutations of almost any genotype in the landscape [15], and

Reidys et al. further demonstrated that only abundant phenotypes

have neutral networks that percolate through the entire sequence

space [24]. As a result, evolutionary biologists have proposed that

large neutral networks greatly enhance the evolutionary potential

of evolving populations [15,18,24,26,27]. Yet, these studies largely

focused on the local structure of neutral networks and not global

patterns of mutational connectivity.

Here we have taken a global perspective and found that large

neutral networks are more likely to impede than enable evolution.

The probability of a non-neutral mutation and the diversity of

phenotypes produced by such mutations both decline as neutral

network size increases (Figure 4, middle). In our simulations,

populations on large neutral networks were no more likely to

evolve better phenotypes than populations on small neutral

networks (Figure 6). Furthermore, these populations spent more

time on large neutral networks than small neutral networks

(Figure 7B).

Our results more generally suggest that the structure of RNA

mutational networks favors the evolution of abundant phenotypes,

even when rare phenotypes are more fit. Abundant phenotypes

are more likely to arise via a random mutation than rare

phenotypes, and, once established in the population, are more

difficult to escape via subsequent mutations. This gives a new

perspective on the widely-accepted hypothesis that large neutral

networks facilitate evolution [15,18,24,26,27]. While large neutral
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networks enable populations to explore large regions of fitness

landscapes via mutation, the outcome of such exploration is almost

always evolution to another abundant phenotype rather than to a

rare phenotype. Thus, in the larger scheme of things, neutrality

may serve as a trap rather than a catalyst for evolution.

While our study suggests that naturally occurring RNA

molecules are biased towards abundant shapes, we recognize that

abundance may have evolved as a byproduct of correlated

biophysical or biochemical properties that enhance the function-

ality of molecules. We specifically address the possibility that the

abundance bias may be driven by thermostability. Our simulation

study shows that abundant shapes will evolve in the absence of

natural selection for thermostability, and our analysis of natural

RNA molecules indirectly suggests that thermostability alone

cannot account for the bias toward abundant shapes. We believe

that both processes have probably contributed to the prevalence of

abundant shapes: (i) natural selection for thermostability and/or

other beneficial molecular properties that correlate with abun-

dance and (ii) the underlying structure of the mutational network.

We contend that the second process is important and perhaps has

precluded the evolution of functionally optimal molecules.

In closing, we have further characterized the relationship

between phenotype abundance and mutational connectivity, and

explored its evolutionary implications. The abundance of a

phenotype positively correlates with the probability of randomly

mutating to that phenotype and negatively correlates with the

probability of randomly mutating away from that phenotype to

alternative phenotypes. Consequently, the evolutionary potential

of a phenotype critically depends on its abundance, and

mutational networks therefore can fundamentally constrain

evolution. As we learn more about the structure of mutational

networks, we can gain new perspectives on the history and

function of natural systems and better methods for artificially

selecting molecules with desired functions. Characterizing muta-

tional networks remains a formidable challenge, particularly when

we consider more complex phenotypes and sources of variation

beyond simple point mutations. We can approach these larger

landscapes using statistical shortcuts, like the contiguity statistic

introduced here, that indirectly provide information about the

global structure of the fitness landscape, or by designing farther-

reaching mutagenesis experiments.
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