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Abstract

Protein–protein interaction (PPI) networks are commonly explored for the identification of distinctive biological traits, such
as pathways, modules, and functional motifs. In this respect, understanding the underlying network structure is vital to
assess the significance of any discovered features. We recently demonstrated that PPI networks show degree-weighted
behavior, whereby the probability of interaction between two proteins is generally proportional to the product of their
numbers of interacting partners or degrees. It was surmised that degree-weighted behavior is a characteristic of
randomness. We expand upon these findings by developing a random, degree-weighted, network model and show that
eight PPI networks determined from single high-throughput (HT) experiments have global and local properties that are
consistent with this model. The apparent random connectivity in HT PPI networks is counter-intuitive with respect to their
observed degree distributions; however, we resolve this discrepancy by introducing a non-network-based model for the
evolution of protein degrees or ‘‘binding affinities.’’ This mechanism is based on duplication and random mutation, for
which the degree distribution converges to a steady state that is identical to one obtained by averaging over the eight HT
PPI networks. The results imply that the degrees and connectivities incorporated in HT PPI networks are characteristic of
unbiased interactions between proteins that have varying individual binding affinities. These findings corroborate the
observation that curated and high-confidence PPI networks are distinct from HT PPI networks and not consistent with a
random connectivity. These results provide an avenue to discern indiscriminate organizations in biological networks and
suggest caution in the analysis of curated and high-confidence networks.
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Introduction

Protein interaction networks are key to the understanding and

modeling of many biological processes. At the highest level,

networks enable the conceptualization of the different physiolog-

ical, biological, and chemical functions that typically occur in a

cell. At the core of a network description lie the connections, or

relationships, between the components present in a system, such as

interactions, reactions, and modifications. Using high-throughput

(HT) experimental techniques, large sets of component connec-

tions (blueprints) are now becoming available. Ultimately, for a

cellular system, we desire the complete set of interactions between

the constituent proteins (interactome) [1,2]. The architectures of

protein interaction networks, or their modes of assembly, are a

consequence of how biological functions and processes have

evolved and adapted over time. As such, it is imperative to analyze

experimentally discovered biological networks from a number of

perspectives, including mathematical.

Efforts to elucidate entire protein-protein interaction (PPI)

networks for species have emerged in the forms of experimental

HT technologies [3–6], large-scale curation [7], and predictive, or

inferring, methodologies [8,9]. To date, extensive PPI networks

have been experimentally determined for a number of organisms,

including Saccharomyces cerevisiae [10,11], Escherichia coli [12,13],

Helicobacter pylori [14], Drosophila melanogaster [15], Caenorhabditis

elegans [16], Plasmodium falciparum [17], Campylobacter jejuni [18], and

Homo sapiens [7]. A number of efforts to compile and, in some

cases, curate the data have emerged [7,19–23], and the topological

properties of these networks have been widely explored using a

range of theoretical techniques [24–27]. A common feature of

almost all biological networks is that their degree distributions

roughly resemble a power law: P(k),k2b, where P(k) is the

probability of any component having k direct interactions (or

degree k) and b is usually between one and three [28–30]. In fact,

many real-world systems show power-law property distributions

[31]. Whether or not PPI networks have a power-law degree

distribution is under debate [32]; however, it is clear that in PPI

networks proteins that have very low degrees (one or two) are

prevalent, while there are very few proteins that have especially

many interactions (tens to hundreds). A number of graph

construction models are able to generate networks having

power-law-type degree distributions, including those based on

preferential attachment [33,34], duplication [35–37], and hierar-

chical [38,39] approaches. However, use of these models to
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reproduce a desired degree distribution, such as that observed for

a particular experimentally determined PPI, is not straightforward.

Therefore, it is difficult to ascertain precise levels of correlation

between the models and the observed biological networks. In this

respect, models that generate networks with given degree

distributions are desirable. It is well known that Erdös-Rényi

(ER) random graphs [40,41] do not have power-law degree

distributions, but variations of this model are able to generate

random-type networks with desired degree distributions [42–45].

However, this type of graph has been reported to have topological

properties that are generally different from PPI networks [46–48].

Many studies have aimed to discover biological insights from

PPI networks. Avenues pursued to this end include the

identification of salient protein clusters and functional modules

[49–53]. Such biological entities usually occur as dense sub-graphs

that are highly intraconnected but loosely connected to the

remainder of the network. Consequently, procedures for identi-

fying them have utilized graph-theoretical algorithms that analyze

local and global topological network properties [50,52,53] and

methods that include protein functional information [49].

Therefore, comprehension of the general organizational principles

of PPI networks may serve to enhance the discernment and

evaluation of biological modules.

In a previous study, we investigated the extent of preferential

attachment, or degree-weighted (DW) behavior, in nine PPI

networks [54]. It was demonstrated that, overwhelmingly, the

probability of interaction of two proteins is proportional to the

product of their degrees, i.e., Pij/kikj, where ki and kj are the

degrees of proteins i and j, respectively. It was also surmised that

degree-weighted behavior is a characteristic of randomness. Here,

we expand upon these findings by utilizing a random network

construction model that generates a DW network, while

attempting to duplicate a given degree distribution. We show that

networks generated with this DW model have topological

properties that are consistent with PPI networks determined from

single HT experiments. The results suggest that these experimen-

tal PPI networks exhibit random connectivity. However, the

model fails to reproduce properties of curated and high-confidence

PPI networks, suggesting that these are composed of multiple

single-experiment modules, or, if not, that they exhibit constraints

in their organizations.

It should be stressed that the actual probability of two proteins

physically interacting, or binding, is unlikely to be random. Such

an event is dependent on many factors, including the types of

residues, or domains, on each protein, their conformations, and

the presence of perturbing proteins. Here, we are investigating PPI

networks of experimentally identified protein interactions from

which the degrees of the proteins are given properties. The

frequency, or likelihood, of interaction between two proteins of

particular degrees is then a secondary quantifiable property. It is

the latter characteristic that we find to be indicative of

randomness. However, the degree distributions of PPI, and many

real-world, networks are known to resemble power-law scaling and

not Poissonian, or random, distributions. Hence, the non-random

degree distributions seem anomalous with respect to the random

connectivities. We reconcile this discrepancy by describing a

model for the evolution of protein degrees that consists of

sequential duplication and random mutation steps. This evolution

process converges to a steady state for which the degree

distribution is identical to one that has been calculated by

averaging over eight HT PPI networks. The results suggest that

our interpretation of random connectivities in PPI networks is

consistent with a randomly influenced evolution of their degree

distributions.

Degree-Weighted Behavior in Protein–Protein Interaction
Networks

Degree-weighted behavior, simply put, implies that the higher

the degree of a node is the more likely it is to have an edge with

any other node. Thus, the likelihood of an edge between two nodes

is proportional to the product of their degrees, where the exact

probability can be given by Pij = c(kikj)
h. In order to conserve the

degree distribution, h must equal one and c = E/Si,j(kikj), where E

is the total number of edges in the network. It has been shown that

these probabilities and constraints are overwhelmingly incorpo-

rated in PPI networks [54]. The only nodes that seem to show any

deviation from DW behavior are those with very many

connections, also known as hubs. Although the DW nature is less

pronounced for these nodes, hub-hub interaction probabilities are

still high. However, it is important to note that the level of noise in

the hub-hub region varies from network to network. In fact, for

some PPI networks, such as P. falciparum [17], the DW behavior is

exemplary throughout [54]. Figure 1 shows the DW nature of two

PPI networks not included in the previous study, H. pylori [14] and

C. jejuni [18]. Note that we are plotting the dependence of the

probability of interaction P(k1,k2) between two nodes of degrees k1

and k2 upon the product of their degrees k1k2. These probabilities

have been calculated by counting the total number of interactions

occurring between all proteins of degree k1 and k2, and dividing

this by the total number of all pairs of combinations that can be

made.

The relation between DW behavior and the previously noted

disassortive nature of biological networks [24,55] is worth

commenting on. Disassortiveness implies that high-degree nodes

prefer to connect to low-degree nodes. Seemingly in contrast, DW

behavior implies that if a node is given a choice of two potential

interacting partners, it will more often connect to the one of higher

degree. However, in a typical PPI network the number of high-

degree nodes is magnitudes less than the number of low-degree

nodes. Therefore, while a high-degree node may make many

connections to low-degree nodes, and appear disassortive, the

observation that it makes any connections with other high-degree

Author Summary

A protein–protein interaction network represents the set
of pair-wise associations that have been discerned
between the constituent proteins of an organism. There
are three main types of such networks: (i) those
determined from a single high-throughput experiment;
(ii) curated, where interactions are compiled from the
literature; and (iii) high-confidence, which contain subsets
of interactions from total sets that may comprise any from
types (i) and (ii). The latter are deemed to better represent
those interactions actually occurring in a cell. Through the
use of graph-theoretic analyses and a random network
connectivity model, we find that biological networks of
type (i), determined from a single high-throughput
experiment, contain random, indiscriminate, binding
patterns. However, networks of type (ii) and type (iii) are
not representative of the random model, suggesting that
they contain biased influences upon the protein associa-
tions. These conclusions have been suspected for some
time but are further clarified in this work. Our findings
provide an avenue to detect unconstrained or completely
random network structures and lend insights into the
identification of preferentially connected networks result-
ing from the underlying biological processes or manual
curation.

Randomness in Protein Networks
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nodes is significant. We have demonstrated that in PPI networks,

high-degree nodes are almost always within one or two steps from

each other [54]. This characteristic is exemplified in Video S1,

which contains a three-dimensional animation of the HT E. coli

PPI network determined by Arifuzzaman et al. [13].

Previous Degree-Weighted Network Models
A recently reported model, denoted ‘‘STICKY,’’ has been

likened to PPI networks [47]. This model uses the probability of

interaction between two nodes to be proportional to the product of

their input weights, which are the experimentally observed degrees

[47]. By allowing for self-interactions and normalizing for the total

number of edges, E, the probability of an edge between nodes i

and j is given by Pij = (kikj)/(4E), where the factor four arises due to

double looping. The STICKY procedure enumerates through all

pairs of nodes twice (once for i = j) and assigns an edge if a

uniformly generated random number is larger than Pij. However,

it was not reported that this procedure produces degree

distributions that are different from the experimental input degree

distribution. We observe that due to the nature of the edge-

sampling procedure, the eventual degree of a chosen node can be

modeled by a probability curve that is Poissonian about its

expected, or input, degree. In other words, if a node has input

degree k, then after many realizations of the STICKY procedure,

i.e., multiple complete network constructions, the set of observed

degrees for that node will follow

P lð Þ~ e{kkl

l!

� �
ð1Þ

where P(l) is the fraction of networks in which the node has a

degree l. For nodes of low degree (one or two), their Poissonian

distributions (Equation 1) are substantially skewed towards l = 0.

This means, for example, that in a typical STICKY network

construction, 36.8% of nodes of input degree one will remain

degree one, while 36.8% will become degree zero. Our

computational simulations of the STICKY procedure consistently

generate observed degrees in line with those predicted from

Equation 1. Generally, in PPI (and most real-world) networks,

nodes of degree one are most prevalent. Therefore, a model that

strictly preserves their degrees, rather than letting many become

zero, is desired for a fair comparison between model and

experiment. If two networks have varying degree distributions, it

is likely that their underlying architectures are different, regardless

of any similarities in other global topological properties.

Materials and Methods

Protein–Protein Interaction Networks
A total of 12 PPI networks were included in the study and these

were partitioned into two groups. The references immediately

following the network species/labels represent the direct sources.

These encompass original publications [11–18,20], the Database

of Interacting Proteins (DIP) [19], and the Human Protein

Reference Database [7]. The first group contains eight PPI

networks that have each been determined from an individual HT

experiment using either yeast two-hybrid (Y2H) or tandem affinity

purification (TAP) methodology: C. jejuni [18], E. coli (HT1) [12],

E. coli (HT2) [13], C. elegans (Y2H) [16], S. cerevisiae (Y2H) [11], H.

pylori [14], P. falciparum [17], and D. melanogaster [15]. Only the two

PPI networks of E. coli were evaluated using TAP technology, all

others were determined using Y2H methodology.

The second group contains four PPI networks that are either (i)

merged experimental datasets: H. sapiens [7] and S. cerevisiae (DIP)

[19]; (ii) inferred high-confidence from multiple datasets: S.

cerevisiae (CORE) [19,20]; or (iii) high-confidence from an individual

experimental study: C. elegans (CORE) [16]. The number of

proteins and interactions in each network is given in Table 1.

A Degree-Conserving Degree-Weighted Model
Given a set of nodes and their degrees, we consider a DW

model that constructs a corresponding network while conserving

the node degrees. Rather than considering every unique pair of

nodes once (in any order) and (for each pair) generating a uniform

random number to test whether an edge is assigned between them,

as in the ER random [40,41] and STICKY [47] construction

procedures, we consider each unassigned edge once, for a given

node, and use uniform random numbers to determine which other

Figure 1. Evidence of Degree-Weighted Connectivity in Two PPI Networks. (A) Helicobacter pylori and (B) Campylobacter jejuni. For k1k2.10,
probabilities of interaction P(k1,k2) were ordered by k1k2 and averaged in groups of 10.
doi:10.1371/journal.pcbi.1000114.g001

Randomness in Protein Networks
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node it will connect to. This principle is not unlike that of previous

preferential attachment models [33,34] except that here it is used

to generate networks for which each node has a specified degree,

instead of growing, or evolving, them from seeds [56]. In the

degree-conserving degree-weighted (DCDW) model, each node is

considered once, in a random order, and a set number of edges are

placed between itself and a DW random selection of the rest of the

nodes. For each considered node, the remaining (potentially

interacting) nodes are sampled for by using their input degrees as

probability weights. However, none of the nodes are allowed to

have more interactions than their given, or input, degrees. For an

input degree sequence, which defines the desired degree ki of each

node i, the DCDW model is defined by the following procedure:

(1) Enumerate all nodes once in random order For the randomly-

selected node i, ki is the input degree and mi is the number of

edges previously connected to it

(2) Enumerate the termination of (ki2mi) edges originating from

node i

(i) For each edge, choose the terminus node, ,, at random

from the remaining nodes {j} using their input degrees,

kj, as probability weights.

(ii) If an edge already exists between nodes i and , repeat

preceding step (i).

(iii) If connecting nodes i and , will cause node , to have

more edges than its input degree, k,, disregard the edge

and repeat preceding step (i).

This model generates a DW network, such that all nodes have

the desired degree without including self interactions. In our

computations, there are very rare instances when step (2) is unable

to complete. In this case, we retain the edges that have been set

and skip to the next node, which is determined at random.

However, such an occurrence is extremely rare and has no real

impact on the final degree distribution.

The DCDW model appears similar in style to the random

network model of Newman, Strogatz, and Watts [44], which

generates a random graph with a given degree distribution. In this

latter model, each node is assigned a number of stubs equal to the

desired degree of the node. These stubs represent incomplete

edges that emerge from their respective nodes. The random

network is then constructed by choosing pairs of stubs (on different

nodes) at random and placing edges between them. Thus, it can be

construed that the probability weight of a node, at any time, is

proportional to the number of unconnected stubs. Therefore, the

probability weight of each node will slowly diminish as its stubs are

used up. In contrast, the DCDW model uses constant probability

weights for the nodes (proportional to their input degree)

throughout the network construction procedure. As a result, the

DCDW method is more likely to generate a true DW graph in

which the probability of an edge between two nodes is

proportional to the numerical product of their eventual degrees.

In a way, the DCDW model can be thought of as being a mode of

implementation of the method proposed by Newman, Strogatz,

and Watts [44], although strictly speaking, the DCDW method

generates a random DW graph.

We demonstrate, using two examples, that the DCDW model

effectively generates true DW graphs. Figure 2 illustrates the DW

nature of the P. falciparum and the D. melanogaster PPI networks (black

points) together with their equivalent (same input degree distribu-

tions) DCDW networks averaged over 100 constructions (red points).

Two elements are evidenced from the plots: (i) The DCDW model, as

expected, generates DW networks, and (ii) the PPI networks exhibit

very similar DW behavior to their DCDW equivalents. We observe

similar plots for all PPI networks studied here. The network of D.

melanogaster shows slightly more noise than its DCDW counterpart in

the hub-hub region; however, this is expected from previous

observations [54]. It is also important to note that because PPI

networks are generally construed from a single measurement of the

interactions, they are prone to more noise.

Results

Connection between Degree-Weighted Behavior and
Randomness

We recently illustrated, through simulations, that Erdös-Rényi

(ER) random graphs [40,41] show near-perfect DW behavior [54].

It can be analytically shown that any random graph will show DW

Table 1. Properties of 12 PPI Networks and Their Corresponding DCDW Networks.

ÆCæ ÆLæ

Network Ref Number of proteins Number of interactions PPI DCDWa PPI DCDWa

C. jejuni [18] 1331 11664 0.095 0.095 2.91 2.85

E. coli (HT1) [12] 1289 5420 0.083 0.089 3.60 3.29

(HT2) [13] 3047 11477 0.064 0.085 3.37 3.27

C. elegans (Y2H) [16] 2624 3967 0.020 0.017 4.81 4.36

S. cerevisiae (Y2H) [11] 3277 4393 0.018 0.025 4.88 4.50

H. pylori [14] 724 1403 0.015 0.025 4.15 4.06

P. falciparum [17] 1304 2745 0.014 0.012 4.26 4.26

D. melanogaster [15] 6986 20243 0.009 0.006 4.46 4.32

S. cerevisiae (CORE) [19,20] 2449 5579 0.207 0.007 5.21 4.49

H. sapiens [7] 9263 34564 0.102 0.011 4.28 3.98

S. cerevisiae (DIP) [19] 4617 16311 0.099 0.014 4.12 3.91

C. elegans (CORE) [16] 727 814 0.030 0.010 5.40 4.83

aAveraged over 100 realizations.
doi:10.1371/journal.pcbi.1000114.t001

Randomness in Protein Networks
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connectivity. Details are provided in Text S1. We conclusively

demonstrate this by constructing an ER random graph equivalent

of the P. falciparum network (where the probability of any edge is

determined from the number of nodes and edges in the P.

falciparum PPI network) 104 times, and for each construction we use

the resultant degree distribution as input for the generation of a

DCDW network. For each pair of networks, ER and DCDW, in

each simulation, we calculate the number of assigned edges,

average clustering coefficients (ÆCæ), average shortest path lengths

(ÆLæ), and diameters (largest shortest path length) and then we

average these properties over the 104 simulations. The clustering

coefficient of a node i is defined as the fraction of possible edges

between neighbors that are present, where a neighbor of node i is

any other node that shares an edge with it [57]. The average

clustering coefficient of a network, ÆCæ, is determined by averaging

the clustering coefficients of all nodes, where nodes of degree one

are defined here to have a clustering coefficient of zero. The

shortest path length between two nodes is the minimum number of

steps (or edges) that must be traversed in order to go from one to

the other. The average shortest path length of a network, ÆLæ, is the

average of all shortest path lengths that are not undefined. The

results are given in Table 2. It is found that all of the

aforementioned properties are essentially identical for the ER

random and the DCDW networks. Thus, it appears that, given an

input degree distribution indicative of an ER random network, the DCDW

model will regenerate the ER random connectivity. The methods of

construction for the two networks are very different; the ER

random model uses a constant probability for the assignment of an

edge between any two nodes, whereas the DCDW model scales

the probability of an edge between two nodes with the product of

their degrees.

We must conclude from the above findings that random networks are

inherently DW and, conversely, that DW behavior implies randomness in the

connectivities. A question is immediately realized: is it possible for a

graph to not show uniform DW behavior? If our conclusion that DW

behavior and randomness are synonymous is true, then removal of

random and DW elements from a network construction process

might yield networks that are not uniformly DW in their

connectivities. We illustrate such an instance by modifying the

DCDW procedure described above in two ways: firstly, in step (1),

rather than enumerating all nodes once in random order, we

enumerate all nodes i in order of decreasing degree; and secondly, in

step (2), rather than weighting each of the possible interacting nodes

(for node i) by their input degree, we weight them by the inverse of

their input degree, i.e., P(i2j)/1/kj. We use the degree distribution of

the P. falciparum network as input and average probabilities of

interaction over 1000 network constructions. Figure 3 illustrates the

resulting dependence of the probability of interaction P(k1,k2) between

two nodes of degrees k1 and k2 upon the product of their degrees k1k2.

Probabilities that are exactly zero, e.g., P(1,1) = P(2,1) = 0, are not

shown. It is clear that this modified network construction procedure

generates networks for which the connectivities deviate significantly

from uniform DW behavior. Therefore, we can surmise that if a

network does not show uniform DW behavior, it likely has been

generated with some limiting condition(s).

Comparison of the Degree-Conserving Degree-Weighted
Model with Protein–Protein Interaction Networks: Global
Properties

It has been previously established that PPI networks have a DW

nature [54]. We have seen above that the DCDW model generates

Figure 2. Degree-Weighted Connectivity in Two PPI Networks and Their DCDW Equivalents. (A) Plasmodium falciparum and (B)
Drosophila melanogaster. Points in black correspond to the PPI networks and points in red correspond to their DCDW equivalents. For the PPI
networks, probabilities of interaction P(k1,k2) were ordered by k1k2, and values for k1k2.10 were averaged in groups of 10. For the DCDW networks,
probabilities of interaction were averaged over 100 realizations and all values are shown.
doi:10.1371/journal.pcbi.1000114.g002

Table 2. Properties of an Erdös-Rényi (ER) Random Graph and
the Corresponding DCDW Modela.

Network
Number of
nodes

Number of
assigned edges ÆCæ (61023) ÆLæ Diameter

ER 1304 2745.25 2.96 5.12 10.75

DCDW 1304 2744.94 3.10 5.12 10.78

aResults for both networks averaged over 104 realizations.
doi:10.1371/journal.pcbi.1000114.t002

Randomness in Protein Networks
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networks that are DW, while conserving a desired degree

distribution. It was also demonstrated that random networks are

intrinsically DW and that the DCDW model produces random

networks for a given degree distribution. It remains to discover

whether the DCDW model generates graphs that share topological

characteristics with PPI networks. As a first step, we compute

global properties of PPI networks and their equivalent DCDW

networks (same input degree distributions). Table 1 provides the

average clustering coefficients, ÆCæ, and the average shortest path

lengths, ÆLæ, for the 12 PPI networks (undirected with no self

interactions) and their DCDW equivalents, where values for each

of the latter are averaged over 100 realizations. As described

previously, the PPI networks in Table 1 are partitioned into two

groups. The top eight are each taken from an individual HT

experiment, whereas the bottom four are either (i) merged

experimental datasets (H. sapiens and S. cerevisiae (DIP)), (ii) inferred

high-confidence from multiple datasets (S. cerevisiae (CORE)), or (iii)

high-confidence from an individual experimental study (C. elegans

(CORE)). The PPI networks in each group have been arranged by

decreasing average clustering coefficient.

We find that, for the first group, or the top eight networks in

Table 1, average clustering coefficients of the experimental

networks and the DCDW model are in excellent agreement. In

fact, the DCDW model has values within 0.003 of the

experimental for four systems (C. jejuni, C. elegans (Y2H), P.

falciparum, and D. melanogaster) and within 0.007 for two (E. coli

(HT1) and S. cerevisiae (Y2H)). The largest discrepancy of 0.021 is

observed for the E. coli (HT2) network; however, the DCDW-

determined value of 0.085 is still quite close to the experimental

value of 0.064. The results clearly indicate that the DCDW model

is accurately simulating the global clustering in PPI networks

determined from individual HT experiments. In terms of the

average shortest path lengths, the DCDW model predicts values

within 0.14 for five systems in the first group (C. jejuni, E. coli (HT2),

H. pylori, P. falciparum, and D. melanogaster). For the remaining three

systems, the DCDW model predicts average path lengths that are

somewhat smaller than the experimentally observed values. One

reason for this is that in some PPI networks the DW behavior

tends to level off in the hub-hub interaction region. As the DCDW

model uses DW behavior throughout, it may generate slightly

more hub-hub connections than are actually present. In such a

case, and if many of the shortest path lengths utilize the hub

proteins, one might expect the DCDW model to produce networks

having slightly shorter path lengths than the actual PPI networks.

However, this is observed for only three out of the eight PPI

networks in the first group. Overall, the DCDW model predicts

average clustering coefficients and shortest path lengths that are in

good agreement with those of PPI networks determined from

individual experiments. Furthermore, the orderings of the

predicted and experimental values of each topological property

are almost identical. These results lend further support to the

presumption that DW behavior is intrinsic to these networks.

For the second group of PPI networks, which are either merged

from multiple experimental datasets, high-confidence, or a

combination of both, the DCDW-predicted clustering coefficients

are far smaller than the actual values. In fact, for three systems (S.

cerevisiae (CORE), H. sapiens, and S. cerevisiae (DIP)), the DCDW

predictions are about a magnitude smaller. Average path lengths

determined from the DCDW model are also consistently smaller

than the true values, by over 0.50 in two instances (S. cerevisiae

(CORE) and C. elegans (CORE)). The discrepancy is slightly less for

the network of S. cerevisiae (DIP) (0.21). However, it must be

concluded that the DCDW model fails to reproduce global

properties of the PPI networks in this second group.

Given the success of the DCDW model with regard to the first

group of PPI networks, the subsequent failure of this model when

applied to the networks of the second group is initially unexpected.

The networks in the first group are different from those of the

second group in that each of the former are derived from a single

experiment. Three of the networks in the second group (S. cerevisiae

(CORE), H. sapiens, and S. cerevisiae (DIP)) have been assembled by

the merging of multiple datasets. If the numbers of common

proteins, or overlapping nodes, between pairs of datasets

comprising a merged set are small, then, in effect, this merged

set incorporates somewhat separated PPI sub-networks. For such a

case, one would not expect the DCDW model to perform

adequately because it does not incorporate constraints about

which nodes are able to interact. Similar reasoning, in terms of

artificially introducing selective connectivity, may be used to

explain why the DCDW model cannot reproduce properties of the

two high-confidence PPI networks S. cerevisiae (CORE) and C. elegans

(CORE). Examination of the average shortest path lengths for the

PPI networks in the second group indicate that they are much

larger than for networks in the first group that have a similar

clustering coefficient. This observation seems to corroborate the

notion of multiple PPI sub-network contents and/or constrained

connectivity.

Comparison of the Degree-Conserving Degree-Weighted
Model with Protein–Protein Interaction Networks:
Clustering and Path Length Profiles

It is clear that the DCDW model generates graphs that have

similar global properties to PPI networks determined from a single

HT experiment. Given this affinity, it is worth comparing their

inner architectures further. We accomplish this by examining the

behavior of node degree versus clustering coefficient and average

shortest path length. No additional analyses are performed upon

the networks of the second group given that their global properties,

Figure 3. Example of Non-Degree-Weighted Behavior in
Networks Generated from a Non-Random Model. The DCDW
model was modified to eliminate both random enumeration of nodes
and degree-weighted sampling for interacting partners. The degree
distribution corresponding to the protein–protein interaction network
of Plasmodium falciparum was used as input for the modified model.
doi:10.1371/journal.pcbi.1000114.g003
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in particular the clustering coefficients, are substantially different

from those of the DCDW model.

Clustering coefficient profiles are determined by evaluating the

average clustering coefficient for nodes having the same degree. In

this way, we elucidate the behavior of degree versus clustering

coefficient. This type of analysis has been reported previously for

S. cerevisiae PPI networks [46,49] and metabolic networks [39].

Clustering profiles for the four largest PPI networks of the first

group are shown as solid black lines in Figure 4. It is immediately

apparent from the plots that the clustering coefficients do not vary

smoothly with degree. Fluctuations start out small, relatively, in

the low-degree regions but become wild as the degree is increased.

However, there appears to be an overall trend in that clustering

coefficients seem to decrease, somewhat, as the degree becomes

large. This trend has been noted previously [39,46,49], and,

although masked by large deviations, is most apparent here for the

E. coli (HT2) network (Figure 4C) and least pronounced for the PPI

network of D. melanogaster (Figure 4A). Clustering profiles are also

shown for the corresponding DCDW model for the tenth (blue)

and fiftieth (red) network realizations. We find that profiles for the

two realizations are similar although it is clear that the DCDW

model allows for some variation. The DCDW model, to some

extent, reproduces the wild fluctuations of the experimental data.

Correlation coefficients between profiles for the two DCDW

realizations can be unexpectedly low, 0.05 and 0.15 for D.

melanogaster (Figure 4A) and C. jejuni (Figure 4B), respectively, or

considerable, 0.76 and 0.45 for E. coli (HT2) (Figure 4C) and E. coli

(HT1) (Figure 4D), respectively. These correlations suggest that

clustering coefficients are less constrained in the degree distribu-

tions of D. melanogaster and C. jejuni, while more limited for the

distributions of both E. coli networks. These variabilities are

reflected in the correlation coefficients between the experimental

and the two DCDW profiles, which are lowest for D. melanogaster,

20.04 and 0.18, and highest for E. coli (HT2), 0.59 and 0.75.

However, the large fluctuations in all profiles make adequate

comparisons difficult. Nonetheless, no striking differences are

Figure 4. Dependence of Clustering Coefficient upon Node Degree for Four PPI Networks and their DCDW Equivalents. (A)
Drosophila melanogaster, (B) Campylobacter jejuni, (C) Escherichia coli (HT2), and (D) Escherichia coli (HT1). Clustering profiles for the PPI networks
(black) and the corresponding tenth (blue) and fiftieth (red) realizations of the DCDW model.
doi:10.1371/journal.pcbi.1000114.g004
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observed and the overall DCDW profiles tend to follow those of

the PPI networks, especially for the E. coli (HT2) network.

Therefore, we can conclude that the DCDW model is reproducing

features of the intrinsic clustering for these PPI networks.

Analogous plots for the remaining four PPI networks of the first

group are provided in Figure S1 and similar conclusions can be

drawn from them.

The average path length for a node, also known as closeness, is

evaluated as the average number of steps connecting it to all other

nodes. Path length profiles are determined by averaging closeness

over nodes having the same degree. The dependence of closeness

upon the degree has been studied previously for three PPI

networks [58]. Path length profiles for the four largest PPI

networks of the first group are shown as solid black lines in

Figure 5. It is clear that the average path length consistently, and

smoothly, varies inversely with the degree, indicating that nodes of

higher degree are more central in the networks. This observation

has been noted previously [54,58]. Path length profiles are also

shown for the corresponding DCDW model for the tenth (blue)

and fiftieth (red) network realizations. It is evident that the DCDW

model is reproducing the path length features of the PPI networks.

While values for the DCDW model are consistently less than those

of the corresponding PPI networks, the lines run almost parallel.

Near-perfect agreement is observed for the C. jejuni network

(Figure 5B) and the greatest variation is seen for the E. coli (HT2)

network (Figure 5C). Not only does the DCDW model have a very

similar path length dependence upon the degree as the PPI

networks, it also incorporates the characteristic increased fluctu-

ations noted at higher degree. Similar conclusions are drawn from

corresponding path length profiles of the other four PPI networks

in the first group and these are shown in Figure S2.

The affinities in clustering and path length profiles between the

DCDW model and the PPI networks of the first group corroborate

the findings of the previous section, in which similar corresponding

global properties were observed. The DCDW model consistently

produces networks that have similar global clustering coefficients

Figure 5. Dependence of Path Length upon Node Degree for Four PPI Networks and their DCDW Equivalents. (A) Drosophila
melanogaster, (B) Campylobacter jejuni, (C) Escherichia coli (HT2), and (D) Escherichia coli (HT1). Path length profiles for the PPI networks (black) and the
corresponding tenth (blue) and fiftieth (red) realizations of the DCDW model.
doi:10.1371/journal.pcbi.1000114.g005

Randomness in Protein Networks

PLoS Computational Biology | www.ploscompbiol.org 8 July 2008 | Volume 4 | Issue 7 | e1000114



to the corresponding PPI networks and the model also reproduces

important features of the clustering profiles. Although global

average path lengths can be smaller for the DCDW model, the

generated path length profiles almost parallel those of the PPI

networks. Therefore, we must conclude that the DCDW model is

a plausible representation of PPI networks determined from a

single HT experiment. As was demonstrated earlier, the DCDW

model is representative of randomness and so we must conclude

that these PPI networks incorporate a substantial random element.

However, it is clear that the PPI networks of the second group,

which are merged, curated and/or high-confidence datasets, are

not well described by the DCDW model. The DCDW model only

incorporates the degrees of the proteins in that there are no other

precepts used in the sampling, or determination, of the

interactions. Therefore, we must conclude that there are other

factors involved in the assemblies of the second group of networks.

These factors may be artificial or biological. With regard to the

former, it is known that there are very small interaction overlaps

between HT experimentally determined networks for the same

species [13,59]. While each individual HT network may be

representative of the DCDW model, a combined set will not be

and, hence, will appear multi-modular. Alternatively, the manual

curation of a PPI network may involve a search, or verification, of

interaction partners for proteins already present in the interme-

diate network. Such a process may unintentionally introduce

preferential attachments. In the event that a PPI network is not

representative of the DCDW model, and any artificial influences

can be discounted, then there must be biological actions leading to

preferential, or selective, interactions.

Analysis of Degree Distributions of Protein–Protein
Interaction Networks

If PPI networks from a single HT experiment incorporate a

significant random element, as indicated above, then it is aberrant

that they do not have degree distributions that are Poissonian in

nature. Rather, HT experiments consistently generate PPI

networks that have degree distributions that resemble power-law

scaling. Therefore, they must contain some elements that

distinguish them from ER random graphs. The findings described

above suggest that the organizations of these PPI networks may be

dependent only upon their degree distributions; i.e., it is the

protein degrees that determine the observed interactions, rather

than the converse. Such an interpretation would imply that the

HT experiments are observing the ability to bind, rather than

specific interactions that occur in the cell. If so, it should be

possible to evolve degree distributions of PPI networks without the

use of a network framework, i.e., we wish to model the evolution of

the proteins’ ‘‘binding affinities.’’

There are well known network models that are able to generate

graphs with power-law-type scaling degree distributions. These are

based on a number of concepts, including preferential attachment

[33,34], duplication [35–37], and hierarchical [38,39] approaches.

However, these have typically not been shown to reproduce

degree distributions of actual PPI networks. We use a degree

distribution averaged over the eight individual HT datasets (listed

in the top group of Table 1) as a template for PPI networks. This

degree distribution, illustrated in black in Figure 6, is subsequently

referred to as the normal PPI degree distribution (NPPI-DD). The

NPPI-DD is not shown for degrees higher than 30 since this region

includes more noise. It is clear that, overall, the NPPI-DD

resembles power-law scaling; however, this scaling is somewhat

more level in the low-degree region. This type of deviation from

perfect power-law scaling has been noted previously for PPI

networks [32].

Our model of protein degree evolution initializes by setting all

protein degrees to be equal to one, i.e., the degree distribution at

time t = 0 is represented by Pt = 0(k = 1) = 1, where Pt(k) represents

the fraction of proteins having a degree k after time step t. During

the first phase of the next time step, we postulate that all protein

degrees are able to randomly mutate, and we model the total effect

of the mutations into the degree distribution by use of the Poisson

distribution:

Pmut
tz1 lð Þ~

X
k

Pt kð Þ e{kkl

l!

� �
ð2Þ

Here, Pmut
tz1 lð Þ is the resultant degree distribution from the random

mutation phase, and the term in braces is analogous to that seen in

Equation (1), i.e., the probability that a protein of initial degree k

will become degree l. For t = 0, the summation reduces to one

term, but for latter time steps the degree distribution is more

diverse. We note that this procedure will result in some proteins

having zero degree. During the second phase of this time step,

after the mutation phase, we postulate that all proteins of degree

one will duplicate. The reasons for duplicating only proteins of

single degree are discussed below. This duplication phase is

mathematically represented by:

P
dup
tz1 lð Þ~Pmut

tz1 lð Þ| 1zdl1ð Þ ð3Þ

where dl1 is the Dirac delta function and is equal to one if l = 1

and is zero otherwise. The final degree distribution at the end of

the time step is obtained by discarding proteins with zero degree

and renormalizing:

Ptz1 lð Þ~
P

dup
tz1 lð ÞP

iw0

P
dup
tz1 ið Þ

ð4Þ

Figure 6. Degree Distributions Representative of PPI Networks
and of the RM+DD1 Model. The normal PPI degree distribution
(NPPI-DD) (black) is determined by averaging over eight PPI networks.
Degree distributions of the RM+DD1 model are shown at time steps 1–5
(blue) and the steady state (red).
doi:10.1371/journal.pcbi.1000114.g006
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There are two reasons for eliminating proteins of zero degree: (i)

all proteins of degree zero will remain degree zero in subsequent

time steps, and (ii) most experiments do not report the proteins

that have no observed interactions.

The two-step procedure described above, random mutation

followed by duplication of degree-one proteins (RM+DD1), can be

iterated over a number of time steps by cycling through Equations

2–4. Figure 6 shows RM+DD1 degree distributions for time steps

t = 1 through t = 5 as blue lines. At t = 0 the distribution is simply

P0(1) = 1. The curves clearly show that the degree distribution

decays less abruptly with additional time steps and approaches

some converged profile. Our computations indicate that the

degree distribution is essentially converged after 100 time steps;

therefore, the evolved distribution following a billion steps, shown

in red in Figure 6, is representative of the steady state. This steady-

state distribution, for the RM+DD1 model, is seen to almost

exactly overlap the NPPI-DD.

The near-perfect agreement between the RM+DD1 steady-state

and the NPPI-DD may be coincidental; however, an analysis of its

foundations is warranted. Firstly, we are modeling only the

evolution of protein degrees, i.e., the number of binding partners a

protein has. There is no attempt to describe any network of

interactions or any specific sub-network of protein interactions

describing a particular biological function. The degree strictly

represents the ability of proteins to bind, regardless of whether

such an interaction is actually utilized in a biological system.

Secondly, the justification for the random mutation phase is

straightforward and is manifested in the long history of gene

mutation research [60]. Here, the mutation concept is applied

directly to the degree of a protein rather than to its sequence. We

surmise that changes in sequence coincide with changes in

behaviors, and the latter includes the degree. Lastly, we include

a duplication, or growth, phase that is well substantiated from

Ohno’s hypothesis on genome growth by duplication [61] and

more recent genomic studies [62]. There are two ways to justify

the doubling of the degree-one phase: (i) proteins with degree one

are purported to evolve faster [58,63] and (ii) ‘‘new’’ proteins are

likely to have a small number of interacting partners. However,

there is no strict justification for duplicating proteins of only degree

one. There is, obviously, a mathematically infinite number of ways

to grow the number of proteins of each degree. Nonetheless, it is

curious that exact duplication of only degree-one proteins yields a

steady-state degree distribution nearly identical to the NPPI-DD.

Whether or not there is biological justification for this element

requires further investigation.

There are other non-network-based schemes [64–66] that

generate property distributions, such as flicker noise or fitness of

species, which converge to a critical point that resembles power-

law scaling. However, these approaches rely upon the specifica-

tions of barrier thresholds that govern whether a spill over, or

catastrophic event, occurs. Our model requires no such param-

eters. In fact, besides defining the mode of growth, the model is

based on completely random events modeled by the Poisson

distribution. This aspect complements the apparent random

natures, discerned above, of the single-experiment determined

PPI networks and supports the interpretation that these experi-

ments may be witnessing the ability to bind.

Discussion

Here we have expanded on a previous study that demonstrated

that the interactions in PPI networks incorporate DW elements,

i.e., that the probability of an interaction between two proteins is

generally proportional to the product of their degrees [54]. This

finding prompted the employment of a network model that

constructs a DW network, while preserving an input degree

distribution. This DCDW approach can be considered similar to a

previously reported random-type graph model [44] in that a

comparable construction procedure is used, however, a subtle

difference is that the DCDW model maintains consistent nodal

weights, equal to their input degrees, throughout the construction

procedure. The DCDW model was shown to exactly reproduce

properties of ER random graphs, when provided with degree

distributions for the latter, and therefore we utilize it as a random

network model. This DCDW model is shown to closely reproduce

the topological properties of eight PPI networks, each assembled

from an individual HT experiment. Furthermore, the PPI

networks and the DCDW model were shown to contain similar

clustering and path length profiles, which illuminated the

relationships with degree. The results lend further support to the

premise that DW behavior is intrinsic to these PPI networks and,

therefore, indicative of a significant random element. Thus, it is

reasonable to conclude that the connectivities in these PPI

networks have substantial random characteristics for the observed

degree distributions. We are not implying that the experiments are

generating random interactions, rather we perceive that the

interactions have evolved using a random-influenced mechanism

over time and that the experiments may be observing the ability of

proteins to bind. While Y2H data are known to be noisy, the two

PPI networks of E. coli have been determined using a different

methodology (TAP), yet each also has a close similarity to the

DCDW model. Consequently, these findings may be relevant to

any HT technology.

The apparent inclusion of randomness in the individual HT PPI

networks precipitated the development of a model to describe the

evolution of protein degrees, or binding affinities. We show that by

initializing all nodes to have a single interacting partner and

iteratively applying mutation and growth modulations (of degree-

one nodes), a steady-state degree distribution that resembles a

power law results. Moreover, this steady-state degree distribution

is found to be almost identical to a degree distribution computed

by averaging over eight HT experimental PPI networks.

Therefore, we postulate that the resemblance of the observed

PPI degree distributions to power-law scaling is simply a result of

growth and random mutation over time. This type of evolution

mechanism is not surprising, but the exceptional agreement

suggests that we are capturing the essence of the process. The

model is consistent with an evolutionary process driven by single

gene duplications followed by slow continuous genetic drift of all

proteins. This interpretation is compatible with the following

observations on PPI networks: (i) essential proteins typically have

high degrees [29]. From the evolution of the network, the

fundamental genes that can sustain life appeared first. As they

evolved via gene duplication and mutation, they acquired more

degrees. Hence, they may now be found among the highest degree

nodes. (ii) The evolutionary rate of a protein correlates inversely

with its degree [63,67]. Proteins with a greater number of

interactions are more likely to have existed longer and, therefore,

more likely to have incorporated additional mutations. As such,

their rates of change may have slowed, being closer to a steady

state. We anticipate that the mutation and growth model can be

generalized and applied to other types of evolving real-world

systems to provide qualitative and quantitative simulations.

In contrast to the HT PPI networks, the curated and high-

confidence PPI networks have global properties that vary

significantly from the DCDW model. These differences can be

attributed to two main reasons. Firstly, if a curated network

includes interactions from more than one HT data set, and the
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overlap between these sets is very small, then the curated network

may be essentially multi-modular. While the individual HT data

sets may be well represented by the DCDW model, the combined

network may not be due to unintentionally introduced partiality in

the interactions. An exception exists if the HT datasets are highly

complementary and the merged set is representative of a single

DW module. Secondly, curated and high-confidence PPI networks

have been manually manipulated and, therefore, include biases, or

preferential influences, upon the protein interactions which may or

may not be representative of the underlying biology. For these

networks, the DCDW model will not be an accurate representa-

tion as it includes no such constraints.

An important consideration is that HT methods may generate

many false-positive interactions. If these false positives far

outnumber the true, or real, interactions, then the total PPI

network will appear systematically biased depending upon the

mode of generation of the false positives. If so, the DCDW model

is mimicking this bias rather than the true biology and, therefore,

provides clues as to the origin of the false-positive interactions.

Many studies infer biological properties, or traits, by contrasting

PPI networks against corresponding NULL networks, which are

akin to DCDW networks. The PPI networks used are often

downloaded from databases that have curated interactions from a

number of sources, including HT experiments. While the

individual HT datasets will have affinities to their corresponding

NULL networks, as demonstrated in this work, the curated

datasets will not. Therefore, any conclusions or inferences drawn

from these studies should be treated with caution. The elucidation

of guiding principles in biology is frequently contingent upon

contrasts to randomness. However, care must be taken to ensure

that the data are not artificially modulated, as in the case of many

curated PPI networks.

The findings reported here indicate that HT PPI networks

incorporate random interactions between proteins of varying

binding affinities. The evolution of the proteins’ affinities can be

modeled by a mechanism based upon duplication and random

mutation for which the steady degree distribution is almost

identical to one averaged over eight HT experimental PPI

networks. However, curated and high-confidence PPI networks

are found to contain influences exogenous to the HT experiments,

leading to preferential associations between protein pairs. These

results provide a means to distinguish uninhibited network

organization with respect to the observed degree distribution

and may shed light for the identification of consistent influences

leading to preferentially connected networks representing manual

curation and/or the underlying biology.
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Figure S1. Dependence of Clustering Coefficient upon Node

Degree for Four PPI Networks and Their DCDW Equivalents. (A)

Caenorhabditis elegans, (B) Saccharomyces cerevisiae (Y2H), (C) Helicobacter

pylori, and (D) Plasmodium falciparum. Clustering profiles for the PPI

networks (black) and the corresponding tenth (blue) and fiftieth

(red) realizations of the DCDW model.

Found at: doi:10.1371/journal.pcbi.1000114.s002 (0.01 MB PDF)

Figure S2. Dependence of Path Length upon Node Degree for

Four PPI Networks and their DCDW Equivalents. (A) Caenorhab-

ditis elegans, (B) Saccharomyces cerevisiae (Y2H), (C) Helicobacter pylori,

and (D) Plasmodium falciparum. Path length profiles for the PPI

networks (black) and the corresponding tenth (blue) and fiftieth

(red) realizations of the DCDW model.

Found at: doi:10.1371/journal.pcbi.1000114.s003 (0.01 MB PDF)

Video S1 Three-Dimensional Animation of the Escherichia coli

(HT2) PPI Network of Arifuzzaman et al. [13] A total of 3047

proteins and 11477 interactions are shown. The top 20 most

connected proteins (hubs) and the interactions between them

appear in red. All other proteins and interactions appear in

translucent grey.

Found at: doi:10.1371/journal.pcbi.1000114.s004 (18.37 MB
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