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Abstract

Elucidation of regulatory roles played by microRNAs (miRs) in various biological networks is one of the greatest challenges
of present molecular and computational biology. The integrated analysis of gene expression data and 39-UTR sequences
holds great promise for being an effective means to systematically delineate active miRs in different biological processes.
Applying such an integrated analysis, we uncovered a striking relationship between 39-UTR AU content and gene response
in numerous microarray datasets. We show that this relationship is secondary to a general bias that links gene response and
probe AU content and reflects the fact that in the majority of current arrays probes are selected from target transcript 39-
UTRs. Therefore, removal of this bias, which is in order in any analysis of microarray datasets, is of crucial importance when
integrating expression data and 39-UTR sequences to identify regulatory elements embedded in this region. We developed
visualization and normalization schemes for the detection and removal of such AU biases and demonstrate that their
application to microarray data significantly enhances the computational identification of active miRs. Our results
substantiate that, after removal of AU biases, mRNA expression profiles contain ample information which allows in silico
detection of miRs that are active in physiological conditions.
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Introduction

MicroRNAs (miRs) are a growing class of non-coding RNAs

that is now recognized as a major tier of gene control, predicted to

target more than 30% of all human protein-coding genes [1,2].

miRs suppress gene expression via binding to regulatory sites

usually embedded in the 39-UTRs of their target mRNAs, leading

to the repression of translation occasionally associated with mRNA

degradation. Target recognition involves complementary base

pairing of the target site with the miR’s seed region (positions 2–8

at the miR’s 59 end), although the exact extent of seed

complementarity is not precisely determined, and can be modified

by 39 pairing [2–4]. Despite intensive efforts in recent years,

biological functions carried out by miRs have been characterized

for only a minority of these genes, and therefore, elucidating

regulatory roles played by miRs in various biological networks

constitutes one of the major challenges facing biology today.

Bioinformatics analyses can significantly contribute to elucidation

of miR functions; in particular, the integrated analysis of gene

expression data and 39-UTR sequences that holds promise for

systematic dissection of regulatory networks controlled by miRs

and of cis-regulatory elements embedded in 39-UTRs.

Similar bioinformatics approaches that integrates gene expression

data and promoter sequences proved highly effective in delineating

transcriptional regulatory networks in a multitude of organisms

ranging from yeast to human [5–7]. Microarray measurements

reflect the total effect of all regulatory mechanisms that control gene

expression, including both transcriptional and post-transcriptional

mechanisms; thus, genome-wide expression profiles should yield

ample information not only on transcriptional networks, but also on

regulatory networks regulated by miRs and RNA binding proteins

(RBPs) that modulate mRNA stability, and that usually act via

regulatory elements in 39-UTR of their target genes [8]. Although

mRNA degradation seems to be a secondary mode of miRs’ action

(with inhibition of translation being the primary one), since each miR

is predicted to directly affect the expression level of dozens of target

genes, such an orchestrated effect should be discernable by statistical

analysis of wide-scale mRNA expression data, even if the effect on

each target is only a subtle one. This orchestrated effect could serve

as a molecular fingerprint for miRs activity under given biological

conditions. Indeed, several pioneering studies provided strong

evidence of the ability to computationally decipher miR-mediated

regulatory networks from mRNA expression data alone or in

correlation with miR expression profiles [9–14].

In this study, we applied an integrated analysis of gene expression

data and 39-UTR sequences aimed at identifying miRs that are active

in a given biological process. Applying such analysis we discovered in

numerous microarray datasets a major bias that resulted in a striking

relationship between 39-UTR AU content and gene response. We

show that this surprising link between gene’s response and 39-UTR

base composition is secondary to a more basic relationship between

gene’s response and base composition of its probes on the chip. We

demonstrate that this bias causes many false positive calls in

computational searches for active miRs from mRNA expression
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data. Therefore, removal of this bias, which is in order in any analysis

of microarray datasets, is of crucial importance when integrating

expression data and 39-UTR sequences to identify regulatory

elements embedded in this region. Our results substantiate that

computational analysis of mRNA expression data, after appropriate

removal of AU biases, can accurately detect active miRs that control

various biological processes under physiological conditions.

Results

We set out to demonstrate that integrated computational

analysis of mRNA expression data and 39-UTR sequences can

accurately uncover miRs that participate in the regulation of a

given biological process. As the role of miRs in different branches

of hematopoiesis is well characterized [15–18], we first analyzed a

dataset that recorded global gene expression profiles for multi-

potent hematopoietic progenitor cells (HPCs) undergoing multi-

lineage differentiation [19]. Since miRs often induce degradation

of their target mRNAs, we expected the 39-UTR of genes whose

expression is induced during differentiation to be enriched for seed

signatures of miRs that become inactive in this process, and vice

versa—that the 39-UTR of genes whose expression is repressed

would be enriched for seed signatures of miRs that become active

during the process.

Before employing statistical tests to identify over-represented

seed sequences among up- or down-regulated genes, we examined

whether a more global trend in base composition could be

detected in the 39-UTR sequences of the responding genes. For

example, if the 39-UTRs of the up-regulated genes are generally

more AU-rich compared to the 39-UTRs of the non-responding

genes, then any statistical search for over-represented seed

signatures among the up-regulated genes is expected to yield false

positive calls for miRs whose seed signature is AU-rich. One

effective means for detecting such false positive calls is to repeat

the over-representation tests with randomly permuted miR seeds

(which preserve the seed’s base composition). If an enrichment of a

certain miR seed is accounted for merely by base composition,

then it is expected to be non-specific and detected also for

randomly permuted seeds derived from the original one.

Therefore, as a first step in the analysis of the HPC dataset, we

checked whether a global 39-UTR base composition trend is

associated with the multi-lineage differentiation. We detected a

very strong correlation between 39-UTR base composition and

gene response at several time points in this dataset. For example,

there was an exceptionally strong relationship between AU

content and gene response at the 16 hr time point after induction

of HPC differentiation into megakaryocytes: 39-UTRs of down-

regulated genes were significantly more AU-rich than those of up-

regulated ones (Figure 1). (The mean 39-UTR AU content of the

5% most down-regulated and most up-regulated genes were

60.6% and 52.7%, respectively, p,10299, Wilcoxon test.) The

Author Summary

MicroRNAs are a novel class of genes that encodes for short
RNA molecules recognized to play key roles in the regulation
of many biological networks. MicroRNAs, predicted to
collectively target more than 30% of all human protein-
coding genes, suppress gene expression by binding to
regulatory elements usually embedded in the 39-UTRs of
their target mRNAs. Despite intensive efforts in recent years,
biological functions carried out by microRNAs have been
characterized for only a small number of these genes,
making elucidation of their roles one of the greatest
challenges of biology today. Bioinformatics analyses can
significantly help meet this challenge. In particular, the
integrated analysis of microarray mRNA expression data and
39-UTR sequences holds great promise for systematic
dissection of regulatory networks controlled by microRNAs.
Applying such integrated analysis to numerous microarray
datasets, we disclosed a major technical bias that hampers
the identification of active microRNAs from mRNA expres-
sion profiles. We developed visualization and normalization
schemes for detection and removal of the bias and
demonstrate that their application to microarray data
significantly enhances the identification of active microRNAs.
Given the broad use of microarrays and the ever-growing
interest in microRNAs, we anticipate that the methods we
introduced will be widely adopted.

Figure 1. Relationship between 39-UTR AU content and gene response during HPC differentiation. Expression profiles were measured at
several time points after stimulation of HPC differentiation into megakaryocytes. To visualize the relationships between 39-UTR AU content and gene
response, the genes were sorted for each time point according to their fold of repression/induction relative to the expression level at t0, and the
mean 39-UTR AU content was calculated in a sliding window that encompassed in each step 5% of the genes included in the analysis. (At each step
the sliding window was moved to the right by 5% of its size.) Each plot corresponds to the time point indicated above it. Genes are sorted on the X-
axis according to their response, from the most repressed genes at the left to the most induced genes at the right. The Y-axis represents the mean 39-
UTR AU content calculated on each sliding window. The p value above each plot is for the comparison (Wilcoxon test) between the 39-UTR AU
content of the top 5% (most strongly up-regulated) and bottom 5% (most strongly down-regulated) genes at the corresponding time point. Note the
striking relationship between 39-UTR AU content and gene response at the 16 hr time point.
doi:10.1371/journal.pcbi.1000189.g001

Identification of Active miRs from Expression Data
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other three lineages in this dataset displayed similarly strong trends

(Figure S1).

The strength of the relationship between 39-UTR AU content

and gene response in the HPC dataset prompted us to search for

such trends in other datasets. Surprisingly, we found such

relationships, with similarly high statistical significance, in

numerous microarray datasets (data not shown). Still more

suspicious, we observed the relationship even when we compared

different control samples within a dataset. This led us to question

whether the relationship observed between 39-UTR AU content

and gene response reflects any true biological regulatory

mechanism, or is rather a result of some technical artifact in

microarray measurements. We found a definitive answer to this

question by analyzing a technical dataset published by van Ruissen

et al. [20]. This dataset profiled a universal reference RNA pool in

two independent oligonucleotide chips (Affymetrix HGU133A).

Comparing the data from these two arrays, which measure

identical and artificial RNA pools, we again found a striking

relationship between 39-UTR AU content and difference in gene

expression level (Figure 2), pointing to a major AU bias in

microarray measurements. This AU response bias is not specific to

a particular data preprocessing method, as it existed in data under

different preprocessing and normalization schemes; namely, rma,

gcrma, and mas5 (Figure S2). In this technical dataset, we detected

no preference for A or U in the bias, and no major 39-UTR length

bias (Figure S3).

Next, we sought to elucidate the sources of the AU response

bias. A well-documented bias in microarray measurements is the

one between probe intensity and response [21], which is routinely

visualized using M-A plots. We first suspected that the observed

association between 39-UTR AU content and gene response is a

mere reflection of the intensity-response bias. However, there was

no intensity-bias in the above technical dataset, which points that

the 39-UTR AU response bias is distinct from the intensity-

response bias (see Figure 3A and 3B; in the latter, adopting the

concept of M-A plots, we introduced the M-AU plot to visualize

the AU response bias). The AU response bias exists over a large

range of intensities (Figure S4), and, furthermore, the gcrma

method which takes into account the correlation between probe’s

AU content and intensity did not cancel it.

In the vast majority of present chips, probes are selected from

the 39-end of target transcripts. This is also the case for the

technical dataset that we have analyzed, which used the

Affymetrix HGU133A chip. Therefore, as expected, we observed

in this dataset also a strong relationship between probeset AU

content and response (similar to the one observed between gene’s

39-UTR AU content and response) (Figure S5). To test whether

the AU artifact origins either from base-composition properties of

39-UTR of target transcripts or of that of the chip probes, the

sequence of probes and target 39-UTRs need to be uncoupled.

The new generation Affymetrix chips break this coupling as their

probes are selected from all regions of target transcripts. We

therefore analyzed a second technical dataset, recently published

by Pradervand et al. [22] which used the new Affymetrix Human

Gene 1.0 ST Array. In this dataset too, we detected a strong AU

response bias. That is, we observed a significant relationship

between probeset AU content and response in a comparison

between duplicate control chips. Importantly, carrying out a

probe-level analysis, we found that probes located at 59-UTR and

CDS regions show a similar AU bias as probes located at 39-UTRs

(Figure 4). This finding indicates that the link between gene’s

response and 39-UTR base composition is secondary to a more

basic bias in microarray measurements which links gene response

with base composition of its probes.

We next evaluated the effect of the AU bias on computational

identification of active miRs from microarray data. Searching for

miRs that are active in biological conditions examined in a dataset,

we utilized miR target prediction generated by TargetScanS [2],

and applied the following statistical test: for each miR family and

for each condition in a dataset, we tested whether the set of

predicted miR target genes is significantly induced or repressed

compared to a background set consisting of all the non-target

genes (see Methods). The technical dataset which profiled the

universal reference RNA pool served us as a negative test case in

Figure 2. Strong relationship between 39-UTR AU content and gene response detected in a comparison between technical
replicates. The figure shows the relationship between 39-UTR AU content and gene fold-change in a comparison between two chips hybridized with
identical universal reference RNA pools. The plot was generated as described in the legend to Figure 1. A highly significant relationship between 39-
UTR AU content and gene response was detected in this technical comparison (p value = 8.1*10284 for the comparison between the bottom and top
5% ‘responding’ genes), pointing to a major AU bias in microarray measurements.
doi:10.1371/journal.pcbi.1000189.g002

Identification of Active miRs from Expression Data
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which no real biological signal exists. Applying the statistical tests

to this dataset, we identified nine miR families whose target sets

showed statistically significant response (Table 1). Of course, in

this negative test case, all calls are false positive ones; and, as

expected, all the falsely identified miR families had an AU-rich

seed (the seed of eight out of the nine calls contained at least 5 A or

U bases, while the prevalence of miRs with such seed among all

the miRs tested was less than 25%; Table 1). Next, for each miR

family identified as significant, we repeated the statistical tests, but

this time with randomly permuted miR seeds. In all cases,

permuted seeds showed similar statistical significance to the

original seeds (Table 1), demonstrating the utility of such

permutation tests in detecting non-specific results caused by

correlation between base composition of miR-seeds and 39-UTRs

of the responding genes.

As shown, the AU response bias causes many false positive calls

in computational search for active miRs from expression data, and

therefore its removal is crucial when carrying out integrated

bioinformatics analysis of mRNA expression data and 39-UTR

sequences. To remove this bias, we adopted the lowess normali-

zation method which is routinely used to remove intensity biases

from microarray data [21], and adjusted it to cancel AU biases

(Figure 5) (see Methods). Applying AU normalization did not

distort the normalization at the M-A plane (Figure S6).

Importantly, after applying AU normalization to the negative

control dataset, no miR family passed the statistical significance

threshold (0.0003, which corresponds to 0.05 after Bonferroni

correction for multiple testing) (Table 1).

We next searched for an expression dataset that would serve as

a positive test case; that is, a dataset that contains known miR

signals. We preferred physiologically relevant datasets over ones

that over-expressed miRs, which often give expression levels that

are far above physiological ones. (Statistical searches for active

miRs applied to several datasets that profiled cells over-expressing

specific miRs readily detected the correct signals both without and

after AU normalization (data not shown).) A recent study that

compared expression profiles between stimulated T-cells derived

from miR-155 deficient and control mice met this requirement

[23]. As in many other datasets, we observed a strong AU bias in

this dataset too, and removed it using the AU normalization

(Figure 6). Without AU normalization, the statistical tests

identified eleven significant miR families; the true hit (miR-155)

was the third most significant one (Table 2). (Note that five out of

the six most significant miRs falsely identified on the negative

dataset were detected also in this positive dataset (compare

Tables 1 and 2)). Here too, permutation tests found, in most cases,

random seeds whose significance scores were similar to the ones

obtained by the original seeds (Table 2). In sharp contrast, after

AU normalization, only the true miR (miR-155) was detected and

its statistical significance was substantially improved (Table 2).

Importantly, none of the permuted seeds derived from the seed of

miR-155 obtained a statistically significant score.

Figure 3. M-A and M-AU plots. (A). M-A plot shows that there is no intensity-response bias in the comparison between the two chips hybridized
with identical universal reference RNA pools. The Y axis (denoted as M) represents the log2 fold-change and the X-axis (denoted as A) represents the
average log2 intensity. Each dot in the plot corresponds to a gene in the dataset. (B). Adopting the M-A plot concept, we introduced the M-AU plot, in
which the Y axis represents the log2 fold-change (as in the M-A plots), and the X axis represents the 39-UTR AU content of a gene. The M-AU plot
shows a major AU bias in this technical dataset. The red line is the lowess smoothing line calculated for the scatter plot.
doi:10.1371/journal.pcbi.1000189.g003
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For a more challenging test case we used a dataset that

monitored gene expression profiles in five distinct human T cells

sub-populations representing five phases of T cell differentiation

[24]: intrathymic T progenitor (ITTP) cells, double positive (DP)

thymocytes, CD4 single positive (SP4), naı̈ve CD4 T cells from

cord blood (CB4), and naı̈ve CD4 T cells from adult blood (AB4).

To obtain fold-change measures, we divided the expression level at

each development phase by the one measured in the mature AB4

T cells. Without AU normalization, the statistical tests identified

six significant miR families: the target sets of three were down-

regulated in ITTP cells, and the target sets of the other three were

up-regulated in the SP4 cells (Table 3). After applying the AU

normalization to the data, only the three miR-families whose

target sets were repressed in ITTP (miR-17.5p, miR-19 and miR-

181 families) remained significant (Table 3), suggesting that

members of these three miR families are active in early phases

of T cell development and become inactive as T cells mature.

There is evidence that all three miR families detected by the

statistical analysis play a role in thymocyte maturation and

therefore are true hits. Li et al. recently [25] showed that miR-

181a is highly expressed in immature T cells and that its

expression level goes down as T cells proceed through differen-

tiation. That study further showed that miR-181a plays a critical

role in augmenting T cell sensitivity, a propensity that is vital to

the elimination of self-reacting T cells early during maturation.

Regarding miR-17.5p and miR-19 families, Landais et al. recently

reported that the miR-106-363 cluster is over-expressed in 46% of

human T-cell leukemias tested [26]. The miR-106-363 cluster is

homolog to the miR-17-92 cluster, and miR-19 is contained in

both clusters but carries a seed which is different from the one of

the other miRs in these two clusters. It is possible that up-

regulation of members of the miR-106-363 and miR-17-92

clusters in T-cell leukemia endows these cells with propensities

normal to immature T-cells, most probably enhanced proliferation

capacity. The identification of true hits on this dataset further

demonstrates that computational analysis can accurately dissect

active miRs from gene expression data probing cells under

physiological conditions. Our statistical analysis utilizes target

prediction based on miR seed signatures and therefore cannot

distinguish between miRs sharing seed sequences. Empirical

biological testing is required to pinpoint which members of the

miR-17-92 and miR-106-363 clusters that carry a common seed

sequence are actually active during T cell maturation.

Discussion

In the course of this study we observed in many gene expression

datasets a striking association between gene response and 39-UTR

base composition. The high prevalence of such a relationship in

microarray datasets, its exceptional statistical strength, and its

detection in technical comparisons between replicate arrays, point

unequivocally to a major bias in microarray measurements that

was heretofore missed. Such a major AU bias in microarray

measurements might have gone undetected because gene

Figure 4. The AU response bias is related to probe base composition regardless probe location along the target transcript. Probe-
level M-AU plot for the comparison between two chips hybridized with a common human brain reference sample. This dataset used the new
generation Affymetrix Human Gene 1.0 ST Array, in which probes are located throughout the target transcripts. We generated plots which either
included all probes, or included separately only those mapped to the 59-UTR, CDS, or 39-UTR of the targets. (As the length of each probe is 25 bases,
probe’s AU content (X axis) gets only discrete values in the 0–100% range with jumps of 4%). Probes mapped to the different transcript regions
exhibited similar level of AU response bias.
doi:10.1371/journal.pcbi.1000189.g004
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expression data are commonly analyzed in association with

promoter, rather than 39-UTR sequences, in attempts to unravel

cis-regulatory promoter elements that control gene transcription.

Only recently, with the emergence of miRs and RNA-binding

proteins as key post-transcriptional regulators of gene expression,

has gene expression analysis been coupled with analysis of 39-UTR

sequences. Indeed, it was the search for active miRs that motivated

us to integrate gene expression and 39-UTR sequence data, and

led us to the detection of the AU response bias in microarray data.

We demonstrated that this bias is distinct from the well-

documented intensity-response and AU intensity biases, and that it

originates from a systematic association between probe base

composition and response. Using the new generation Affymetrix

chips that contain probes selected throughout the transcripts, we

uncoupled the sequences of probes and target 3-UTRs. We show

that probes exhibit similar AU response bias irrespective of their

location in the target transcripts. Therefore, the major link between

gene response and 39-UTR base composition that we observed in

vast microarray datasets, is secondary to the general probe AU

response bias, and simply reflects the fact that chip probes were

selected from 39-UTRs. A reasonable explanation to the AU

response bias is that there are subtle differences in hybridization

conditions for different arrays in a dataset, and that the effect of such

differences is dependent on probe base composition. Further

technical examinations are required to test this point.

Bioinformatics analysis that integrates gene expression data and

39-UTR sequences holds promise for systematic dissection of

regulatory networks controlled by miRs. However, we demon-

strated that the AU response bias causes many false positive calls in

such analysis. Permutation tests were highly effective in revealing

such false positive hits. Removal of this bias is of crucial

importance when aiming to uncover miR-signatures as well as

other cis-regulatory elements embedded in 39-UTRs from mRNA

expression profiles. We therefore developed visualization and

normalization schemes for the detection and removal of AU

biases, and demonstrated that their application to microarray data

significantly enhances the computational identification of active

miRs. In the case of Affymetrix chips, the normalization scheme

that we implemented works at the probe-set or transcript level, and

corrects the AU bias in a post-processing step (i.e., ran after probe

intensity levels were calculated). A normalization scheme that

takes into account the AU response bias at the phase of probe

intensity calculation (similar to gcrma, which cancels AU intensity

biases) is still required.

Our results further substantiate that mRNA expression data

contain ample information that allows, after proper removal of AU

biases, in silico detection of active miRs. Importantly, this is also

true when mRNA profiles were measured under physiological

conditions. In view of the importance of elucidating regulatory

roles played by miRs in various biological networks, we anticipate

that the methods introduced in this study for detection,

visualization and removal of the AU response bias from

microarray data will be in wide use by the research community.

Methods

All statistical analyses were performed and plots were generated

using the R package (http://www.r-project.org/).

Data Analysis of Gene Expression Datasets
In this study, we analyzed four microarray datasets which used

39-UTR Affymetrix oligonucleotide chips (that is, chips in which

probes are selected from targets’ 3-UTRs), and one dataset that

used the new generation Affymetrix Human Gene 1.0 ST Array,

in which probes are located throughout the target transcripts. Raw

data files (CEL files) were downloaded from GEO (http://www.

ncbi.nlm.nih.gov/geo/) or ArrayExpress (http://www.ebi.ac.uk/

microarray-as/aer/?#ae-main[0]) DBs, or obtained directly from

the authors of the data.

Analysis of datasets that used 39-UTR Affymetrix

chips. The dataset that profiled HPC multi-lineage

differentiation [19] used Affymetrix MGU74Av2 mouse chips.

Expression levels were recorded in triplicates at 0, 4, 8, 16, 24, 48,

72, and 168 hrs of differentiation into four lineages: megakaryocytes,

neutrophils, erythrocytes and macrophages. The dataset that

profiled Stratagene’s universal human reference RNA pool in two

independent chips ([20], GSE1158) used Affymetrix HGU133A

human chips. The dataset that profiled expression levels in miR155-

deficient and control T cells ([23], E-TABM-232), used Affymetrix

MG-430.2 mouse chips. Expression levels were measured in 5

replicates in miR155-deficient and wild-type Th1 and Th2 cells

stimulated for 24 hrs with LPS and IL4. The results reported in our

study were derived from the Th2 dataset. The dataset that profiled

expression level during T cell maturation ([24], GSE1460), used

Affymetrix HGU133A-B human chips. Expression levels were

recorded in triplicates in 5 phases during differentiation

(intrathymic T progenitor (ITTP) cells, double positive (DP)

thymocytes, CD4 single positive (SP4), naı̈ve CD4 T cells from

cord blood (CB4), and naı̈ve CD4 T cells from adult blood (AB4).

All these four datasets were processed by a similar scheme: First,

probeset expression levels were calculated using the rma, gcrma, and

mas5 methods implemented in the affy [27] and gcrma packages of

the BioConductor project [28]. Unless otherwise stated, results

reported in this paper are the ones obtained using the rma method.

Similar results were obtained for data processed by the mas5 and

gcrma methods. Second, probeset presence flags were calculated

Table 1. Active miRs falsely identified in the negative test
case.

Without AU Normalization

miR ID p Value miR Seed Best Permuted p Valuea

miR.186 2.41*1029 AAAGAAU 1.60*10211

miR.543 1.72*1027 AACAUUC 2.01*1027

miR.496 2.24*1027 UUACAUG 3.14*1027

miR.200b.429 3.07*1027 AAUACUG 9.84*10210

miR.381 1.41*1025 AUACAAG 2.48*10210

miR.26 1.62*1025 UCAAGUA 4.07*1025

miR.203.1 1.79*1025 GAAAUGU 6.34*1026

miR.132.212 0.00017 AACAGUC 0.0019

miR.181 0.00029 ACAUUCA 3.45*10210

After AU Normalizationb

miR ID p Value Best Permuted p Valuea

miR.186 0.0061 0.0060

miR.500 0.0073 0.0025

aBest p-value obtained for 20 randomly permuted seeds derived from the
original miR seed.

bAfter applying AU normalization to the dataset none of the miRs passed the
statistical significance threshold (0.0003, which corresponds to 0.05 after
Bonferroni correction for multiple testing). In order to compare the results with
the original data (without AU normalization), we listed the top two miRs even
though they did not pass the threshold.

doi:10.1371/journal.pcbi.1000189.t001
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using the mas5calls function implemented in the affy package, and

probesets that got more ‘Absent’ calls than a certain threshold were

removed from subsequent analysis. (Thresholds for the number of

‘Absent’ calls were: 18 (out of 30 chips) in the HPC differentiation

into megakaryocytes dataset; one (out of 2 chips) in the universal

RNA pool dataset; 3 (out of 10 chips) in the miR-155 dataset; and 10

(out of 18 chips) in the T cell maturation dataset.) Next, probesets

were mapped to their corresponding genes using annotation files

provided by Affymetrix, and in cases where a gene was represented

by several probesets, we used the measurements of the probeset with

the highest median intensity level. Intensity levels over replicate chips

were averaged.
Analysis of the dataset that used the Affymetrix Human

Gene 1.0 ST Array. CEL files of this dataset ([22], GSE9819)

were downloaded from GEO, and probe-set expression values were

calculated using rma. In this dataset, we detected significant 39-UTR

bias in a comparison between two chips hybridized with a common

Ambion Human Brain Reference RNA pool (sample ids

GSM247680 and GSM247680). Probe-level intensities were

extracted using the pm function implemented by the affy package.

Probes’ sequences and genome coordinates were obtained from chip

annotation files provided by Affymetrix. Genome coordination of 59-

UTR, CDS and 39-UTR regions of all annotated human transcripts

were extracted from Ensembl using BioMart utilities [29]. Mapping

of probes to 59-UTR, CDS, and 39-UTR regions was done by a Perl

script written for this purpose. Before generating the probe-level M-

AU plot, we performed the following preprocessing steps: a floor cut-

off signal, which was set to the first quartile signal, was applied to

each chip; probe expression levels were quantile- normalized; and

probes whose signal was above median level were flagged as

‘Present’. Log2 of fold-change and AU content were calculated for

each probe. To reduce noise, M-AU plot included only probes that

were ‘Present’ in at least one of the chips hybridized with the brain

reference sample.

39-UTR Sequences and miR Target Prediction
39-UTR sequences and miR target prediction for human and

mouse were downloaded from TargetScanS (http://www.

targetscan.org/; version 4.0; July 2007). TargetScanS predicts

gene targets of miRNAs by searching 39-UTRs for the presence of

conserved 8-mer and 7-mer sites that match the seed region of

each miRNA family [2]. In case a gene has several annotated 39-

UTRs, the longest one is considered.

Target prediction for randomly permuted miR seeds. For

each conserved miR family, as defined by TargetscanS, we

generated 20 randomly permuted seeds derived from the original

seed. Targets of these random seeds were predicted by the same

program used by TargetScanS for prediction of targets of the

original miRs (the program is available at TargetScanS website).

Figure 5. AU normalization. M-AU plots without (A) and after (B) applying an AU normalization scheme to the technical dataset which profiled the
universal reference RNA pool.
doi:10.1371/journal.pcbi.1000189.g005
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AU normalization. Adopting the concepts of MA-plots and

intensity-dependent normalization that were introduced by Yang et

al. [21] in order to remove intensity biases from microarray data, we

used the robust scatter plot smoother ‘lowess’, implemented in R

(with default parameters), to remove the AU bias:

log2
I2=I1

� �
?log2

I2=I1

� �
{c AUð Þ

Figure 6. AU bias in the miR-155 dataset. Relationship between 39-UTR AU content and gene response in the dataset that compared gene
expression profiles between miR-155-deficient and control Th2 cells. (A) Without AU normalization. (B) After applying AU normalization to the
dataset. Plots were generated as described in the legend to Figure 1.
doi:10.1371/journal.pcbi.1000189.g006
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where I1 and I2 are the intensity signals measured for a gene in chip1

and chip2, and c(AU) is the lowess fit to the M-AU plot (in which the

X-axis represents either transcript 39-UTR, probe-set, or probe’s AU

content). Applying 39-UTR-based or probe-set-based AU normali-

zation to the 39-UTR Affymetrix datasets yielded similar results, as

expected, because of the coupling between transcript 39-UTR and

probe-set sequences in these chips.

Statistical search for candidate active miRs in mRNA

expression dataset. Searching for miRs that are active in a

microarray dataset, we utilized miR target prediction produced by

TargetScanS, and applied the following statistical test: for each

miR family and for each condition in a dataset, we tested whether

the set of predicted miR target genes is significantly more

induced/repressed than the background set consisting of all the

non-target genes (for which 39-UTR sequence and expression data

are available). Target and background sets were compared using

the non-parametric Wilcoxon test, and a miR family was

putatively considered ‘active’ in a certain condition if the p-value

obtained for its target set was below 0.05 after applying Bonferroni

correction for multiple testing (,150 miR families were tested).

Supporting Information

Figure S1 Relationship between 39-UTR AU content and gene

response during HPC differentiation. The plot was generated as

described in the legend to Figure 1 and shows the relationship

between 39-UTR AU content and gene response at three time

points (4, 8, and 16 h) during HPC differentiation into three

lineages (erythrocytes (E), monocytes (M), and neutrophils (N)).

Found at: doi:10.1371/journal.pcbi.1000189.s001 (0.13 MB TIF)

Figure S2 AU bias in microarray data is not specific to a

particular preprocessing method. The major AU bias in the

dataset that profiled the universal reference RNA pool is not

specific to a particular preprocessing method as it existed in data

derived using different preprocessing and normalization schemes:

rma, gcrma, and mas5.

Found at: doi:10.1371/journal.pcbi.1000189.s002 (0.12 MB TIF)

Figure S3 No preference for A or U in the AU bias. The figure

shows the relationship between gene fold-change in the technical

dataset and: 39-UTR AU content, 39-UTR length, and 39-UTR

single base contents. The figure was generated as described in the

legend to Figure 1 (p values indicated above each plot are for the

comparison between the top 5% and bottom 5% genes). In this

dataset, there is no preference for A or U in the relationship

between 39-UTR AU content and gene response. No major

relationship between 39-UTR length and gene response was

observed here.

Found at: doi:10.1371/journal.pcbi.1000189.s003 (0.13 MB TIF)

Figure S4 The AU response bias exists over large range of

intensities. To test whether the AU-response bias is confined to

probes with low intensities (which are inherently noisier), we

redrew the M-A plot in Figure 3A, and colored each point

according to the AU content of the corresponding probe (probes

were divided into three groups: High, Medium and Low AU

content probes; each group contained one third of the probes

included in the analysis). The AU response bias is not associated

with low intensity but exists over a large range of intensities.

Found at: doi:10.1371/journal.pcbi.1000189.s004 (0.33 MB TIF)

Figure S5 AU bias using probe-set AU content. M-AU plot in

which the X-axis represents probe-set AU content (in contrast to

transcript 39-UTR AU content shown in Figure 3B).

Found at: doi:10.1371/journal.pcbi.1000189.s005 (0.13 MB TIF)

Table 2. Active miRs identified in the miR-155 dataset.

Without AU Normalization

miR ID p Valuea Best Permuted p Valueb

miR.496 21.56*10210 21.13*1027

miR.186 21.43*10208 22.29*1029

miR.155 7.07*10208 23.98*1026

miR.26 22.15*10206 21.41*1027

miR.543 22.33*10206 26.04*1026

miR.25.32.92.363.367 26.54*10206 23.71*1027

miR.381 21.09*10205 29.99*1028

miR.329 21.98*10205 21.31*1023

miR.331 2.48*10205 2.19*1021

miR.493.5p 23.98*10205 21.46*10210

miR.495 27.41*10205 29.60*1028

After AU Normalizationa

miR ID p Value Best Permuted p Valueb

miR.155 1.20*10212 20.023

miR.142.5p 0.00083 20.024

aThe sign of the p-value marks the direction of the response of the miR target
set: positive and negative p-values correspond to miRs whose target sets are
significantly up- and down-regulated in miR-deficient Th2 cells, respectively,
compared to wild type Th2 cells. The results obtained for the true signal in this
dataset—miR-155—are emphasized in bold-italic font, and are in the expected
direction: that is, the set of miR-155 predicted target genes is up-regulated in
miR-155 deficient Th2 cells compared to control Th2 cells.

bBest p-value obtained for 20 randomly permuted seeds derived from the
original one.

doi:10.1371/journal.pcbi.1000189.t002

Table 3. Active miRs identified in the thymocyte maturation
dataset.

Original Dataset

miR ID ITTP DP4 SP4 CB4

miR.17.5p.20.93.mr.106.519.d 21.45*1029 20.0055 20.12 20.75

miR.19 27.04*1028 20.0085 20.52 20.040

miR.101 0.76 0.0059 1.27*1026 20.97

miR.144 0.84 0.0048 1.48*1026 0.48

miR.381 0.40 0.0064 3.81*1025 0.77

miR.181 25.30*1025 20.649 0.12 20.35

After Applying AU Normalization

miR ID ITTPa# DP4 SP4 CB4

miR.17.5p.20.93.mr.106.519.d 21.04*1029

(24.27*1023)
20.0016 20.053 0.99

miR.19 22.72*1028

(21.24*1022)
20.0010 20.20 20.08

miR.181 23.19*1025

(27.07*1024)
20.20 0.43 20.67

aIn parentheses, the best p-value in 20 random seed permutations.
doi:10.1371/journal.pcbi.1000189.t003
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Figure S6 AU normalization does not distort the normalization

at the M-A plane. This figure presents the M-A plot after applying

AU normalization. While this normalization cancels the major

bias detected at the M-AU plane, it has only subtle effect on the

M-A plane.

Found at: doi:10.1371/journal.pcbi.1000189.s006 (0.18 MB TIF)
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