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Abstract

Motor control requires the generation of a precise temporal sequence of control signals sent to the skeletal musculature.
We describe an experiment that, for good performance, requires human subjects to plan movements taking into account
uncertainty in their movement duration and the increase in that uncertainty with increasing movement duration. We do this
by rewarding movements performed within a specified time window, and penalizing slower movements in some conditions
and faster movements in others. Our results indicate that subjects compensated for their natural duration-dependent
temporal uncertainty as well as an overall increase in temporal uncertainty that was imposed experimentally. Their
compensation for temporal uncertainty, both the natural duration-dependent and imposed overall components, was nearly
optimal in the sense of maximizing expected gain in the task. The motor system is able to model its temporal uncertainty
and compensate for that uncertainty so as to optimize the consequences of movement.
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Introduction

In the execution of any movement, there is always timing

uncertainty. This uncertainty has two major consequences. First, it

limits performance on any task for which there are costs associated

with temporal imprecision. Second, it has implications for how the

motor system should plan movements when the costs of temporal

imprecision are asymmetric. In hurrying to catch a subway train,

for example, the cost of arriving early is usually small compared to

the cost of arriving late and missing the train. An optimal

movement planner must take into account temporal reward

asymmetries in forming movement plans.

The complexity of movement planning under risk is further

increased because temporal uncertainty in the motor system

changes constantly. Two major sources of variation in temporal

uncertainty occur over different time courses and have different

properties: One is a uniform, global shift in temporal uncertainty

possibly due to aging, fatigue, injury or disease [1–9]. The second

is a linear increase in the standard deviation of movement duration

with increases in mean movement duration [10].

Here we use a model of optimal temporal movement planning

to investigate the control of movement duration in the face of these

two types of temporal uncertainty while human subjects attempted

to touch a computer screen within a specified temporal window.

We introduced asymmetries in the penalties imposed for early vs.

late movement timing (Figure 1A), while at the same time

increasing subjects’ temporal uncertainty by adding Gaussian

noise with 25 ms standard deviation (see Methods). As in all

models of motor planning and motor control based on decision

theory, we are concerned with the interplay of three elements:

possible decisions (here planned movement time, t), uncertainty in

the mapping of motor decisions to motor outcomes (represented

by the family of probability distributions p[t|t]), and the costs/

benefits resulting from those motor outcomes, G(t). The mathe-

matical models considered here are part of a growing literature on

Bayesian decision models of motor phenomena, such as models of

motor adaptation [11–13] and motor planning/control e.g., [14–

21], including the use of prior information in spatial [16,18] and

temporal [17] motor planning, the use of asymmetric cost

functions in spatial motor planning [14–15,19] and when selecting

a speed-accuracy tradeoff [20–21]. The neural computation of

decision variables such as those considered here and in previous

work has also begun to be investigated [22–25].

Figure 1B illustrates the computations needed to maximize

expected gain with temporally asymmetric penalties. When

discussing movement duration, we must distinguish between the

planned arrival time, denoted t, and the actual arrival time, t.

When movements are executed, the actual arrival time will be

unpredictably earlier or later than t. In Figure 1B we show four

possible choices of t and outline the calculation of expected gain

for each. Note that the optimal planned arrival time need not fall

within the temporal reward window.

Human performance will be optimal if the CNS learns its linear

temporal uncertainty function,

s tð Þ~astzbs, ð1Þ

as it relates to planned movement time (t), and uses this information

(as and bs) to plan reach times that maximize expected gain. Human

performance in our task could be sub-optimal in several ways, each

depending on the type of information the CNS maintains about

Equation 1. We consider 5 such sub-optimal models, denoted M1,

…, M5. In the first three of these, subjects fail to take account of as,

bs, or both when planning reaches. In model M1, subjects fail to
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compensate for the experimentally imposed static increase in

temporal uncertainty due to the added Gaussian noise (SD = 25 ms);

in M2 subjects fail to compensate for the linear increase in temporal

uncertainty with increasing reach duration; and in M3 subjects fail in

both respects (for details, see Methods: Data Analysis and Model

Comparison). Models M4 and M5 were analogous to models M2 and

M3, respectively, but assumed the offset or slope were unknown and

hence not fixed to match the training data or added 25 ms timing

uncertainty. We compare subjects’ performance to each of these sub-

optimal movement strategies, and to the optimal strategy (M0) that

results in maximum expected gain.

Results

Training
During training trials, subjects attempted to produce reaches with

an experimenter-specified temporal duration; no rewards or

penalties were imposed. In Figure 2A, we plot the mean movement

duration as a function of the target duration for subject HT. The

points lie near the identity line, indicating that the subject could

accurately produce a wide range of movement times on command.

Figure 2B shows the temporal uncertainty function (the standard

deviation of arrival times as a function of target duration, with and

without the added noise) measured during training for the same

subject. As expected, unperturbed standard deviations (dot-dashed

line, open symbols) increase linearly across this range. Estimated

Weber-noise parameters (as) for all subjects’ temporal uncertainty

functions, and verification of the stationarity of those functions

(across the training trials and the subsequent main experiment), are

provided in Figure 3. Note that fitted functions obtained from

training data (lines) and the standard deviations measured during

main-experiment reaches (filled diamonds) were well-matched,

consistent with the idea that subject performance did not change

during the experimental reaches.

Main Experiment
Each of the models makes predictions of reach durations that

are based on the aspects of the temporal uncertainty function it

incorporates. Because the optimal model (M0) incorporates both

components of the temporal uncertainty function, it can take

account of the temporal noise actually experienced by each

subject when planning reaches, in turn allowing it to predict

optimal movement times. Three of the sub-optimal models (M1–

M3) each specify only a portion of the actual temporal noise

experienced by subjects. Because these models cannot account

for the full temporal uncertainty function, their predicted ‘best’

movement times are sub-optimal. For each subject and model,

we derived predictions of the mean duration in each of the four

conditions that would maximize expected gain in the task given

that temporal uncertainty function (see Methods: Model

Predictions; Figure 4 illustrates these calculations for an example

subject). These predictions allow us to compare observed

performance in the task to the theoretical performance of

subjects who maximize expected gain under the constraints

imposed by each of the four models. In addition to these four

models, we considered two sub-optimal models that did not have

fixed parameters (M4 and M5). In models of this type, the model

likelihood (see Method: Data Analysis and Model Comparison) is

calculated by integrating over the possible values of the unknown

parameters (e.g., overall noise level).

The results of a Bayesian comparison of the performance of the

four models (see Methods: Data Analysis and Model Comparison)

favored the optimal model M0 over the sub-optimal models;

yielding 11.5 dB in favor of M0, but 260.5 dB, 211.5 dB and

241.4 dB of evidence for M1, M2 and M3, respectively. Models

M4 and M5 are less constrained, resulting in evidence below

2100 dB. Negative evidence is evidence against a model relative

to the other possible models. In our previous work [26] we have

used 3 dB evidence, corresponding to odds of nearly 2:1, as a

minimal guideline for inferring an advantage for a model over its

competitors. The 11.5 dB evidence for M0 is strong, correspond-

ing to nearly 15:1 odds in favor of the optimal model over the set

of alternatives.

To assess inter-subject variability, we recomputed the evidence

values for 5 subgroups of subjects, with each subgroup consisting

of all subjects but one. The change in evidence that occurred as we

left each subject out is a measure of how much the conclusions we

draw are based on one subject alone. While the evidence decreases

somewhat when each subject is removed (and it should since we

are basing our conclusion on fewer data), it always favored M0,

and always by at least 7.5 dB, consistent with the conclusions

based on all subjects taken together. We note, in particular, that

removing the non-naive subject who was an author (TEH) still

resulted in evidence of 9 dB in favor of M0.

In addition, we plotted, for all subjects and conditions, the mean

observed movement duration as a function of the duration

predicted by each of the four models (Figure 5 plots the deviations

of the actual from the predicted movement times). In such a plot,

consistency of the data with the model corresponds to the data

falling along the identity line. We computed linear regressions of

observed mean duration as a function of predicted mean duration

for each of the four models. Only M0 had a best-fit slope and

intercept whose confidence intervals contained those of the

identity line (Table 1), corroborating the result of the Bayesian

model comparison. We conclude that the evidence favoring M0

over any of the competing models is overwhelming, implying that

subjects compensated for their increased uncertainty at longer

durations and also for the 25 ms added uncertainty imposed

experimentally.

To investigate how the suboptimal models fail, we present

differences between observed average temporal endpoints and

model predictions for each of the four models (Figure 5). For each

Author Summary

Many recent models of motor planning are based on the
idea that the CNS plans movements to minimize ‘‘costs’’
intrinsic to motor performance. A minimum variance
model would predict that the motor system plans
movements that minimize motor error (as measured by
the variance in movement) subject to the constraint that
the movement be completed within a specified time limit.
A complementary model would predict that the motor
system minimizes movement time subject to the con-
straint that movement variance not exceed a certain fixed
threshold. But neither of these models is adequate to
predict performance in everyday tasks that include
external costs imposed by the environment where good
performance requires that the motor system select a
tradeoff between speed and accuracy. In driving to the
airport to catch a plane, for example, there are very real
costs associated with driving too fast and also with being
just a bit too late. But the ‘‘optimal’’ tradeoff depends on
road conditions and also on how important it is to catch
the plane. We examine motor performance in analogous
experimental tasks where we impose arbitrary monetary
costs on movements that are ‘‘late’’ or ‘‘early’’ and show
that humans systematically trade off risk and reward so as
to maximize their expected monetary gain.

Optimal Movement Timing
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of the sub-optimal models, we describe how the pattern would

appear if data were fit with that model.

Model M1 compensates for increased temporal uncertainty with

increased movement duration but fails to compensate for the

s = 25 ms temporal noise added experimentally. Subjects con-

forming to this model will have temporal aim points closer to the

center of the target region than they should be since they are based

on an erroneously small estimate of temporal uncertainty. That is,

compared with the optimal model (M0), model M1 predicts longer

durations for predictions of durations shorter than the target

duration (650 ms), and shorter durations for predictions longer

than the target duration. Thus, we predict the left-hand cloud of

residuals to move down and right and the right-hand cloud to

move up and left, which is precisely what happened (upper-right

panel, Figure 5).

Subjects employing model M2 (lower-left panel, Figure 5) would

fail to take duration-dependent noise into account, but compensate

for the s = 25 ms temporal noise added experimentally. Such

subjects overestimate noise for short durations and underestimate

it for long durations. Intuitively, the residuals should move up and

Figure 1. Reward/Penalty Configurations and Expected Gain. (A)
Four reward/penalty configurations. The horizontal axis represents time
(ms) and the color of each interval specified the reward the subject
received if the reach time fell within that interval. Intervals that incurred
penalties (236 points) were coded red (also striped in the figure), those
that earned reward (+12 points), green (also cross-hatched). The choice
of times t1,…,t4 that defined the reward and penalty regions was
defined based on each subject’s movement duration variance (for a
target duration of 650 ms) to equate task difficulty. (B) Expected gain
calculation. Upper Panel: The Gaussian distribution of actual movement
durations t for four choices of planned movement durations t. The
vertical dashed lines mark four possible planned movement durations.
Standard deviations s(t) increase linearly with planned duration. Middle
Panel: The gain G(t) associated with each actual movement duration t.
Lower Panel: Expected gain EG(t) as a function of planned movement
duration t. Expected gain is determined by the probability that the

actual movement duration falls into the reward or penalty regions. The
maximum expected gain (MEG) and the corresponding planned
movement duration topt are indicated. (C) Schematic diagram showing
the geometric relationship between the start position of the reach and
the circular arc along which spatial reach targets were drawn. Reach
distance was always 430 mm, regardless of the position of the target
along the arc.
doi:10.1371/journal.pcbi.1000130.g001

Figure 2. Data from the Training Trials for One Subject (HT). (A)
Mean observed time versus experimenter-specified target time with a
line of slope = 1, intercept = 0 superimposed. (B) Temporal uncertainty
s(t) is plotted as a function of planned movement duration t for both
noise-added (filled symbols, dashed line) and unperturbed (open
symbols, fitted dash-dotted line) data. The estimated uncertainty s650

for a movement of planned duration 650 ms was used to equate the
difficulty of the task across subjects. Subjects’ fitted slopes (unper-
turbed) are provided in Figure 3.
doi:10.1371/journal.pcbi.1000130.g002

Optimal Movement Timing

PLoS Computational Biology | www.ploscompbiol.org 3 July 2008 | Volume 4 | Issue 7 | e1000130



left. This is true of most data points, but not all. The intuitive

pattern is occasionally broken due to the complex, nonlinear

calculation of expected gain (Figure 1B) and the switch from the

veridical uncertainty function (M0) to an incorrect, flat function

(M2). As expected, the predictions of M3 combine the shifts of the

other two suboptimal models.

In summary, based on the comparison of the optimal and three

suboptimal models, we conclude that subjects delayed or advanced

their temporal endpoints in accordance with the calculated

optimal times defined by M0. The Bayesian model comparison

employed is novel and correct for comparison of non-nested

models (see Method: Data Analysis and Model Comparison). We

also carried out a set of statistical tests based on linear regression of

actual versus predicted times. The conclusions based on these

regressions tests are identical to those just reported: we reject

models M1, M2 and M3 but not M0 (Table 1).

The gains earned by subjects potentially provide an additional

dimension for testing the models. We have compared actual gains

to expected gains predicted by each of the models. However, the

gain functions are flat relative to the sampling variability of

observed points earned, so that this analysis does not serve to

differentiate the models.

Learning
To investigate the possibility that subjects used a hill-climbing

strategy during the main experiment, instead of maximizing

Figure 5. Residuals. Residual differences between mean movement
duration and model predictions under the assumptions of each of the
four models (M0–M3). Data from HT, as described in Figure 4, are plotted
as diamonds.
doi:10.1371/journal.pcbi.1000130.g005

Table 1. Linear Fits of tobs to topt and 95% Confidence
Bounds.

Model at bt

M0 0.94, [0.85:1.03] 41 ms, [220:101]

M1 1.34, [1.18:1.49] 2223 ms, [2325: 2124]

M2 0.89, [0.81:0.97] 71 ms, [17:123]

M3 1.2, [1.05:1.35] 2143 ms, [2243: 246]

Confidence intervals in bold span the relevant parameter value of an identity
line.
doi:10.1371/journal.pcbi.1000130.t001

Figure 3. Temporal Uncertainty Functions by Subject. (A) Fitted
slope values as61 SE for temporal uncertainty functions calculated
from training data. The corresponding intercepts (bs) were 225, 219,
226, 231 and 210 ms, respectively. (B–F) Temporal uncertainty
functions calculated from unperturbed training data (solid lines; the
dotted lines represent61 SE) with temporal uncertainty measured
during each of the four experimental conditions (diamonds) overlaid.
doi:10.1371/journal.pcbi.1000130.g003

Figure 4. Expected Gain as a Function of Planned Movement
Duration for One Subject (HT). The expected gain EG(t) for each
possible planned movement duration is shown as a solid line. MEG
points are marked as circles and observed mean durations are marked
as diamonds. The four panels A–D correspond to the four conditions in
Figure 1A. Reward and penalty regions are coded as in Figure 1A.
doi:10.1371/journal.pcbi.1000130.g004

Optimal Movement Timing
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expected gain by taking account of their own temporal

uncertainty function and experimentally imposed gain function,

we performed a hill-climbing simulation using each subject’s

temporal uncertainty function. In the simulation, intended

duration was moved away from the penalty region by 3Dt ms

after each penalty and towards the center of the target region by

Dt ms for each miss of the target that occurred on the opposite

side from the penalty (corresponding to the 3:1 ratio of penalty to

reward). The value of Dt was initially set to be relatively large.

With each change of direction of step, Dt was reduced by 25% to

a minimum step size of 1.5 ms. While this simulation

approximately reproduced the final average reach times

observed experimentally, it does not provide a good model of

subject performance. First, there were significant autocorrela-

tions of reach durations beyond lag zero in the simulation data

but not in the experimental data. Second, a learning algorithm

would be expected to produce substantially higher s values

during test than those observed during training. This is what we

found with our hill-climbing simulation. Using subjects’ training

s values to produce the simulated data, the simulation produced

17 out of 20 main-experiment s values that were above the

training values, whereas our subjects’ main-experiment s values

(Figure 3) were entirely consistent with temporal uncertainty

functions measured during training.

Discussion

Movement Planning as Gain Maximization
To move accurately, an organism’s motor system must generate

an intricate series of precisely timed neural commands. The exact

nature of these commands is not known. Whatever the format of

the command signals [27–32], movement controlled by any

physical controller-actuator system, including biological motor

systems, will always exhibit some motor uncertainty. Nevertheless,

it is possible to plan movements that will maximize expected gain

in the face of that uncertainty. To do so, an organism must be

capable of assessing both the probabilities of possible movement

outcomes and their consequences.

One of the most thoroughly studied cases in which humans

integrate the probabilities of possible movement outcomes and

their consequences is the tradeoff between movement speed and

spatial accuracy [20–21,33–34]. However, in our experiment we

were concerned with temporal accuracy, and faster movements

are typically more temporally accurate (the opposite of the spatial

speed-accuracy tradeoff). By imposing costs for early/late arrivals,

we were able to determine whether the motor system is capable of

picking movement times that maximize expected gain, taking into

account temporal uncertainty.

We conclude that, in the timing task we examined, the motor

system estimates and compensates almost perfectly for its own

temporal uncertainty and correctly anticipates how that uncer-

tainty interacts with the asymmetric reward structure of the

environment. This outcome is plausible given the close neuro-

physiological links between motor timing and the assessment of

probabilities and consequences [22–25,35–37].

We note however that it has been argued that a representation

of time plays no role in one of the most basic forms of motor

learning: motor adaptation [38]. The current study provides

evidence that the motor system is capable of using a

representation of time in at least some circumstances where

the consequences of the movement are unambiguously linked to

the timing of the movement, and in addition that it does so

optimally.

Timing as an Element of Movement Optimization
Several models of spatio-temporal movement control are based

on optimizing an internal cost function that either includes or

predicts movement timing. One such model of trajectory

formation, the minimum variance model [39], assumes that the CNS

selects a spatio-temporal reach trajectory by optimizing a cost

function based on the movement’s endpoint variance. In

particular, the minimum variance model selects ‘‘…the temporal

profile of the neural command … so as to minimize the final

positional variance for a specified movement duration…’’ [39],

p. 782. More recently the minimum-time model of trajectory

formation has been proposed [40] based on the assumption that,

subject to a constraint on movement accuracy, the CNS attempts

to minimize movement duration. In both models, the speed-

accuracy tradeoff is modeled by scaling the spatial variance of the

reach with the amplitude of the motor control signal; that is, they

assume signal-dependent spatial motor noise.

In the absence of signal-dependent noise, both models would

predict a ‘bang-bang’ control scheme, where the control signal

takes first a maximum positive and then maximum negative value

producing alternating maximum forward and reverse accelerations

leading to maximum movement speed and hence minimum

duration. However, bang-bang control predicts trajectories that

are inconsistent with typical motor behavior. By modeling spatial

noise as signal-dependent, it is possible to predict a range of

important behavioral results with both the minimum-variance and

minimum-time models, such as the smooth variation in spatial and

temporal reach profiles e.g., [41–42], Fitts’ law [33], and the

spatio-temporal details of saccadic trajectories [43].

Unlike these previous studies, here the emphasis is on accuracy

of movement duration. This results in a reverse speed-accuracy

tradeoff; slower movements have lower temporal accuracy (even

though they have higher spatial accuracy). We show that, in a task

where spatial uncertainty (and therefore signal-dependent spatial

noise) plays essentially no role, reach durations are selected to

nearly maximize expected gain in the presence of duration-

dependent temporal uncertainty.

Duration-dependent temporal uncertainty constitutes a con-

straint on the temporal aspects of movement planning that is

similar in many respects to the planning constraint imposed by

signal-dependent spatial noise. Simultaneously minimizing tem-

poral and spatial noise provides a method of solving the

underconstrained problem of trajectory selection. Although several

previous studies have proposed multiply-constrained models of

movement planning [44–45] and the duration-dependence of

temporal uncertainty is well known e.g.,[10]; [46–47], we provide

the first demonstration of the CNS making use of its own temporal

uncertainty in movement planning. While selecting the movement

trajectory that minimizes spatial and/or temporal noise is a

possible method of movement planning, the optimal movement

planner carefully separates the constraints imposed on spatial and

temporal accuracy (duration-dependent temporal noise and signal-

dependent spatial noise) with the costs of spatial and temporal

errors, which we discuss next.

Cost Functions in Models of Movement Planning
In both the minimum-time and minimum-variance models [39–

40], a trajectory is selected so as to optimize an internal cost for

spatial variance or movement duration (respectively) in the

presence of signal-dependent spatial noise. The cost is internal in

the sense that it does not make reference to any externally imposed

costs on movement errors, such as monetary rewards and penalties

that may be imposed due to one’s spatial precision or movement

duration. There have been a large number of models of movement

Optimal Movement Timing
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based on the optimization of internal cost functions that identify

movement cost with an invariant kinematic or dynamic variable

(time [48], spatial precision [39], torque-change [49–50], jerk [51],

etc.). However, there are pitfalls inherent in identifying movement

cost with an aspect of the movement itself, despite the current

movement goals. For example, the minimum-variance model

always chooses a movement with the best possible spatial

precision, even when that level of precision is unnecessary for

the task. Similarly, the minimum-time model always chooses the

shortest duration movement that satisfies the constraint on spatial

precision even when, as in some conditions of the current study, an

external temporal cost function rewards longer-duration move-

ments.

Recent models of optimal movement planning e.g., [14, 18, 26,

44] approach the problem somewhat differently. In these models,

which have previously been used to predict spatial movement

endpoints [14,18] and movement trajectories [44], the difference

between a constraint on movement planning and a cost incurred

from movement error must be recognized. While duration-

dependent temporal noise, signal-dependent spatial noise, energy

consumption, biomechanics, etc. constitute constraints on move-

ment planning and control, they are not properly costs. A cost

essentially imposes a weighting on the available constraints, and is

task dependent. By experimentally imposing costs [14–15,18–

21,26] on spatial or temporal inaccuracy, it is possible to predict

flexible movement strategies that incorporate task-relevant con-

straints (e.g., duration-dependent temporal uncertainty) while

effectively ignoring (down-weighting) constraints that are not as

important to the task at hand (signal-dependent spatial uncertain-

ty). In the present study, we manipulated the temporal cost

function by imposing penalties on too-short reach durations in

some conditions, and too-long durations in other conditions, and

determined whether subjects responded appropriately to these

different cost functions.

We have modeled movement planning as minimizing an

external gain function in the presence of task-relevant internal

temporal noise. By identifying the to-be-minimized cost with the

movement goal we have separated fixed kinematic/dynamic

variables from the purpose of the movement. This allows us to

predict flexible movement plans that may minimize spatial or

temporal uncertainty, but only when that is relevant to the task at

hand. A deeper understanding of movement planning and

execution will result from models that similarly separate cost

functions from fixed sets of kinematic/dynamic variables while

simultaneously taking account of task-relevant spatial and/or

temporal uncertainty.

Materials and Methods

Subjects were instructed to reach to a computer screen. Prior to

each reach, a timer bar was presented on-screen, indicating the

timing of the rewarded and penalized temporal windows, along

with a circular spatial target. To earn rewards, subjects had to

touch within the circular target area within a specified temporal

window (‘‘temporal target’’). All spatial targets (12 mm radius)

were presented along a circular arc 430 mm from the start

position (Figure 1C). The timer bar was used to indicate the

reward structure of each trial (described below), and also to signal

to the subject the movement duration achieved following

completion of each reach. All measurements (spatial and temporal)

were made with an Optotrak 3020, sampling at 200 Hz. Reach

initiation was defined as the moment when the fingertip moved (at

least) 2 mm toward the computer monitor, and reach termination

as the time when the fingertip arrived within 3 mm of the monitor

and the forward fingertip velocity fell below 3 mm/s. Subjects

were seated facing the center of the (upright) computer monitor.

The start position of the reach was on the tabletop, in front of

the upright computer screen. Fingertip position was controlled at

the start of each reach, and constrained to be within 1 mm of the

start position. The start position was 350 mm in front of the center

of the monitor’s bottom edge (Figure 1C). Target locations were

selected from a circular arc on the screen. The arc was centered on

the projection of the start position to the bottom edge of the screen

(Figure 1C). All points on this arc were equidistant from the start

position. Reaches were made in a dimly lit room (the majority of

the light coming from the CRT), and subjects could see their

hands. No feedback was presented on the screen showing the

fingertip landing point, although an auditory beep indicated that

the target had been touched.

Subjects were not told that Gaussian noise with s = 25 ms was

added to all measured temporal endpoints. This added noise, in

combination with subjects’ natural duration-dependent variations

in temporal uncertainty, allowed us to determine whether subjects

were sensitive to changes in the two sources of variation in

temporal uncertainty described above. The noise-added temporal

endpoint was displayed after each reach, shown as a thin line

intersecting the timer bar at the appropriate position.

Each subject completed two sessions, a training session and the

main experiment. Both sessions were completed within the same

hour on a single day.

Training
Subjects were first given a training session in which temporal

targets (width: 3 ms, no adjacent penalty region) were presented at

six target durations (565, 595, 625, 655, 685 and 715 ms; 8

repetitions each, in separate blocks, followed by 50 repetitions

each, in separate blocks) spanning the range of temporal aim

points observed during pilot work. Although this window was too

narrow for subjects to reliably hit, subjects were not scored during

training, and were told simply to time their reaches as closely to

each target time as possible. This session allowed us to estimate the

standard deviation of each subject’s movement durations for a set

of precisely known target durations, and also allowed subjects to

learn their own (noise-added) temporal uncertainties in the task.

Standard deviations at each target time (Figures 2B and 3) were

measured from the final 40 repetitions to avoid possible initial

practice effects.

Main Experiment
Immediately following training, subjects were given a temporal

target centered at 650 ms, with a half-width of 0.6s650, where s650

was the estimated SD of movement duration for a mean duration

of 650 ms. In this way, we equated the difficulty of the task across

subjects based on their training performance.

Subjects were paid a bonus for touching the spatial target within

the temporal target window (Figure 1A, green, cross-hatched bars),

and penalized for touching the spatial target within a temporal

penalty window (Figure 1A, red, striped bars) or for failing to

touch the spatial target. Four blocked conditions were employed

(Figure 1A), two early temporal penalty conditions and two late

penalty conditions (64 trials each). The two early temporal penalty

regions began at 0 ms and ended either 0.6s650 or 1.35s650 ms

prior to 650 ms. The two late temporal penalty regions began

either 0.6s650 or 1.35s650 ms following 650 ms, and were open-

ended.

The outcome of each trial was signaled by distinct auditory

tones notifying the subject that a reward was earned or a penalty

assessed. The possible reward earned on any trial was $0.12 and
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the penalty was 2$0.36 (or 2$0.60 for missed spatial targets).

Note that the ratio of penalty to bonus magnitudes was 3:1.

Trials in which the spatial target was not touched were re-run

(fewer than 1% of all trials) to equate the number of touched-

target trials in each condition. The untouched-target trials were

not analyzed.

Subjects
Subjects were four students at New York University who were

not aware of the purpose of the experiment and one author (TEH).

All subjects gave informed consent before the experiment. The

experimental protocol had been approved by the Institutional

Review Board at New York University.

Model Predictions
As described in the Introduction, decision theoretic models of

motor behavior are concerned with the interplay of three

elements: movement strategy, uncertainty, and the gain or loss

from possible movement outcomes. The interplay of these three

elements is represented graphically in Figure 1B for the optimal

model, M0. Calculation of the temporal endpoints predicted by

each of the models to be considered required that the expected

gain, in terms of average bonus earned per reach, be computed

based on the constraints supplied by the hypothetical system. For

example, the optimal neuromotor controller would make use of

information concerning both Weber-like increases in temporal

uncertainty with increasing reach time, and the experimentally

increased overall temporal uncertainty.

A given motor strategy or plan, s, determines the critical states

of the system. Although motor plans are complex sequences of

control signals in time, the only consequence of the choice of

motor plan in our task is to select an expected temporal

endpoint, ts. The expected gain from s is then given by

(Figure 1B):

EG tsð Þ~
ð

dt p t tsjð ÞG tð Þ, ð2Þ

where G(t) describes the gain or loss associated with a particular

temporal endpoint (Figure 1A and Figure 1B, middle panel). The

term p(t | ts) describes the probability density of temporal

endpoints expected from any chosen movement strategy s. Note

that these are planned durations, not reaction times, and hence

we have no a priori expectation that these distributions will be

skewed. We model the duration distribution as a Gaussian with

mean arrival time ts and a standard deviation s(ts)

p t tsjð Þ~ 1ffiffiffiffiffiffi
2p
p

s tsð Þ
e
{

t{tsð Þ2

2s tsð Þ2 ð3Þ

(QQ plots of these distributions confirm that the Gaussian

distribution models the data well). The temporal uncertainty

function, s(ts) is able to capture the well-known Weber-like

scaling of temporal standard deviation with mean arrival time ts

(Figure 1B, top panel). We used values estimated from each

subject’s training data to compute individual s(ts) functions for

models M0–M3.

In Figure 1B (bottom panel), for the rightmost choice of t, the

probability of arrival in the penalty zone is nearly as high as that

of arrival in the reward zone. This choice of t is likely to lead to

nearly as many penalties as rewards. Given that the penalty/

reward ratio was 3:1, expected gain is negative for this choice of

t. The distribution associated with the leftmost choice of t is

primarily in the uncolored time zone where the subject earns

nothing. This choice of t is likely to lead to rare rewards and

extremely rare penalties, resulting in only a small total reward

across many trials. Interestingly, a third choice of t, centered on

the temporal reward region, earns even less than the previous

choice of t because of a combination of its proximity to the

temporal penalty, the magnitude of temporal movement noise,

and the ratio of the reward to penalty magnitudes.

The best of the four choices shown is therefore the t located at

the left edge of the rewarded temporal region. Of the four shown,

it makes the best compromise between the width of the probability

distribution for t and its distance from the centers of the reward

and penalty regions, given the widths of those regions and the ratio

of gains to losses. Of course, there are infinitely many possible

choices of t. The lower panel shows the expected gain as a

function of t, with the maximum expected gain (MEG) point

indicated with a circle at the peak of the expected gain function. If

observers select this value topt, they maximize their expected gain.

We computed topt for each of the four penalty conditions and

each subject based on an estimated temporal uncertainty function

s(ts) that was specific to each subject. In all cases the optimal

(maximum expected gain) value of ts was shifted away from the

penalty region.

Data Analysis and Model Comparison
The optimal Bayesian model (M0) makes full use of the

temporal uncertainty function s(ts) from each subject’s training

session. The five sub-optimal models use less information. M1

uses the s(ts) calculated from each subject’s training data without

the experimentally added s = 25 ms noise. M2 uses each subject’s

constant s for all ts that includes the overall added s = 25 ms

noise; it uses the square root of the average of perturbed

variances about the target durations measured during training.

M3 uses the subject’s constant s without the experimentally

added noise. M4 and M5 use a constant offset and constant offset

and slope, respectively, but assume that the values of these

parameters are unknown. Of course, some subjects are more

accurate than others but this is explicitly taken account of in our

analysis. Each model’s predictions are defined in terms of

performance relative to an individual’s temporal uncertainty

function. Subjects who are inherently poorer timers are being

compared to a standard (defined by each model) that is tailored

to (defined in terms of) the limits of that subject’s abilities. So

while there are in fact individual differences between subjects,

these were removed in the design and analysis of the experiment.

Because we equated subjects in this way we could analyze group

data.

The predicted movement strategy, s, is therefore a function of

the type(s) of temporal uncertainty information incorporated by

each model Mm, the reward structure defined by the jth

experimental condition (j = 1 to 4), and the temporal uncertainties

measured during training for the kth subject (k = 1 to 5). Let tkm
j

denote the value of t predicted by model Mm based on an estimate

of timing uncertainty calculated from the assumptions of each

model. For convenience, we denote the temporal uncertainty for

an attempt to produce a movement duration of tkm
j (using the full

temporal uncertainty function based on the training trials),

s tkm
j

� �
, as skm

j .

The models we considered are not all nested and consequently

we chose a method of model comparison for non-nested models

[52–54] that we describe next. Let tk
ij denote the ith arrival time (of

the 64 trials per condition) in condition j for the kth subject. The

likelihood of model Mm is given by:
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L Mmð Þ~ P
i,j,k

p tk
ij Mmj

� �
ð4Þ

where

p tk
ij Mmj

� �
~

1ffiffiffiffiffiffi
2p
p

skm
j

e

{
tk
ij

{tkm
jð Þ2

2 skm
j

� �2

: ð5Þ

Note however that for M4 and M5, the model likelihood must be

calculated by integrating over the unknown parameters: the

constant offset, L M4ð Þ~
Ð

dbs P
i,j,k

p bs M4jð Þp tk
ij M4

:bsj
� �

, and

constant offset and slope, L M5ð Þ~
Ð

dasdbs P
i,j,k

p as M5jð Þp

bs M5jð Þp tk
ij M5

:asj :bs

� �
, of the temporal uncertainty function,

respectively, where the prior probability distributions over the

parameters are taken to be bounded Jeffreys (uninformative) priors

[55].

Let p(Mm) denote the prior probability of the mth model. Then

the posterior probability of the mth model given the data is

pm!p Mmð ÞL Mmð Þ ð6Þ

and

l0=12345~10log p0

,X5

m~1

pm

 !
ð7Þ

is a comparison of the posterior probability of the optimal model

M0 to the combined posterior probabilities of sub-optimal models:

it is a measure of evidence [53] favoring the optimal model (the factor

of 10 allows us to express evidence in decibels, denoted dB). A

similar evidence measure can be computed for each of the sub-

optimal models using the odds ratio of the probability of each sub-

optimal model to the combined probability for the remaining five

models (four sub-optimal and one optimal). We set the prior

probabilities of the six models to be equal and computed these

evidence measures.
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