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Abstract

Establishing a functional network is invaluable to our understanding of gene function, pathways, and systems-level properties
of an organism and can be a powerful resource in directing targeted experiments. In this study, we present a functional
network for the laboratory mouse based on a Bayesian integration of diverse genetic and functional genomic data. The
resulting network includes probabilistic functional linkages among 20,581 protein-coding genes. We show that this network
can accurately predict novel functional assignments and network components and present experimental evidence for
predictions related to Nanog homeobox (Nanog), a critical gene in mouse embryonic stem cell pluripotency. An analysis of the
global topology of the mouse functional network reveals multiple biologically relevant systems-level features of the mouse
proteome. Specifically, we identify the clustering coefficient as a critical characteristic of central modulators that affect diverse
pathways as well as genes associated with different phenotype traits and diseases. In addition, a cross-species comparison of
functional interactomes on a genomic scale revealed distinct functional characteristics of conserved neighborhoods as
compared to subnetworks specific to higher organisms. Thus, our global functional network for the laboratory mouse provides
the community with a key resource for discovering protein functions and novel pathway components as well as a tool for
exploring systems-level topological and evolutionary features of cellular interactomes. To facilitate exploration of this network
by the biomedical research community, we illustrate its application in function and disease gene discovery through an
interactive, Web-based, publicly available interface at http://mouseNET.princeton.edu.
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Introduction

Establishing a functional network is invaluable to furthering our

understanding of gene function, pathways, and systems-level

properties of an organism and can be a powerful resource in

directing targeted experiments. The availability of diverse genome-

scale data enables the prediction of networks encompassing all or at

least most of the proteins in an organism. In Saccharomyces cerevisiae,

probabilistic models have been used to predict the genomewide

protein–protein functional interactions by integrating diverse data

types [1–6]. Such probabilistic approaches have also been used in

mammals to predict physical interactions [7,8] and to generate

expression networks [9–13]. In human, functional relationship

networks have also been generated by integrating diverse interaction

data [14]. However, it is still challenging to predict functional

relationships through integrating diverse genomic data in mamma-

lian model systems, due to the intrinsic complexity of these genomes

and functional biases in individual datasets. Yet recent accumulation

of both traditional targeted experiments, including protein physical

interactions [15–17], gene-disease/phenotypic associations [18] and

genome-scale data including gene expression and tissue localization

[19–21], phylogenetic and phenotypic profiles [22,23], as well as data

retrieved based on homology [2,24] provides the basis for establishing

a global functional relationship network in the laboratory mouse [25].

We describe here a functional network in mouse generated by

integrating a wide range of data types. In contrast to interactomes

that represent physical interactions, our functional network

predicts the probability that two proteins are involved in the same

biological process and thus represents a more comprehensive

combination of physical, genetic and regulatory linkages

(Figure 1A). We demonstrate the utility of our network to predict

gene functions and pathway components by both computational

and experimental approaches. Further, we demonstrate how it can

be used to further our understanding of the systems-level features

of the mouse functional network. Our global functional network

for the laboratory mouse is a valuable resource for analysis and

annotation of the mouse proteome and can be used as a means of

generating biological hypotheses for subsequent experimental

validation, especially through the interactive public web interface

available at http://mouseNET.princeton.edu.

Results

A Probabilistic Model To Predict Functional Relationships
by Integrating Diverse Data Types

Bayesian networks have been used successfully for integrating

diverse data sources in many biological settings, including protein

function prediction [3,6], prediction of genetic interactions [26],
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physical interactions [4,7] and most relevant to this work,

prediction of functional networks in S. cerevisiae [2,5,6] and human

[14]. The Bayesian approach is especially well-suited to our

problem, where many genome-scale data have missing values and

collections of individual investigations may not be a complete

representation of genome profiles. Based on a Bayesian frame-

work, we designed a method that combines redundant datasets,

processes continuous data, minimizes over-fitting and finally,

integrates all experimental evidence (Table 1) in a confidence-

based manner to estimate the genomewide pair-wise probabilities

of functional linkage (Figure 1A). The resulting mouse interactome

includes 20,581 genes, with edges representing the probability of

functional relationship between each pair (Figure 1B). As

demonstrated below, creation of this functional network through

integrating diverse data sources can facilitate identification of

novel pathway components and represents a powerful resource for

understanding genetic diseases and network evolution.

MouseNET Recovers Functional Relationships
A key application of a functional network prediction is to

uncover novel pathway components. We first evaluated the

accuracy of our predicted network through cross-validation

analysis on known functional linkages (co-annotations of proteins

to specific Gene Ontology [27] terms), which is the standard for

unbiased computational evaluation. In short, cross-validation can

be used to assess the accuracy of predictions by evaluating the

system’s accuracy in recovering subsets of known annotations

withheld during the training process. Our integrated network is

substantially more successful in predicting known functional

linkages than any of the individual datasets and making more

correct predictions (demonstrating higher precision) at every

confidence cutoff (Figure 2A). This result is robust to using a

different annotation standard, i.e., co-annotation to the same

Kyoto Encyclopedia of Genes and Genomes [28] (KEGG)

pathways (Figure 2B). Notably, although the relative performance

of datasets varies with different standards, the consistently good

performance of our results suggests that the integrated predictions

are robust to variations in the annotation standard.

A common pitfall of many global integration schemes is the

tendency to make precise predictions over only a limited set of

biological processes [29]. Thus we evaluated the functional

composition of our integrated results using KEGG, which is an

accurate representation of our current knowledge of different

pathways. The integrated network exhibits a balanced represen-

tation of a large group of pathways, even though many individual

datasets have significant functional biases (Figure S1, the complete

statistics of this functional composition analysis are included in the

Dataset S1). For instance, the protein–protein interaction data

obtained from the Biomolecular Interaction Network Database

(BIND) [15] is significantly skewed towards the processes of focal

adhesion. In contrast, given the broad functional coverage of the

integrated network, we expect our approach will be useful in

further characterization of a variety of pathways.

MouseNET Predicts Novel Pathway Components and
Gene Functions

The high accuracy in predicting co-annotation to KEGG

pathways (Figure 2B) by our network and its broad functional

coverage (Figure S1) suggest that mouseNET can accurately

capture pathway-based functional linkages for a variety of

processes. We thus focused specifically on the predicted functional

network for the major conserved signaling pathways related to

development, including Hedgehog, Wnt, MAPK, TGF-b, Notch,

and Toll-like receptor signaling pathways. We find that in addition

to recovering known pathway components (Figure S2), these

networks include a number of proteins not previously annotated to

the pathway. Many of these novel predictions have reasonable

experimental support in the literature. For example, in the 40 most

tightly connected nodes surrounding known MAPK pathway

proteins (Figure 3), 14 of them are annotated as the canonical

pathway components in KEGG (p,10210, hypergeometric

distribution). Furthermore, two of the other nodes (Kit,

MGI:96677 and Shh, MGI:98297) are not annotated to the

MAPK pathway in KEGG but are annotated in the Gene

Ontology [27] to be MAPK-related. Another nine unannotated

predictions in the cluster of 40 have been suggested in literature to

be involved in the MAPK pathway (Table S2 and Text S1). Thus,

our system not only recovers well-established knowledge but also

implicates novel pathway components, and therefore could be a

powerful tool for generating hypotheses for experimental ap-

proaches.

Our genomewide prediction of protein function based on the

integrated network produced 689 novel annotations with an

estimated 80% precision. A subset of these new predictions was

evaluated through examination of the literature by MGD curators

and the precision estimate was confirmed (Dataset S2). Of these,

17 predictions were confirmed based on literature evidence at the

level sufficient for annotation in MGI, and another six were found

to have some support in the literature, but at a level not yet

sufficient for GO annotation. For example, Retn (MGI:1888506),

which does not have a GO biological process or KEGG pathway

annotation, was predicted with high confidence (over 0.8) to be

involved in glucose homeostasis (GO:0042593). The loss of Retn

was indeed found to improve glucose homeostasis in leptin

deficiency [30], confirming the prediction. This evaluation

demonstrates that through integrating information from diverse

sources, the system is capable of making accurate novel predictions

on genes not previously annotated in GO or KEGG.

Experimental Validation by Nanog Down-Regulation
Induced Cell Differentiation

To further validate novel functional relationships predicted by

our integrative network, we investigated proteins predicted to

cluster around the homeobox transcription factor Nanog

Author Summary

Functionally related proteins interact in diverse ways to carry
out biological processes, and each protein often participates
in multiple pathways. Proteins are therefore organized into a
complex network through which different functions of the
cell are carried out. An accurate description of such a network
is invaluable to our understanding of both the system-level
features of a cell and those of an individual biological
process. In this study, we used a probabilistic model to
combine information from diverse genome-scale studies as
well as individual investigations to generate a global
functional network for mouse. Our analysis of the global
topology of this network reveals biologically relevant
systems-level characteristics of the mouse proteome, includ-
ing conservation of functional neighborhoods and network
features characteristic of known disease genes and key
transcriptional regulators. We have made this network
publicly available for search and dynamic exploration by
researchers in the community. Our Web interface enables
users to easily generate hypotheses regarding potential
functional roles of uncharacterized proteins, investigate
possible links between their proteins of interest and disease,
and identify new players in specific biological processes.

Functional Network for Mouse
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(MGI:1919200), which is an essential gene responsible for

maintaining embryonic cell fate. Specifically, we experimentally

down-regulated the expression of Nanog, and observed the nuclear

protein expression changes of the top functional interactors in our

predicted network by mass spectrometry. Five of the top 10 Nanog

interactors predicted by mouseNET (Figure 4A) were detected in

the nuclei and thus, we could evaluate their expression following

Nanog down-regulation. We observed that after Nanog down-

regulation, expression levels of four of them either significantly

increased (DNA (cytosine-5-)-methyltransferase 3-like, Dnmt3l,

MGI:1859287 and DNA methyltransferase 3B, Dnmt3b,

MGI:1261819) or decreased (transformation related protein 53,

Trp53, MGI:98834 and POU domain, class 5, transcription factor

1, Pou5f1, MGI:101893) (p,0.1 when compared to the overall

distribution of the nucleus-detected proteins, Figure S8). Of those,

Pou5f1 has also been previously shown to be involved in ES cell

regulation [31,32] and it has significant overlap in genomic

binding targets with Nanog [33,34]. Furthermore, the change in

expression for these four proteins is consistent for different time

points after Nanog knock-down, and increases consistently over the

time course (Figure 4B). This experimental verification demon-

strates that our system is a powerful tool which can aid researchers

in generating accurate hypotheses for discovery of proteins

involved in a specific cellular process.

Figure 1. Strategy for processing and integration of diverse genomic data. (A) Schematic of the network integration pipeline. We collected
five different types of data that are indicative of functional relationships, each of which may consist of multiple datasets (Table 1). We assessed the
redundancy of each pair of datasets by comparing likelihood ratios with and without the independence assumption; datasets for which these values
differed significantly were deemed mutually redundant and combined as a single input node in the Bayesian network for the purposes of integration.
Finally, we systematically grouped continuous data and integrated all data with a naı̈ve Bayes classifier to predict pair-wise functional relationships.
(B) Global view of the predicted mouse functional network with higher than 0.8 confidence level of linkage. Nodes of high connectivity (more than 20
interactions) are labeled and highlighted in red.
doi:10.1371/journal.pcbi.1000165.g001
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Our functional network can also highlight information about

physical interactions and transcriptional binding sites. For

example, the 17 physical interactions with Nanog identified by

Wang et al. were highly enriched in pairs of high functional

relationship confidence (Mann-Whitney U test p = 0.00069). In

addition, on the transcription level, the Nanog binding loci

associated genes [34] were also highly enriched in high confidence

functional interactors of Nanog predicted by our network (U test

p = 3.98E-18). Therefore, by integrating a diverse collection of

data, mouseNET enables users to explore variety types of

functional associations, including physical interactions and tran-

scriptional level regulation.

Topological Analysis Reveals Distinct Characteristics of
Modulators of Diverse Processes

MouseNET provides a valuable resource to characterize the

systems-level features of a model organism, which is a critical issue

in understanding the organization and dynamics of the proteome.

In the mouseNET network, the majority of proteins have only a

small number of connections (Figure 5A), yet the presence of a few

highly connected nodes (Figure 1B) implies central modifiers of the

proteome. These ‘hub’ genes (at confidence cutoff 0.6) are

enriched in regulation of response to stress, DNA metabolic

process and cell cycle, (Bonferroni-corrected p,1.0E-9) (Table 2).

Additionally, these hubs were significantly enriched (Bonferroni-

corrected p = 8.3E-10) for ‘chromosome organization and biogen-

esis’, which is in agreement with a previous study in C. elegans that

identified a class of genetic interaction hubs, all six of which were

chromatin regulators [35].

We further analyzed the topology of the functional network

surrounding these hubs and found distinct characteristics that

correlate with their role in the cell. Proteins with high connectivity

may appear in densely connected modules, or alternatively, they

could be linkers of multiple functional modules and participate in

several pathways [36]. To investigate these two classes, for each

gene we computed the clustering coefficient, C, which gives the

probability that its interactors are connected to each other. We

found that low clustering coefficients, when controlled for node

degree, are critical indicators of proteins participating in more

biological pathways (Figure 5B). This trend is robust against

different confidence cutoff levels for the interactions (Figure S3).

For example, both nucleolar protein 1 (Nol1, MGI:107891) and

paxillin (Pxn, MGI:108295) have 50 functional linkages with more

than 0.6 confidence in interactions (Figure 5C and 5D). However,

the former, which has a C of 0.44, is involved in only the rRNA

processing pathway, while the latter, with a C of 0.06, is known to

be involved in multiple biological processes, including activation of

MAPK activity, branching morphogenesis of a tube, cell adhesion

and protein folding. Furthermore, we found that the set of proteins

with low clustering coefficients, but not the set of all proteins with

only high node degree, is highly enriched for ‘signal transduction’

(Table 2), probably because proteins involved in signal transduc-

tion are central to cross-talk among multiple pathways and the

cell’s diverse response to various stimuli. Thus, the topology of the

functional network contains important clues to the global

organization of the proteome; and in addition to connectivity,

we demonstrate that the clustering coefficient is a critical factor

characterizing modifiers of multiple biological pathways.

Phenotypic and Disease Effects in Relation to Topology
and Functional Participation

Global modeling of functional linkages provides a general

framework to analyze the relationship between local network

properties and functional consequences of individual gene

perturbations. For example, previous studies have predicted that

the network connectivity is correlated with the propensity of a

protein to be essential [37,38]. Recently, however, there has been

debate over whether this relationship is indeed true in yeast or

human [39,40], the main issue being whether high connectivity is

truly a property of the underlying network or simply an effect of

intense study of the essential gene set (i.e., annotation or

investigational bias).

To address this question in the mouse functional network and

control for investigation bias, we constructed two networks: one

including all input data except knock-out phenotype information,

and one including only whole-genome datasets. To avoid the

caveat that not all gene knock-outs have been constructed, only

genes that have been knocked out or targeted were included in all

statistical analyses. For the first functional network, essential genes

or disease-associated genes are significantly more connected than

average (p,10218 for perinatal lethality, p,1029 for postnatal

lethality, and p,1026 for disease-associated genes, Mann-Whitney

U test) (Figure S4A). However, in the functional network based on

only whole-genome datasets, the difference between essential and

Table 1. Data sources used for functional interactome integration.

Data Type Data Sources Date/Version Number of Protein Pairs

Protein–protein physical interaction data BIND [15] 01/21/07 2,709

DIP [17] 01/21/07 47

GRID [16] 10/16/06 8,144

OPHID [24] 10/28/06 32,342

Phenotype/disease MGI phenotype [18] 01/22/07 2,765,378

OMIM disease 01/22/07

Phylogenetic profiles Inparanoid [23] Version 4.0 123,284,253

BioMart [22] 01/22/07 127,017,891

Homologous functional relationship predictions bioPIXIE (yeast) [2] 10/30/06 4,280,332

Expression and Tissue localization SAGE [19] Version 02/14/06 139,871,175

Zhang et al [34] N/A 92,011,395

Su et al. [42] N/A 165,756,528

doi:10.1371/journal.pcbi.1000165.t001
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non-essential sets was not significant, nor was that between

disease-related set and the genome average (Figure 6A), suggesting

the observed relationships between essentiality and network

connectivity are likely to be explained by investigational biases

in our case. This result is consistent with a previous study [41]

which suggested that the vast majority of disease genes show no

tendency to encode physical interaction hubs in human data. We

further considered whether connectivity and local topology in our

functional network relate to other perturbation phenotypes.

Although most phenotype-responsible gene groups (Table S1)

have a higher than average connectivity based on all available

input data (Figure S4B), only proteins involved in tumorigenesis,

embryogenesis still have significantly higher connectivity than

average (p,0.05) on the whole-genome-data-only network

(Figure 6B). This result highlights that the variation in intensity

of study for genes can cause significant biases in the conclusions

Figure 2. Computational performance analysis of the integrated network to predict functional relationships and the relative
performance of different datasets. (A) Five-fold cross-validation of the integrated results applied to predict gold standard pairs defined by co-
annotation to specific GO terms. Positive pairs were defined as those having at least one co-annotation to a specific GO term. Negative pairs are those
that have a specific annotation, but share no co-annotations. Precision, or the fraction of correct predictions out of all predictions made, is measured
across a number of cutoffs in prediction confidence (higher cutoff allows for less predictions of higher quality, and lowering the cutoff allows more
predictions to be made at the cost of some decrease in accruacy). MouseNET predictions always have higher accuracy than those of the individual
datasets. (B) Performance of the integrated results when evaluated against a different test set where positives are defined as pairs co-annotated to
the same KEGG pathways, and negatives are pairs in which both members are annotated in KEGG, but share no co-annotations. Both performance
measurements show that the integrated results are better in recovering known functional relationships than individual datasets.
doi:10.1371/journal.pcbi.1000165.g002

Functional Network for Mouse
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reached when comparing the connectivity of different groups of

genes.

We observed that all groups of phenotype-associated genes have

a lower clustering coefficient than average, and most participate in

more biological pathways (Figure 6C). This conclusion holds true

when controlling for investigational biases. For example, Trp53,

with very high connectivity (Figure 1B) and particularly low

clustering coefficient (0.02252), is essential during both embryonic

perinatal and postnatal stages and plays a role in tumorigenesis,

the reproductive system, and has ten other high level phenotypes

(Table S1) according to the Mouse Genome Informatics (MGI)

database [18]. This result implies that hubs with low clustering

coefficient and participating in multiple pathways are important

buffers of the genome, and that mutations or other disruptions of

these genes are likely to be related to a detrimental phenotypes

and, likely, disease.

Comparison of Yeast and Mouse Functional Networks
Genome evolution on the sequence level has been studied

intensively during the past decades. Studies of functional evolution

on the genome-scale, on the other hand, require comprehensive

profiling of proteins, which is difficult due to largely incomplete

annotation of protein function in most organisms. Here, we

demonstrate that mouseNET is a valuable resource for cross-

species functional evolution studies by comparing it to the S.

cerevisiae network [2]. To avoid circularity caused by integration of

sequence similarity information, we generated a functional

network that excludes all orthology-based input data. Given these

mouse and yeast networks, we first investigated whether functional

linkages are conserved between pairs of orthologs as identified

through InParanoid [23]. Our results indicate that high-confi-

dence functional linkages in S. cerevisiae are strongly predictive of

functional linkages between orthologous gene pairs in mouse

(Figure 7A for statistical analysis).

We also investigated the conservation of functional neighbor-

hoods in the mouse and yeast networks. To make the datasets

comparable, we included only orthologous pairs in the conserva-

tion statistical analysis. We found that the two networks vary from

a high degree of conservation to almost no conservation (Figure 7B

and 7C). Functional linkages between proteins involved in

response to stress, response to endogenous stimulus, catabolic

process, DNA metabolism, cell cycle, and other core biological

processes and components were highly conserved between yeast

and mouse (Table 3), e.g., the ribosomal protein L15 (Rpl15,

MGI:1913730; Figure 7B and 7C). In contrast, functional

relationships in processes specific to higher organisms, including,

behavior, embryonic development, multicellular organismal de-

velopment and anatomical structure morphogenesis were limited

to the mouse network (Table 4). For example, the HtrA serine

peptidase 1 (Htra1, MGI:1929076) plays a role in BMP signaling

pathway [42], but its ortholog in yeast, YNL123W (Nma111, SGD:

S000005067) is involved in apoptosis and lipid metabolic process

[43,44] (Figure 7B and 7C). The newly generated interactions for

these mouse-specific functional networks originated through a

combination of orthologous pairs in yeast and novel connections

with existing genes or genes that have no ortholog in yeast

Figure 3. Analysis of MAPK pathway predictions based on the integrated functional network. Predictions were derived by iteratively
sampling 10 proteins from the known MAPK pathway and finding the closest 40 neighbors based on network adjacency. The results shown are based
on an aggregation of 300 such samplings. Bright blue denotes proteins annotated to the canonical MAPK pathway in KEGG. Many of the newly
predicted components, although not annotated in KEGG, are supported in the literature (Table S2) and are colored in red. Predictions without
literature support are colored in purple. Linkages predicted to be above 0.5 confidence level by our integrated network are shown.
doi:10.1371/journal.pcbi.1000165.g003
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(Figure 7B and 7C). Interestingly, ion transport was among the list

of enriched processes for both conserved and unconserved

subgraphs. We found that in conserved subgraphs, these genes

were enriched in energy-coupled proton transport, which is

conserved from yeast to mammals. In contrast, in the unconserved

subgraphs, this enrichment of ion transport was due to genes

involved in metal-ion or chloride transport, probably because of

their involvement in the neural system. Details regarding the

enrichment statistics are available in the Dataset S3.

Comparative analysis of interactomes between species, such as

that presented above, is no doubt a promising approach for

answering a number of fundamental biological questions [45].

Previous studies, e.g., [40], have demonstrated the sparsity of our

current knowledge of physical interactions in many organisms,

which has led to a very limited set of identified conserved

interactions. As demonstrated here, the comparison of higher-

coverage functional networks based on probabilistic models for

integrating diverse genomic data provide an alternative solution

for studying the evolution of functional linkages between proteins.

Example Application of the MouseNET Web Interface
Generating hypotheses for biological functions for a

protein of interest based on integrating diverse data

sources. An important application of the network analysis is

to identify, for a protein of interest, which biological processes and

pathways it participates in. Here, we use the mouseNET online

query system to identify two different biological processes

involving Ace (angiotensin I converting enzyme 1, MGI:87874).

Ace is currently only annotated to metabolic process (GO:0008125)

and proteolysis (GO:0006508) biological process terms in the Gene

Ontology. Ace has a well-established central role in blood pressure

regulation, evidenced by knock-out phenotypes [46], but it

currently lacks annotation to the corresponding GO term. When

mouseNET is queried with ‘Ace’, the system indeed suggests that

the local network is highly enriched in blood pressure regulation

(GO:0008217, p = 8.17E-4), including four proteins annotated

directly to this term (Agtr1a, Agtr1b, Ren1, and Agt) (Figure S5A).

The functional links between Ace and these four genes cannot be

confidently surmised from any single input dataset; instead, they

are supported by a combination of data from InParanoid [47],

phenotype [48], OMIM [24], SAGE [19], and Zhang [21]

expression data, indicating the important role of data integration

for suggesting accurate functional role for proteins.

In the Ace predicted functional network, we also found

enrichment for another unrelated process: menstrual cycle phase

(GO:0022601), which currently is synonymous to estrous cycle in

mouse GO annotation. Three of the top 40 interactors (Stat5a,

Nos3 and Agt) were annotated to this term (p = 3.73E-2), with

support from InParanoid [23], phenotype [48], OMIM, SAGE

[19], Su [20], and Zhang [21] expression data. Indeed, the

expression cycle of Ace shown by immunohistochemistry is

correlated with menstrual cycle in human [49], suggesting that

mouseNET’s prediction of Ace participation in the estrous cycle

phase process is likely correct. This annotation is missing from

existing annotation databases and such prediction would not be

made based on genome scale pair-wise physical interaction studies.

Because our system integrates diverse data sources and presents

them in a network context, it can quickly allow biology researchers

to reveal multiple independent roles of a single gene. mouseNET

can thus serve both as a source of functional information for genes

that have been previously investigated, but not yet annotated in

public databases, as well as a method for directing experiments by

hypothesizing novel roles for previously uncharacterized proteins.

Identifying disease-related genes through multiple

queries of the mouseNET network. Because genes

responsible for the same disease are often involved in related

pathways, mouseNET provides a valuable resource for identifying

novel disease gene candidates though its multiple-query feature.

For example, by searching mouseNET with a set of genes (Mapt,

Sncaip, Tbp, Drd4, Ndufv2 and Nr4a2) already known to be involved

in Parkinson’s disease, we are able to extract other genes

annotated to this disease and some novel candidates (Figure

S5B). The top three interactors returned by mouseNET (Uchl1,

Dbh and Snca) are already labeled with Parkinson’s disease in

OMIM, indicating the ability of our system to accurately identify

other disease genes given some known ones. The fourth gene Msx1

(Homeo box, msh-like 1) is not yet annotated to Parkinson’s

disease. However, its connection to several query genes (Tbp and

Mapt) and to several proteins functionally related to the query set

(Mdm2, Fyn, Psen1, Apoe, Uchl1, and Dbh) in mouseNET suggests its

potential role in Parkinson’s disease. Interestingly, Msx1 was found

Figure 4. Validation by Nanog down-regulation experiment. (A)
The top 10 neighbors of Nanog as predicted by Bayesian integration.
Links with more than 0.1 confidence level are presented in the figure.
The colors of Trp53, Dnmt3b, Dnmt3l, Pou5f1, and H3f3a indicate the
Log2 changes in protein expression on the fifth day after Nanog knock
down compared to day 0. (B) Protein expression changes detected by
mass spectrometry after Nanog knock-down. Four of the five top
neighbors detected in the nucleus have significant changes in protein
expression level, with increasing changes during the time course.
doi:10.1371/journal.pcbi.1000165.g004
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to act as an intrinsic dopamine-neuron determinant during

development, and therefore is very likely to be a candidate

involved in Parkinson’s disease, which leads to mesencephalic

dopamine neuron degeneration. In addition, among the top three

interactors, experiment using transgenic mice shows that Uchl1

mutant could lead to dopaminergic neuronal loss [50]; Dbh is a

critical gene involved in dopamine biosynthesis; and Snca has been

suggested to be an essential regulator of dopamine

neurotransmission [51]. Notably, query of Tbp alone results in a

list of transcription-related genes that has no significance with the

particular disease. The novel candidate Msx1 is only identified

with multiple disease gene queries and a network including both

direct and indirect neighbors. This illustrates the ability of

mouseNET to identify novel candidates of disease genes based

on its multiple-query feature, which cannot be achieved by existing

databases nor can be readily extracted from any single genome-

scale dataset.

Discussion

In this study, we combined diverse genetic and genomic data

using a probabilistic framework to generate a functional network

for the laboratory mouse. Our network accurately predicts

functional linkages between mouse genes and covers a broad

Figure 5. Topological properties of the functional network. (A) The degree (node connectivity) distribution of the integrated functional
network (log10 scale) for several different edge probability cutoffs. (B) Connectivity (at 0.6 cutoff in confidence) versus clustering coefficient. The color
represents the number of processes represented in that gene’s local network (top 40 neighbors). At the same level of connectivity, proteins with
smaller clustering coefficients tend to participate in more processes. Local networks centered around Nol1 (C) and Pxn (D). While both genes have
roughly equivalent node degree (,50 confident connections), a potential modulator of multiple pathways (D), however, is differentiated from other
hub genes (such as (C)) in that it has a lower clustering coefficient and thus the network centered at Pxn is less densely connected.
doi:10.1371/journal.pcbi.1000165.g005
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range of biological processes. We expect this view of the mouse

proteome will be an invaluable resource in identifying novel pathway

components and understanding system-level organization.

We have demonstrated several applications of our network in

this study. First, we characterized the topology of the network and

demonstrated that local network topology correlates with biolog-

ical functions. Also, we used this genomewide view of functional

linkages to investigate the relationship between diverse phenotypes

and the local configuration of subnetworks. Finally, although

network comparison across several species is limited by the sparsity

of our current knowledge of physical interactions [40], generation

of a functional network based on diverse data types also allowed us

to examine the conservation of subnetworks on a global system

level.

We provide a searchable interface for the exploration of the

mouse functional network (http://mouseNET.princeton.edu). The

interface also presents a full analysis of the functional enrichment

of networks surrounding the genes(s) of interest and the disease

genes in the local network. Through our interface, users could

identify the original evidence supporting for specific functional

linkages. The website includes integration results generated for the

purpose of topological studies (controlled for investigational biases)

and of cross-species network alignment studies (by excluding

homology data) (http://mouseNET.princeton.edu/supplement/

supplemental_data.htm). In the future, new publicly available

genome-scale data will be added to our system, which will provide

up-to-date support for hypothesis generation for questions ranging

from individual protein function prediction to characterization of

diverse system-level features.

In this study, we focused on the generation of a global functional

network of mouse and demonstrated its wide applicability.

Availability of tissue-specific datasets should allow us to generate

tissue, cell, and developmental stage-specific network predictions

using similar probabilistic frameworks. These tissue or develop-

mental stage-specific networks will be more targeted and will be

invaluable to the researchers of individual fields of study.

Table 2. GO SLIM (Biological Process) enrichment of potential modulators of several pathways (Ci,0.15, N$10) and highly
connected genes (N$10).

GO Term GO Term Name Ci,0.15, N$10 N$10

GO:0000003 Reproduction 1.12E-04 1.88E-08

GO:0016043 Cell organization and biogenesis ,1.01E-12 ,1.01E-12

GO:0016265 Death ,1.01E-12 2.66E-11

GO:0006950 Response to stress ,1.01E-12 ,1.01E-12

GO:0009628 Response to abiotic stimulus 7.63E-07 1.15E-09

GO:0006259 DNA metabolic process 2.93E-11 ,1.01E-12

GO:0008283 Cell proliferation ,1.01E-12 ,1.01E-12

GO:0044238 Primary metabolic process ,1.01E-12 ,1.01E-12

GO:0015031 Protein transport 1.22E-06 ,1.01E-12

GO:0006810 Transport 1.53E-01 6.32E-06

GO:0009605 Response to external stimulus 3.45E-10 5.52E-05

GO:0009653 Anatomical structure morphogenesis ,1.01E-12 7.52E-14

GO:0007165 Signal transduction ,1.01E-12 5.34E-01

GO:0008152 Metabolic process ,1.01E-12 ,1.01E-12

GO:0030154 Cell differentiation ,1.01E-12 ,1.01E-12

GO:0050789 Regulation of biological process ,1.01E-12 ,1.01E-12

GO:0007267 Cell-cell signaling 1.40E-05 2.82E-03

GO:0007154 Cell communication ,1.01E-12 3.27E-01

GO:0008219 Cell death ,1.01E-12 2.66E-11

GO:0006139 Nucleobase, nucleoside, nucleotide and Nucleic acid metabolic process 1.76E-11 ,1.01E-12

GO:0006996 Organelle organization and biogenesis 4.00E-08 ,1.01E-12

GO:0009719 Response to endogenous stimulus 1.60E-09 ,1.01E-12

GO:0006464 Protein modification ,1.01E-12 2.29E-08

GO:0006350 Transcription 5.48E-11 7.69E-09

GO:0007275 Multicellular organismal development ,1.01E-12 ,1.01E-12

GO:0019538 Protein metabolic process ,1.01E-12 ,1.01E-12

GO:0006412 Translation 3.12E-02 1.78E-10

GO:0007010 Cytoskeleton organization and biogenesis 2.83E-06 2.29E-11

GO:0009790 Embryonic development ,1.01E-12 1.98E-13

GO:0040007 Growth 1.08E-12 8.69E-09

GO:0007049 Cell cycle ,1.01E-12 ,1.01E-12

GO:0000003 Reproduction 0.000112338 1.88E-08

doi:10.1371/journal.pcbi.1000165.t002
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Materials and Methods

Functional Genomic Data Retrieval and Preprocessing
To build a functional network of proteins, we have collected a

diverse set of evidence from several databases (Table 1). In order

to predict pair-wise protein–protein relationships, all data were

preprocessed, as described below, into pair-wise scores, reflecting

the similarity between protein pairs. The databases included in our

analysis are:

(1) Physical interaction data from the Biomolecular Interaction

Network Database (BIND) [15], the Database of Interacting

Proteins (DIP) [17] and the General Repository for Interac-

tion Datasets (GRID) [16]. We also mapped the interactions

in the Online Predicted Human Interaction Database

(OPHID) [24] to mouse orthologs via InParanoid [23]. In

this process, members of the interactions that have more than

one ortholog in mouse were mapped for each of their

orthologs. Because physical interaction data are pair-wise and

binary (representing the presence or absence of evidence for a

physical interaction between a pair of proteins), these datasets

were in the format of pair-wise binary scores and were ready

to be input into the Bayesian network.

(2) Phenotype and disease data from MGI [18] and the Online

Mendelian Inheritance in Man (OMIM). The disease

association data were mapped to mouse using InParanoid

[23]. Based on independence analysis (see below), we found

that different phenotypes are highly conditionally dependent

on each other, and that the phenotype data and disease data

are dependent on each other as well. Thus treating phenotype

and disease data as separate evidence nodes in a naı̈ve

Bayesian network would cause significant over-estimation of

functional relationships between gene pairs that affect the

same multiple phenotypes/diseases. As a result, phenotype

and disease data were treated as a single evidence node in our

Bayesian network, of which the score for the protein pair j,k

will be:

X j,kð Þ~
Xn

i~1

ai jð Þai kð Þ=Ni ð1Þ

Figure 6. Relationship between phenotypic effects and local network configuration. (A) Comparison of connectivity (at 0.6 confidence)
between essential and non-essential genes, and between genes whose orthologous mutants cause disease in human and those with no apparent
phenotype. Both comparisons are based on a functional network excluding any phenotypic or disease input data to avoid circularity, and excluding
any datasets involving individual investigation results to avoid investigational biases. (B) The average number of functional interactions (at 0.6
confidence) for genes within each phenotypic class. (C) Based on a functional network from integration of all available data, the clustering coefficient
is consistently lower for genes having diverse categories of phenotypes; the size of the bubble is proportional to the number of processes
represented in nearest neighbors (40 closest proteins). This trend holds true in a network where all individual investigations are excluded, suggesting
this trend is not an effect of investigational bias.
doi:10.1371/journal.pcbi.1000165.g006

Functional Network for Mouse

PLoS Computational Biology | www.ploscompbiol.org 10 September 2008 | Volume 4 | Issue 9 | e1000165



Where ai(j) = 1 if protein j has phenotype i and ai(j) = 0

otherwise, and Ni is the number of proteins involved in this

phenotype/disease; n is the total number of phenotypes and

diseases. In this way, co-occurrence of rare phenotypes or

diseases will be given more weight than common ones. Such

calculation allows the transformation from original pheno-

type/disease profiles to pair-wise scores that reflect the

similarity level between a pair of proteins.

Figure 7. Comparison of yeast and mouse interactome and identification of mouse-specific functional linkages. (A) Distribution of
functional relationships in mouse for the corresponding interaction between orthologous genes in yeast. For each graph, the range of edge
confidences in the yeast network is labeled below, and relative frequency (y-axis) is plotted against confidence of functional relationships for
orthologous pairs in mouse. The p-value (Mann-Whitney U test) for each sub-figure indicates the significance of the difference between the
distribution of mouse functional relationships in that bin and relationships in the range of 0.0–0.2 yeast interaction confidence (the first graph). (B)
Subgraphs of mouse interactome centered at Rpl15 (MGI:1913730), ribosomal protein L15; Slc27a5 (MGI:1347100): solute carrier family 27 (fatty acid
transporter), member 5; Htra1 (MGI:1929076): HtrA serine peptidase 1. (C) To visualize how interactions in mouse were evolutionarily acquired, we
adapted a method of collapsing paralogous genes [47] in the yeast interactome. Yeast orthologs of mouse genes in (B) appear at the same positions
in (C). The links represent the average weight of the interactions between paralogs.
doi:10.1371/journal.pcbi.1000165.g007

Table 3. Conservation between yeast and mouse functional relationships.

GO Term GO Term Name Bonferroni-Corrected p Value

GO:0006950 Response to stress 2.27E-09

GO:0009719 Response to endogenous stimulus 2.36E-09

GO:0009056 Catabolic process 1.37E-08

GO:0006259 DNA metabolic process 2.26E-08

GO:0007049 Cell cycle 1.01E-05

GO:0006091 Generation of precursor metabolites and energy 0.00266

GO:0006811 Ion transport 0.00600

GO SLIM (Biological Process) enrichment in mouse for genes of conserved interactions (higher than 0.6 confidence of functional relationship in both S. cerevisiae and in
mouse) against all orthologous genes.
doi:10.1371/journal.pcbi.1000165.t003
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(3) Homologous functional relationship predictions in yeast from

the bioPIXIE system. bioPIXIE is a previously established

genomewide prediction of S. cerevisiae functional network,

which is based on integration of diverse yeast genome-scale

datasets [2]. This integrated dataset was used as an input in

our mouse interactome by mapping orthologous genes

between S. cerevisiae and laboratory mouse using InParanoid

[23]. The average was taken in the case that orthology

mapping results in multiple mapped pair-wise scores in yeast

for a single pair in mouse.

(4) Expression and Tissue localization datasets from Su et al.,

2004, Zhang et al., 2004, and the SAGE database [19]. We

chose these three datasets because they represent expression

profiles of a wide range of tissue and developmental stages. In

total, they included 333 conditions. To make the data suitable

as an input to our Bayesian network, we applied the Pearson

correlation coefficient r, to assess levels of co-expression

between pairs of genes:

rx,y~

Pn

i~1

xi{�xxð Þ yi{�yyð Þ

n{1ð Þsxsy

ð2Þ

Where x and y are expression level data vectors of length n for

two genes, x̄ and ȳ are means, and sx and sy are standard

deviations. The correlation coefficients were further Fisher z-

transfored to ensure comparable, normal distribution [52].

Filtering Redundant Datasets
In the following section, we applied a naı̈ve Bayes network to

integrate all data sources and to predict pair-wise functional

relationships. However, the application of a naı̈ve Bayesian

framework requires a non-trivial assumption of independence

between individual evidence sources, which correspond to

different evidence nodes in the naı̈ve Bayes network. To address

this issue, we evaluated the conditional independence between

datasets and those with significant dependence were merged into a

single evidence node. To determine whether two datasets should

be merged, we calculated the likelihood ratio of each combination

of datasets with and without the assumption of independence.

Lno assumption~
P Ei,Ej FRYj
� �

P Ei,Ej FRNj
� � ð3Þ

Lindependence assumption~
P Ei FRYjð Þ P Ej FRYj

� �

P Ei FRNjð Þ P Ej FRNj
� � ð4Þ

where E is the score of the protein pair in dataset i or j, a FRY

means a positive functional relationship (FR = 1) in gold standard,

and FRN means a negative functional relationship (FR = 0).

Two conditionally independent datasets will have similar

likelihood ratios calculated by the above two approaches (Figure

S6A). In contrast, highly dependent datasets tend to have

erroneously high likelihood ratios (Figure S6B) when they are

treated as independent ones. After a complete analysis of the

independence properties between every dataset pair, we found that

phenotype data from MGI and disease data from OMIM are

highly dependent on each other. As a result, we treated these

phenotype and disease data as a single evidence node in the

Bayesian network, and each of the remaining datasets as an

individual evidence node.

Bayesian Network Construction
As data sources are different in their accuracy of measurement

as well as relevance for predicting protein functions, creating an

accurate network for functional linkages requires a systematic

approach that weights and integrates information from individual

datasets. We applied a Bayesian network to integrate diverse data

and make the final functional linkage predictions (Figure 1A).

Table 4. Divergence between yeast and mouse functional relationships.

GO Term GO Term Name Bonferroni-Corrected p Value

GO:0015031 Protein transport 1.29E-05

GO:0006811 Ion transport ,E-06

GO:0005975 Carbohydrate metabolic process ,E-06

GO:0009607 Response to biotic stimulus ,E-06

GO:0006519 Amino acid and derivative metabolic process ,E-06

GO:0009628 Response to abiotic stimulus ,E-06

GO:0006464 Protein modification ,E-06

GO:0007275 Multicellular organismal development ,E-06

GO:0007165 Signal transduction ,E-06

GO:0007610 Behavior ,E-06

GO:0009653 Anatomical structure morphogenesis ,E-06

GO:0050789 Regulation of biological process ,E-06

GO:0007010 Cytoskeleton organization and biogenesis ,E-06

GO:0007154 Cell communication 6.15E-07

GO:0006810 Transport 1.34E-06

GO:0009790 Embryonic development 3.67E-05

GO SLIM (Biological Process) enrichment in mouse for genes whose interactions are not conserved from yeast (higher than 0.6 confidence of functional relationship in S.
cerevisiae but less than prior in mouse) against all orthologous genes.
doi:10.1371/journal.pcbi.1000165.t004

Functional Network for Mouse

PLoS Computational Biology | www.ploscompbiol.org 12 September 2008 | Volume 4 | Issue 9 | e1000165



Specifically, we computed the posterior probability of a functional

relationship given all available evidence as follows:

P FR E1,E2, . . . ,Enjð Þ~ 1

Z
P FRð Þ P

n

i~1
P Ei FRjð Þ ð5Þ

where FR represents functional relationship, Ei represents the

score of the pair in each dataset i and Z is a normalization factor.

Intuitively, this probability FRij for two proteins i and j represents

how likely it is, given existing data and accuracy and coverage of

each input dataset, that proteins i and j participate in the same

biological process.

To learn the parameters in this Bayesian framework, we

established a gold standard that approximates a true set of

functionally related proteins. Mouse Genome Informatics (MGI)

maintains curated annotations of Gene Ontology (GO) for mouse

[53]. The sources of these annotations include (1) hand annotation

from primary literature, (2) electronic annotation based on gene

name and symbols, (3) annotation from SwissProt keywords, (4)

Enzyme Commision (EC) numbers. These annotation sources are

reasonably accurate for our analysis. We defined positive as pairs

of proteins that are co-annotated to a specific Biological Process

GO term (less than two hundred genes annotated to this GO term)

and negatives as those in which both members of the pair have

specific annotations but do not share any of them.

To model the posterior distribution given a set of data, we

grouped the pair-wise values from each dataset into discrete

groups. For binary datasets, for example, physical interactions, it is

easy to separate the two categories where 0 means that there is no

interaction between the pair, and 1 means that the interaction

exists. Continuous pair-wise scores (e.g., expression profiles and

phenotype/disease data) require a binning approach for discreti-

zation. We observed that for each dataset, the posteriors generally

decreases with small fluctuation as the pair-wise score decreases

(Figure S7). Thus, to avoid over-fitting to noise in the datasets,

discretization was done so as to force the posteriors of the

discretized bins to decrease as the average pair-wise score of those

bins decreases.

Network-Based Pathway Component Prediction
An important application of such a functional network is to

predict novel pathway components. We therefore applied our

network to predict pathway components in KEGG [28]. For a

specific pathway, during each iteration, 10 known genes were

seeded into the weighted network and the rest of the genes were

treated as unknowns. Thus for every other gene, we compute an

adjacency to the 10 seeds. This process was repeated three

hundred times with random samplings of the seed set. We then

calculated the average adjacency for each gene:

wi~
1

ni

Xni

k~1

X10

j~1

wijk ð6Þ

where wi represents the weight of each gene and j represents the

seed genes, and wijk represents the confidence, as estimated by our

integration, of the functional relationship between protein i and j

in iteration k. ni is the number of times gene i was not one of the

seed genes. The top components and recovery curves were

generated based on the ranking of wi.

Topological Characterization of the Functional
Interactome

To characterize the topology of the functional network, we

calculated the connectivity and clustering coefficient C of all

proteins. The clustering coefficient of a protein gives the

probability that its neighbors are connected to each other. In a

densely connected module or clique, C is close to one. C for each of

the proteins was calculated as follows [54]:

C~
2n

k k{1ð Þ ð7Þ

where n denotes the number of links between k direct interactors.

Functional Enrichment
We obtained GO annotations [27] from the Mouse Genome

Informatics (MGI) [18] on Jan 18, 2007. The enrichment of each

GO term was found using a hypergeometric distribution. The

most enriched GO terms were represented by the lowest

Bonferroni-corrected p value [55].

Implementation, Publicly Available Interface, and
Network-Based Gene Function Predictions

To facilitate wide access to the integrated functional network by

the biology community, we implemented a web interface (http://

mouseNET.princeton.edu) that allows the users to browse our

predictions based on single or multiple protein queries. We have

implemented a probabilistic algorithm that searches the direct or

indirect neighbors with the largest adjacency to the query set [2].

GO term enrichment was calculated for the top neighbors, which

facilitates fast discovery of unknown gene function.

We also provide the community with a list of gene function

predictions based on our network for proteins with no currently

known function. Specifically, we calculated the GO term

enrichment of the top 40 nearest neighbors of each gene using

the hypergeometric distribution. Then the per-function enrich-

ment of each gene’s top neighbors is reported as a Bonferroni-

corrected p-value and thus their putative function is deduced.

Experimental Verification
The Nanog controllable embryonic stem cell lines were set up

and tested by Natalia Ivanova, and were cultured as described

[56]. The feeder cells, primary mouse embryonic fibroblasts, were

removed before use. To down-regulate Nanog, we withdrew the

doxycycline (1 g ml21) from the media, but still supplied the cells

with all the routine ES cell nutrients (DMEM with 15% FBS

(Hyclone), 100 mM MEM non-essential amino acids, 0.1 mM 2-

mercaptoethanol, 1 mM l-glutamine (Invitrogen), and 103 U ml-1

of LIF (Chemicon). For the nuclear protein measurement, nuclear

protein samples were prepared with nuclear/cytosol fractionation

kit (BioVision, catalog number: K266-100). The samples from four

different time points were labeled by different isotope (iTRAQ)

and then analyzed at a single run of mass spectrometry. We used

ProQUANT (Applied Biosystems) and the ProGROUP (Applied

Biosystems) software to identify proteins. The experiment was

repeated three times. Proteins detected more than twice were

included in the analysis and the average values were used.

Supporting Information

Dataset S1 Functional composition and biases of each data

source and the integrated result.

Found at: doi:10.1371/journal.pcbi.1000165.s001 (0.41 MB XLS)

Dataset S2 Expert curation for a selected set of gene function

predictions based on the network.

Found at: doi:10.1371/journal.pcbi.1000165.s002 (0.07 MB XLS)
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Dataset S3 Functional biases of conserved and non-conserved

sub-network.

Found at: doi:10.1371/journal.pcbi.1000165.s003 (0.09 MB XLS)

Figure S1 The functional composition of the integrated results

and individual datasets.

Found at: doi:10.1371/journal.pcbi.1000165.s004 (0.14 MB TIF)

Figure S2 Performance of the integrated interactome in

predicting the components of six major pathways in development.

Found at: doi:10.1371/journal.pcbi.1000165.s005 (1.57 MB TIF)

Figure S3 Connectivity (at 0.3 cutoff in confidence) versus

clustering coefficient.

Found at: doi:10.1371/journal.pcbi.1000165.s006 (0.43 MB TIF)

Figure S4 Connectivity and phenotypic effects in networks

integrated using both individual experimental evidence and large-

scale genomic data.

Found at: doi:10.1371/journal.pcbi.1000165.s007 (0.67 MB TIF)

Figure S5 Illustration of the mouseNET interface.

Found at: doi:10.1371/journal.pcbi.1000165.s008 (1.20 MB TIF)

Figure S6 Example of a conditionally independent pair of

datasets and a conditionally dependent dataset pair.

Found at: doi:10.1371/journal.pcbi.1000165.s009 (0.24 MB TIF)

Figure S7 The general trend of posteriors for continuous

datasets.

Found at: doi:10.1371/journal.pcbi.1000165.s010 (0.13 MB TIF)

Figure S8 The distribution of Log2 changes in protein

expression level on the fifth day after Nanog knock-down for

1148 proteins detected in the nucleus.

Found at: doi:10.1371/journal.pcbi.1000165.s011 (0.11 MB TIF)

Table S1 Mapping of phenotypes and MP index in MGI.

Found at: doi:10.1371/journal.pcbi.1000165.s012 (0.05 MB

DOC)

Table S2 Literature evidence for novel components (not

currently annotated to MAPK in KEGG or GO) predicted to

be involved in MAPK pathway.

Found at: doi:10.1371/journal.pcbi.1000165.s013 (0.09 MB

DOC)

Text S1 Supplementary figure and tables.

Found at: doi:10.1371/journal.pcbi.1000165.s014 (5.07 MB

DOC)
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