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Abstract

Traditionally brain function is studied through measuring physiological responses in controlled sensory, motor, and
cognitive paradigms. However, even at rest, in the absence of overt goal-directed behavior, collections of cortical regions
consistently show temporally coherent activity. In humans, these resting state networks have been shown to greatly overlap
with functional architectures present during consciously directed activity, which motivates the interpretation of rest activity
as day dreaming, free association, stream of consciousness, and inner rehearsal. In monkeys, it has been shown though that
similar coherent fluctuations are present during deep anesthesia when there is no consciousness. Here, we show that
comparable resting state networks emerge from a stability analysis of the network dynamics using biologically realistic
primate brain connectivity, although anatomical information alone does not identify the network. We specifically
demonstrate that noise and time delays via propagation along connecting fibres are essential for the emergence of the
coherent fluctuations of the default network. The spatiotemporal network dynamics evolves on multiple temporal scales
and displays the intermittent neuroelectric oscillations in the fast frequency regimes, 1–100 Hz, commonly observed in
electroencephalographic and magnetoencephalographic recordings, as well as the hemodynamic oscillations in the
ultraslow regimes, ,0.1 Hz, observed in functional magnetic resonance imaging. The combination of anatomical structure
and time delays creates a space–time structure in which the neural noise enables the brain to explore various functional
configurations representing its dynamic repertoire.
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Introduction

When subjects are not actively engaged in goal-directed mental

activity, spontaneous brain activity has been suggested not to

simply represent ‘‘noise’’, but rather implicate spontaneous and

transient processes involved in task-unrelated imagery and thought

[1–9]. The resting state networks that are not associated with

sensory or motor regions have been thought of as a ‘‘default-

mode’’ network specific for the human and include medial

prefrontal, parietal, and posterior and anterior cingulate cortices

[4,5]. Recent results by Raichle and co-workers [10] showed

similar networks in monkeys during deep anesthesia suggesting

that this default-mode network is, first, not specific for the human

and, second, that it transcends levels of consciousness. Further-

more, the assumption of a link between resting state activity and

mental processes is founded largely ‘‘ex negativo’’ upon Positron

Emission Tomography (PET) and fMRI studies showing the

deactivation of the ‘‘default-mode’’ network in correlation with the

increase in task-related activity in sensory-driven areas during

goal-directed behavior. The dynamics of these spontaneous

fluctuations evolves on a slow time scale of multiple seconds. On

faster time scales of 10–500 ms, EEG and MEG identify

characteristic oscillatory modes of brain activity showing transient

spindle like behaviors, which repeat themselves intermittently.

These wave patterns are strongly dominated by alpha waves (8–

12 Hz) when subjects have their eyes closed, and weaker but still

clearly present for eyes open condition. In contrast to the well-

studied phenomenology of alpha waves, no firm explanation exists

regarding their genesis [11]. Similarly, since the first report of

coherent rest state fluctuations observed in fMRI by Biswal et al.

[1] more than 10 years ago, the mechanism for their generation

remains poorly understood. Most hypotheses on the underlying

mechanisms of rest state dynamics in the EEG/MEG consider

alpha wave generation and postulate either of two hypotheses:

pacemaker oscillators in the thalamus or cortex generate rhythms

endogenously, which entrain the remainder of the cortex [12,13].

Alternatively, the neural resting state activity arises from the

network interactions of the cortex and thalamus. For the latter

hypothesis, the neuronal network may either act as a narrow band

transmission system (i.e., as a filter originally proposed by Prast in

1949 [14]) receiving white noise as input and producing the

irregular rhythms; or the neural network generates a purely

deterministic, often chaotic, signal reflecting the dynamics of

coupled nonlinear oscillators [15–19]. All these computational

models have some experimental support, but in general are too

vague to pinpoint specific mechanisms. None of these models so
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far attempts to address the generation of the ultraslow oscillations

observed in the fMRI. In a recent study by Honey et al. [20],

chaotic oscillators representing neural population activity were

linked mimicking the connectivity of the macaque. When

computing the corresponding hemodynamic response signal from

their simulations, the authors were able to reconstruct inter-area

correlations found experimentally in the fMRI. Though the

temporal dynamics of the hemodynamic response appears realistic

on the ultraslow scale, their generating neural network model does

not attempt to model faster electrophysiological rhythms as

observed in EEG and MEG recordings. From these attempts it

is evident, that there is currently no satisfactory explanation of the

various phenomena related to rest state activity on multiple scales.

To shed light on the emergence of the resting state networks and

their dynamics on various temporal scales, we performed a

network simulation study in which the major ingredients were

biologically realistic primate connectivity of brain areas, time

delays via signal propagation between areas and noise. Our

rationale is as follows: populations of neurons are dynamic systems

capable of displaying oscillatory behavior. Imagine an isolated

neural population that has no connections and is quiescent in the

absence of noise. When noise is present, a fluctuation can perturb

the population from its equilibrium state, to which it then returns

in a characteristic transient manner. The latter transient will

crucially depend on the ‘‘dynamic repertoire’’ of the population,

which is the set of dynamic behaviors that a neural population can

perform in the proximity of its equilibrium state. For instance, a

damped mechanical pendulum is only capable of showing an

oscillation with fixed frequency and exponentially decreasing

amplitude following a perturbation, which defines its dynamic

repertoire. Clearly, when neural populations are connected in a

network, then the network connectivity will shape the dynamic

repertoire of the entire network. Since the rest state networks are

large scale networks distributed on spatial scales ranging up to

almost 20 cm, the time delays via signal transmission between

populations need to be considered. This can be understood

intuitively along the following example: two systems shall oscillate

in a synchronous fashion at 10 Hz. Their coupling shall be such

that it reinforces synchronous in-phase oscillation when no signal

transmission delay exists. If the delay increases to 50 ms, then the

previously stable synchronous oscillation may become unstable,

because the transmitted signal from one oscillator arrives now

during the antiphase of the other oscillator. This example

illustrates that the space-time structure of the couplings defined

by the anatomical connectivity (space) and the time delays (time)

will be the primary component shaping the dynamic repertoire of

any large scale network. In the following we study these

components systematically and evaluate their potential contribu-

tions to the emergence of rest state networks.

Results

We first performed a graph theoretical analysis of the

anatomical connectivity matrix of a single hemisphere obtained

from the CoCoMac database [21]. Thus, we initially consider only

the spatial aspect of the couplings. The connectivity matrix

collated from macaque tracing studies comprises 38 nodes with

weights ranging from 0 to 3 (see Figure 1; see also Table 1 for

abbreviations). The corresponding ‘‘Regional map’’ gives the

translation between macaque and human neuroanatomy [22]. It is

to be noted that some connections between some areas are not

known. For the subsequent simulations we assign random weights

to these unknowns within the range of 0 and 1, but omit these in

the graph theoretical analyses. The connectivity matrix is shown in

Figure 1B, where the columns are targets and the rows are sources.

To explore the connectivity characteristics quantitatively, we

compute a set of network connectivity measures [20,23] for all

nodes including the in- and out-degree of connectivity, the

clustering coefficient and betweeness centrality (see Methods) are

computed on the binarized graph, and are shown in Figure 1C.

When computing these measures for the weighted graphs, no

significant differences are found. If the putative components of the

resting state networks (see Table 2) differentiated themselves from

other network nodes on the pure basis of anatomical connectivity,

we would anticipate finding a clustering of these components in

some of the graph theoretical measures, likely at the largest values.

For better visualization, we use a color coding for the various

components in Figure 1C. Anatomically, the prefrontal cortex is

characterized by a large degree of afferent and efferent

connectivity, whereas the temporal and medial parietal areas

display only an intermediate degree of connectedness. Clustering

index and betweeness centrality are commonly used to identify

hubs in a network, but do not clearly differentiate the default

network either, though the betweeness centrality measure shows a

cluster of six components comprising prefrontal, parietal and

cingulate cortices (PFCCL, PFCVL, CCA, CCP, PCIP, PCI) for

midrange values. Based on this graph theoretical analysis, we find

that pure anatomical connectivity of the large scale network does

not suffice to reliably identify the network constituents during rest.

To evaluate the temporal aspect of the couplings, i.e., the time

delays, we determine these as a function of the spatial position of a

given brain area. More specifically, the time delay Dt between any

two coupled network nodes is estimated as the ratio d/v, where d

is Euclidean distance between two nodes in the three-dimensional

physical space and v the propagation velocity along the connecting

fibres. The node locations in physical space are chosen to mimic

the human brain’s geometry and distances based on a standard

human atlas. As a consequence, the estimated time delay structure

represents a lower estimate. Realistic fibre tracking would

generally result in longer pathways than the here estimated

shortest distance. Figure 2A illustrates the distribution of the

Euclidean distances, which scale linearly with the time delay. The

Author Summary

There has been a great deal of interest generated by the
observation of resting-state or ‘‘default-mode’’ networks in
the human brain. These networks seem to be most
engaged when persons are not involved in overt goal-
directed behavior. These networks are also thought to
underlie certain aspects of conscious introspection and to
be specific to humans. Our paper provides a new
explanation for rest state fluctuations by suggesting that
they reflect a deeper biological principle of organization
and are a consequence of the space–time structure of
primate anatomical connectivity. In a computational study
using a biologically realistic primate cortical connectivity
matrix, we show that the rest state networks emerge only
if the time delays of signal transmission between brain
areas are considered. The combination of anatomical
structure and time delays creates a space–time structure
in which the neural noise enables the brain to explore
various functional configurations representing its dynamic
repertoire. The latter repertoire spans temporal scales of
multiple orders of magnitude including scales observed in
electric potentials and magnetic fields on the scalp, as well
as in blood flow signals. Our results provide a testable
explanation of the real-world phenomenon of rest state
fluctuations in the primate brain.

Rest Brain’s Dynamics
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space–time structure of the couplings is illustrated in Figure 2B, in

which the individual weights of the connectivity matrix are plotted

as a function of the indices of brain areas and their time delay. The

projection of all the entries onto the slice with time delay equal to

zero yields the anatomical connectivity matrix.

To explore the network dynamics supported by the given space-

time structure, we perform simulations for finite signal transmis-

sion speeds and investigate the stability of its rest state. We place

neuronal oscillators at each network node and couple these via

time-delayed interaction terms (see Methods). We have tested

multiple oscillator types which are commonly used in neural

population modeling including Hopf oscillators [24], Wilson-

Cowan systems [25], FitzHugh-Nagumo systems [26,27], and

finally mixed populations of coupled FitzHugh-Nagumo neurons

[28], all of which provided similar results. Each population is

characterized by a degree of excitability, in which the increase of

excitation parameterizes the onset of oscillations emerging from a

quiescent state. When the populations are embedded in a network,

the network’s dynamic repertoire will be shaped by the space-time

structure of the couplings. To quantify the total connectivity

strength, we introduce a parameter, c, which scales all connection

strengths without altering the connection topology of the weight

distribution of the matrix, nor affecting the associated time delays

Dt = d/n. Using this computational framework, we carry out the

network simulations with initially identical neuronal population

models at each node. The purpose of our simulations is the

identification of the critical boundary, which separates the stable

and unstable regions of the quiescent state in the parameter space

of c and Dt. In its immediate proximity (but still in the stable

region), the effect of noise driving the network transiently out of its

equilibrium state will be most prominent (see Figure 3C for an

illustration of the noise effect upon a single oscillator), and hence

easiest to identify. Our results are plotted in Figure 3A, in which

the degree of instability of the equilibrium state is plotted as a

function of the connection strength, c, and propagation velocity, v.

The degree of instability is quantified by the real part of the

eigenvalue, Re[l], from a linear stability analysis of the network’s

equilibrium state (see Methods). For small values of c, Re[l],0

denoting the parameter regions of stability of the equilibrium state,

whereas for large values of c the network’s equilibrium state is

Figure 1. Anatomical connectivity. (A) The primate cortical connectivity map is overlaid over the human cortical locations. See Table 1 for
abbreviations. (B) The connectivity matrix of primate cortical graph (white pixel implies no connection; grey scale indicates the weight of the
connection). The columns are sources and rows are targets. (C) Statistical characterization of the primate connectivity matrix: node wise degree
distributions, clustering index and betweeness centrality (14). The color codes for areas of interest: green, prefrontal; magenta, parietal; yellow,
cingulate; black, all others. The connectivity matrix has characteristic path length = 1.633; clustering index = 0.568.
doi:10.1371/journal.pcbi.1000196.g001

Rest Brain’s Dynamics
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unstable, Re[l].0, and displays oscillatory behavior. The two

regions are separated by a critical boundary showing a

characteristic shape (Figure 3A), of which one segment is more

prominent and coincides with the physiologically realistic range of

propagation velocities around 5–20 m/s for the adult primate

brain (see points A and B in the cross section displayed in

Figure 3B). Other points of biological interest (from a clinical and

developmental perspective) in the parameter space are the regions

indicated by C and D in Figure 3B, which correspond to the

transmission speeds of unmyelinated axons, around 1–5 m/s. The

emergence of coherent spontaneous fluctuations will be most likely

observed in the neighborhood of the critical boundary, since

farther away from the boundary all oscillations are either strongly

damped or display high amplitude oscillatory behavior, which

resembles pathological (e.g., epileptic) activity. Before we proceed

to an analysis of the network dynamics, we test the sensitivity of the

critical boundary to manipulations of the network architecture in

order to gain confidence in its validity (see supplementary

materials). To account for errors in the anatomical connectivity,

we introduce a distribution of the connection weights, but preserve

the general connection topology of the matrix. Further, the impact

of parameter heterogeneity of the neuronal populations is assessed

by introducing a distribution in their excitability. In all cases, the

characteristic shape of the critical boundary (see Figure 3B) proves

robust against surprisingly large variations (Figure S7 – weight

perturbations; Figure S8 – excitability parameter perturbations).

However, when the network is rewired, i.e., changing the

connectivity without preserving its connection topology, then the

critical boundary disintegrates rapidly (Figure S9). These findings

show that the critical boundary displayed in Figure 3A and 3B

may be generic for the connection topology of the primate

connectivity matrix.

To perform a spatiotemporal analysis of the network dynamics,

we identify the dominating sub-networks involved in the ongoing

transient oscillatory dynamics. We implement the network

parameter settings according to point B close to the instability in

Figure 3A. Results for other representative parameter settings are

presented in the supplementary materials. Our challenge here is to

extract the network nodes contributing the most variance to the

network dynamics, because these nodes will be the most visible in

experimental data. Mathematically speaking, we wish to identify a

linear vector space spanned by n vectors yk, where n is the

dimension and typically smaller than the total dimension of the

network (in the present network the total dimension is 38). These

vectors span the directions of a subspace, in which the network is

most sensitive to perturbations and noise. Equivalently, these

vectors can be considered to be network patterns or network modes

of operation. In this subspace most of the variance of the network

dynamics is contained and define the dynamic repertoire of the sorts

of the behaviors the network is capable to perform following a

perturbation. In other words, the activity of the ith network node

u(i,t) can be written as u i,tð Þ~
Pn

k~1

jk tð Þyk ið Þ, where t is the time

and jk(t) is the time dependent coefficient capturing the dynamics of

the kth network pattern yk. The contribution of the ith network

node is given by yk(i). To identify and quantify the contributions of

the subspace, we perform the following procedure (see Methods for

details): When the network dynamics relaxes into its equilibrium

state, we perform a small parameter change towards the unstable

region. A typical time series plot is shown in Figure S1. As a

consequence of this minimal parameter change, the previously least

stable network modes cross the critical boundary first, become

unstable and grow with the fastest growth rate. The mathematical

basis thereof is the center manifold theorem [29]. As a consequence,

only the unstable network modes are present during the transition.

Of course, after the transition the nonlinearities and all the network

modes become relevant for the network dynamics. During the

transition, though, we use a sliding temporal window analysis and

perform a Principal Component Analysis (PCA) to identify the

dominant network modes (see Figure 4). We find that only two

network modes yk contribute to the transient dynamics.

The nodes of both networks yk(i) are ordered according to

power (see Figure 4C). We find that prefrontal, parietal and

cingulate cortices rank highest in this ordering scheme and hence

contribute most to the two network patterns present during the

transient of the instability. We confirm our findings by performing

Table 1. List of cortical areas.

Abbreviation Cortical Area

‘A1’ Primary auditory

‘A2’ Secondary auditory

‘CCA’ Anterior cingulate cortex

‘CCP’ Posterior cingulate cortex

‘CCR’ Retrosplenial cingulate cortex

‘CCS’ Subgenual cingulate cortex

‘FEF’ Frontal eye field

‘IA’ Anterior insula

‘IP’ Posterior insula

‘M1’ Primary motor cortex

‘PCI’ Inferior parietal cortex

‘PCIP’ Intraparietal sulcus cortex

‘PCM’ Medial parietal cortex

‘PCS’ Superior parietal cortex

‘PFCCL’ Centrolateral prefrontal cortex

‘PFCDL’ Dorsolateral prefrontal cortex

‘PFCDM’ Dorsomedial prefrontal cortex

‘PFCM’ Medial prefrontal cortex

‘PFCORB’ Orbital prefrontal cortex

‘PFCPOL’ Prefrontal polar cortex

‘PFCVL’ Ventrolateral prefrontal cortex

‘PHC’ Parahippocampal cortex

‘PMCDL’ Dorsolateral premotor cortex

‘PMCM’ Medial (supplementary) premotor cortex

‘PMCVL’ Ventrolateral premotor cortex

‘S1’ Primary somatosensory cortex

‘S2’ Secondary somatosensory cortex

‘TCC’ Central temporal cortex

‘TCI’ Inferior temporal cortex

‘TCPOL’ Polar temporal cortex

‘TCS’ Superior temporal cortex

‘TCV’ Ventral temporal cortex

‘V1’ Primary visual cortex

‘V2’ Secondary visual cortex

‘VACD’ Dorsal anterior visual cortex

‘VACV’ Ventral anterior visual cortex

‘Pulvinar’ Pulvinar thalamic nucleus

‘ThalAM’ Anteromedial thalamic nucleus

doi:10.1371/journal.pcbi.1000196.t001
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a complete computational network simulation with noise just

below the critical boundary and verify that these sub-networks are

most commonly present during the transient oscillations of rest

state activity. Exemplary time series for the network nodes in the

presence of noise are shown in Figure 4D and resemble the

characteristic transient and spindle-like time courses with domi-

nant frequencies of 8–12 Hz known from real human resting EEG

[30]. To illustrate the spatiotemporal nature of the network

dynamics during such an intermittent spindle, we plot a sequence

of activation patterns in a cortical surface-based coordinate system

for 240 ms in Figure 5.

To test for the emergence of ultra-slow oscillations in the

hemodynamic response, we implement the Balloon-Windkessel

model [31] and compute the blood oxygen level dependent (BOLD)

signal for each of the 38 network nodes (see Methods). A

representative time series for the same parameter settings as in

Figure 3 (corresponding to point B in the parameter space) is shown

in Figure 6. The BOLD time series and their power spectrum show

clearly the presence of frequency components in the ultra-slow range

of 0.1 Hz. A systematic increase of the transmission speed v and

hence a reduction of the time delays in the space-time structure results

in a reduction of the power in the ultra-slow frequency band. Since

our PCA analysis of the neural network dynamics showed the

presence of two dominating network patterns,yk, we expect

correlated and anti-correlated patterns of activity (captured by the

sign of yk(i)) on multiple scales, including the one of the BOLD

signals. To test for the emergence of anti-correlated networks as

reported in Fox et al. [3], we compute the 38638 cross correlation

matrix of the BOLD signals (see Figure 6) and find that mostly

positive correlations are present amongst the dominant network

nodes as identified in Figure 4., together with various anti-correlated

nodes and networks comprising other regions. To perform a more

detailed and semi-quantitative comparison with the Fox et al. study

[3], we reproduce their analysis. Fox and colleagues chose six

predefined seed regions and computed the correlations against all

other regions. The seed regions included three regions, referred to as

task-positive regions, routinely exhibiting activity increases during

task performance, and three regions, referred to as task-negative

regions, routinely exhibiting activity decreases during task perfor-

mance [3]. Task-positive regions were centered in the intraparietal

sulcus (IPS; in our notation: PCIP (intraparietal sulcus cortex)), the

frontal eye field (FEF) region (same in our notation), and the middle

temporal region (MT; in our notation this area is part of VACD

(dorsal anterior visual cortex)). Task-negative regions were centered

in the medial prefrontal cortex (MPF; in our notation this area

corresponds mostly to PFCM (medial prefrontal cortex) and to a

lesser extent to PFCPOL (prefrontal polar cortex)), posterior cingulate

precuneus (PCC; in our notation CCP (posterior cingulate cortex),

but note that the precuneus comprises also our medial parietal cortex

PCM), and lateral parietal cortex (LP; in our notation PCI (inferior

parietal cortex)). We compute the cross correlations of the seed

regions from our simulated data set and illustrate our findings in a

surface-based coordinate system in Figure 6. For ease of comparison

with the experimental findings in [3] we identify in Table 2 the sign of

the cross correlations in experimental and simulated data. Since the

cross correlation matrix is symmetric and the diagonal always

positive, there remain 15 relevant cross correlations. Notably we find

that all cross correlations except one (PCIP-FEF) have the same sign

and hence show good correspondence between experimental and

simulated data. To underscore further the importance of the

transmission delays for biological realism, we perform the identical

correlation analysis for a network with infinite transmission speeds

(see Figure S10) and find that the cross correlations break down as the

transmission speed increases (see Table S1). In particular, out of 15

possible cross correlations, only 7 are captured correctly.

Discussion

Various mechanisms for the genesis of rest state activity have

been put forward including pacemaker oscillators [12,13], filters

[14] and emergent deterministic network dynamics [15–20]. The

mechanism proposed in this paper lies in between the latter two:

noise, omnipresent in any biological system, aids in the sampling of

the flow in the vicinity of the brain network’s stable equilibrium

state. This sampling is reflected in the well-known waxing and

Table 2. Cross correlations of seed regions.

Correlations Computed from Simulated Data

CCP FEF PCI PCIP PFCM VACD

CCP + 2 + 2 + 2

FEF 2 + 2 2* 2 +

PCI + 2 + 2 + 2

PCIP 2 2* 2 + 2 +

PFCM + 2 + 2 + 2

VACD 2 + 2 + 2 +

Correlations Obtained from Fox et al. [3]

PCC FEF LP IPS MPF MT+

PCC + 2 + 2 + 2

FEF 2 + 2 + 2 +

LP + 2 + 2 + 2

IPS 2 + 2 + 2 +

MPF + 2 + 2 + 2

MT+ 2 + 2 + 2 +

Positive correlations are denoted by ‘+’ and negative correlations by ‘2’. ‘*’ indicates deviation from experimental findings.
doi:10.1371/journal.pcbi.1000196.t002
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waning of EEG and MEG waves during rest. In our computa-

tional model, the flow around the equilibrium state is captured by

the emergent large scale network dynamics; more specifically, we

have demonstrated that the space-time structure of the network’s

connectivity shapes the flow and actually gives rise to the

emergence of coherent fluctuations on a wide range of scales

from the ultra slow range ,0.1 Hz to high frequencies ,100 Hz.

To strengthen evidence that the temporal aspect of the

couplings does shape the spatiotemporal dynamics, we scrambled

the original time delays under preservation of the actual delay

values. The actual spatial aspect of the couplings, i.e., the

anatomical connectivity, was kept constant. When performing

the same sliding window analysis leading to the results in Figure 5,

the resulting emergent networks show different spatial configura-

tions (see Figure S2 for a particular example of scrambled

temporal couplings). Different scrambling always results in

different emergent network configurations. Furthermore, in a

network of identical neuronal populations with instantaneous

couplings (no time delay), the anatomical connectivity is the only

distinguishing factor amongst the nodes and hence determines the

network dynamics. This is illustrated in Figure S3, where the

emergent network dynamics is dominated by the area PFCORB.

For increasing values of propagation velocity, v, the rest state

networks engage the parietal and cingulate areas for v = 5–10 m/s

(Figure 4 and Figure S4); upon further decrease of velocity to

v = 1 m/s (points C,D in stability diagram Figure 3B) correspond-

ing to unmyelinated fiber transmission speeds, the rest state

networks disengage the parietal components and a set of prefrontal

areas is distinctly active (Figure S5 and Figure S6). In the various

scenarios considered here, the prefrontal areas generally show the

largest contributions due to their large degree of connectivity. It

shows that the temporal aspects of the coupling will never override

the anatomical connectivity, however, as the temporal aspects of

the couplings vary, the relative contributions of the nodes change.

These changes in the spatial configuration of the resting-state

patterns as a function of transmission speed suggest relevance for

development and potentially have clinical implications in diseases,

in which degradation of myelination is involved. Recent research

on rest state activity in infants establishes a partial overlap of the

rest state networks with the counterparts in adults, however with

an absent component along the posterior-anterior direction [32].

In the adult brain resting-state activity shows a functional

correlation both across hemispheres and across brain regions that

are spatially separated along the anterior–posterior direction

[3,5,33]. Our findings regarding the reorganization of the space-

time structure of the connectivity explain the difference in spatial

network configurations. Indirect anatomical support for our

hypothesis is also provided by diffusion tensor MR imaging

Figure 2. Space time structure of couplings. (A) Distribution of inter-area distances. The time-delays follow identical distribution as we have
defined Dtij~

dij

v
, where v is the propagation velocity. (B) Space-time distribution of time-delays. The blue frame shows the spatial connectivity matrix.

The nodes having time delay Dt61.3 ms are snapped to planes denoting time delay Dt for visual clarification. Here we set propagation velocity
v = 6 m/s.
doi:10.1371/journal.pcbi.1000196.g002

Rest Brain’s Dynamics
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studies, which revealed a significantly lower anisotropy index in

the inferior longitudinal fasciculus, inferior fronto-occipital

fasciculus, and superior longitudinal fasciculus compared with

the detected degree of anisotropy in the interhemispheric callosal

fibers [34]. These findings suggest that the white matter tracts

supporting functional connectivity in the anterior–posterior

direction are less well developed in the infant brain than the

tracts supporting transcallosal functional connectivity [35]. It is

worth to reemphasize that our results are obtained for a range of

conduction velocities that is in the physiological range. The

parameters of the neural population model at each node are

constrained to a range to reflect a biologically realistic dynamics in

response to a single stimulus. This constraint determines the

temporal scale, whereas the spatial scale follows from the locations

of the network nodes in the three-dimensional physical space (see

Methods). As a consequence, the spatiotemporal scales for the

resting state dynamics are fixed within a certain range and the

freedom for parameter adjustment is limited. Does it mean that

the physiologically observed conduction delays have been

somehow selected during development to generate appropriate

resting state dynamics? At this stage, the answer is not obvious.

Here we showed that the inclusion of time delays into the space-

time structure of the connectivity results in the recruitment of parietal

and cingulate cortex for biologically realistic transmission speeds. In

contrast, Honey et al. [20] introduced an increased degree of

complexity into their network model by utilizing a chaotic dynamics

for the brain areas. Their connectivity is also based on biologically

realistic primate (though limited to visual and sensorimotor)

connectivity, but their assumed transmission speeds are infinite

resulting in instantaneous communication within the network. In this

configuration, the authors identify BOLD network activations which

favorably compare to characteristic rest state networks. Hence the

question arises, whether we really need to consider time delays on the

order of 10–100 ms when studying BOLD signal fluctuations on the

order of ,0.1 Hz. After all it would be a computationally most

desirable simplification if the time delays could be neglected, since

network computations involving time delays are numerically costly.

However, since the BOLD signal (in our current understanding of the

neurovascular coupling) is generated by the local neural dynamics,

which itself evolves on multiple scales including the time scale of

signal transmission between areas, neglecting the time delay does not

seem permissible. In other words, it is not the BOLD signals on the

slow time scale that interact with each other across areas (in which

case the neglect of time delay would be justified), but the neural

signals evolving on faster time scales. Neither does the chaoticity of

the network nodes in Honey et al. [20] substitute for the time delays,

but rather introduces another component to a network’s node

dynamics which we did not address. Our findings hold strictly only if

the network nodes display damped oscillatory dynamics in absence of

connectivity.

Figure 3. Stability regimes. (A) The degree of instability, equivalent to Re[l], is plotted as a function of connection strength c and propagation
velocity v. (B) The critical boundary, equivalent to Re[l] = 0, is plotted as a contour line separating unstable and stable regions. (C) Representative
time series illustrate the effect of noise upon a single neural population model close to the onset of instability with no noise, small and large noise
strength (top-down).
doi:10.1371/journal.pcbi.1000196.g003
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In conclusion, we have demonstrated that the space–time

structure of the couplings between brain areas plays a critical

role in the functional organization of the emergent network

dynamics at rest. On this basis and in the presence of noise,

the genesis of a variety of rest state dynamic phenomena

including multi-scale oscillations, spatial configurations of

networks and some effects of developmental changes can be

understood.

Figure 4. Results of PCA of the network dynamics close to the instability (point B in Figure 3B). (A) The first three dominant areas in the
subnetworks as identified by the PCA modes, 1st mode (blue) and 2nd mode (red). The nodes are plotted in the physical space (units in mm) with
locations extrapolated for the human. PFCORB, orbital prefrontal cortex; PFCVL, ventrolateral prefrontal cortex; PCM, medial parietal cortex; PCS,
superior parietal cortex; CCA, anterior cingulated cortex; PFCDL, dorsolateral prefrontal cortex. (B) The percentile contribution of the first six principal
components. The total variance of the first two components is 99.995%. (C) The power of the leading spatial contributions of the first two
subnetworks (quantified by PCA) is plotted (normalized per subnetwork). Individual areas are highlighted using the same color coding as in Figure 1C.
(D) Time series shown for the rest state subnetwork nodes from a simulation with noise.
doi:10.1371/journal.pcbi.1000196.g004

Rest Brain’s Dynamics

PLoS Computational Biology | www.ploscompbiol.org 8 October 2008 | Volume 4 | Issue 10 | e1000196



Methods

We quantified the anatomical connectivity using graph

theoretical measures [23] where the in-degree and out-degree

are the number of incoming and outgoing connections to/from a

node. The degree is the sum of in- and out-degree. The clustering

coefficient is the number of all existing connections between a

node’s neighbors divided by all such possible connections. The

betweeness centrality is the fraction of the shortest path between

any two pairs of nodes passing through a particular node.

The network model with the coupling term of strength c is

implemented as:

_uui tð Þ~g ui,við Þ{c
XN

j~1

fijuj t{Dtij

� �
znu tð Þ

_vvi tð Þ~h uj ,vi

� �
znv tð Þ

ð1Þ

where ui, ni are the state variables of the ith neural population and

fij is the connectivity matrix. White Gaussian noise nu(t), nn(t) is

introduced additively. The functions g and h are based on

FitzHugh-Nagumo systems [26,27] with g ui,við Þ~t vizcui{
u3

i

3

h i
and h(ui,ni) = 2(1/t)[ui2a+bni], and a= 1.05, b= 0.2, c= 1.0,

t= 1.25. For the stability analysis (no noise) we employed

Matlab DDE23 to solve the coupled delay differential equations.

The coupled delay differential equations with additive noise

were solved in Matlab by a simplified and faster algorithm.

More specifically, we employed a standard fourth order Runge-

Kutta method for integrating the intrinsic Fitz-Hugh Nagumo

dynamics while the coupling and the stochastic terms were

integrated using Euler method. The step size for the simulation

was 0.001 and we confirmed that no better convergence of

solution was achieved using smaller step sizes to ensure

numerical convergence.

Figure 5. Identification of relevant nodes in resting state network. (A) Temporal evolution of resting state network nodes. Time series at
bottom depicts the window of interest for areas PCS (white) and PFCORB (yellow) and markers correspond to instance at which activity is shown on
the cortical surface. (B) Fourier power spectra of PCS (white) and PFCORB (yellow) show dominant peak at ,10 Hz. (C) Time series of neural activity at
PCS. (D) Time series of neural activity at PFCORB. Time evolution in (A) is shown for the window marked by vertical lines, 340–580 ms.
doi:10.1371/journal.pcbi.1000196.g005
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The time delays Dtij~
dij

v
are computed from the Euclidean

distance matrix dij of the locations of the brain areas i and j. To do

so, the three-dimensional regional map locations were converted

to approximate Talairach stereotaxic atlas locations by first

identifying the mapping of regional map locations as designated

on the human brain to the anatomical locations in Talairach space

using the Anatomical Automatic Labeling (AAL) image provided

by Tzourio-Mazoyer et al. [36]. Once the approximate location

was identified in the AAL brain, the coordinate for the centre of

the AAL region was used for the location of the corresponding

regional map location. Each region was represented as a surface

composed of a sufficient number of triangles. To obtain the

triangulation, a T1-weighted MR image from a single human

subject was segmented in grey and white matter compartments

and the cortical surface represented as a triangular net using the

CURRY software package (Compumedics Neuroscan, Ltd). The

T1 image was co-registered to a standard MRI atlas (MNI305,

[37]) using a 12-parameter affine transform with sinc interpolation

as implemented in SPM99 (see http://www.fil.ion.ucl.ac.uk/spm/

and [38]). The transform matrix from the co-registration was then

applied to the triangulated cortical surface to the MRI atlas.

The stability diagram for the network in Equation (1) is

obtained by linear stability analysis leading to the characteristic

equation

det

A 1ð Þ O

A 2ð Þ

O P

2
664

3
775~0

A ið Þ
t c{�uu2
� �

{c
PN
j~1

fije
{lDtij {l t

{1=t
{b=t{l

2
664

3
775

where ū is the fixed point solution. The eigenvalue l has 2N non-

trivial roots with

P
N

i~1
lz

b

t

� �
l{t c{�uu2

� �
zc

XN

j~1

fije
{lDtij

" #
z1~0

The equilibrium state is stable if all eigenvalues l have negative

real parts, Re(l),0, which were found numerically. The stability

diagrams in Figure 3 were constructed using this procedure. We

Figure 6. Analysis of BOLD signal activity. (A) Fourier power spectrum of the BOLD signal corresponding to PFCORB node. (B) BOLD signal time
series shown for PFCORB, PFCM, FEF. (C) 38638 correlation matrix computed from the simulated BOLD signals. (D) BOLD signal activity for 6 regions
corresponding to Fox et al. is shown.
doi:10.1371/journal.pcbi.1000196.g006
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also cross-validated the presence of negative real parts of the

eigenvalues by direct numerical simulations of Equation 1.

We obtain activity at different areas by simulating Equation 1

for parameter values indicated in the stability diagram. The

parameters are chosen to lie on or just below the critical boundary

of stable and unstable regions. Network data are simulated for

numerical values of parameters in the stable region. Once the

network dynamics settles into its equilibrium state (see Figure S1),

the coupling parameter c is increased just beyond the critical

boundary. We use the smallest increase of c possible given the

discretization of the parameter space. As a consequence, now in

the unstable regime, the network dynamics increases towards high-

amplitude oscillations. A typical time series plot is shown in Figure

S1. Using a sliding temporal window of 500 ms width, we perform

a Principal Component Analysis (PCA) during the transient as the

oscillations increase. The local Center Manifold Theorem

guarantees that the network modes with the largest positive real

part of the eigenvalue grow fastest and hence dominate the

transient initially. Hence, the eigenvectors of PCA span a linear

vector space, in which the dominant network modes will be

represented. In other words, the networks implicated in rest state

activity will be a linear superposition of the PCA eigenvectors.

Then the spatiotemporal data can be decomposed as:

u i,tð Þ~
X?
k~1

jk tð Þyk ið Þ

where the kth PCA eigenvector yk spans a spatial network. During

all transients observed in our simulations, the first two PCA

eigenvectors contribute together at least 99.995 percent (see

Figure 4B). Hence it does suffice to represent the entire transient

dynamics by the first two PCA eigenvectors. Since, in a given PCA

eigenvector yk, each node is multiplied by the same time-

dependent coefficient jk(t), the magnitude of the ith vector element

will scale the resulting contribution of the ith node to the network

dynamics. The most dominant nodes of these two networks yk(i)

are then identified through an ordering process: we compute yk(i)
2

for all nodes i and both network modes k = 1, 2 and order these

according to power (see for instance Figure 4C). There is no hard

criterion to identify a threshold for the inclusion of nodes in a

network. For reasons of clarity, we choose to show the first three

dominating nodes for each eigenvector in Figure 4A, which

corresponds to at least 90% of the power per eigenvector in all

cases.

To relate the simulated neural activity to recent fMRI studies,

we have generated BOLD signal for each regions by using a

hemodynamic model. This model combines the Balloon/Wind-

kessel model comprised in venous volume and deoxyhemoglobin

content with a linear dynamical model of how synaptic activity

causes changes in regional cerebral blood flow [31]. For each

region, neural activity causes an increase in a vasodilatory signal

inducing blood flow, which changes blood volume and deoxyhe-

moglobin content. The BOLD signal is given by a volume-

weighted sum of extra- and intra vascular signals as the function of

volume and deoxyhemoglobin content. The local neural activity,

which is taken to be the absolute value of the time derivative of the

output occurring by our network model in each brain region, is

used as the main model input to estimate a BOLD signal. For the

analyses, the global mean signal (average over all regions) has been

regressed out from the single BOLD time series. All parameters

regarding blood flow, deoxyhemoglobin content, and vessel

volume in the model equation are taken from [31].

Supporting Information

Figure S1 A representative time series plotted for all nodes,

shown for the fast variable u, as the system undergoes a stable-

unstable transition. The initial parameters correspond to stable

region and at a time indicated by arrow, the propagation velocity

has been switched to make the system unstable.

Found at: doi:10.1371/journal.pcbi.1000196.s001 (0.09 MB TIF)

Figure S2 Results of PCA as instability sets in at the edge

marked B in Figure 2A for scrambled delays. (a) Subnetwork as

identified by dominant PCA modes, 1st mode (blue) and 2nd

mode (red) with a combined total variance of 99.989%. (b) The

percentile contribution of the principal components. (c) The

normalized power of the first two dominant spatial modes is shown

for the largest components.

Found at: doi:10.1371/journal.pcbi.1000196.s002 (0.09 MB TIF)

Figure S3 PCA of spatiotemporal data in absence of time delay

(vR‘). (a) Subnetwork as identified by dominant PCA modes, 1st

mode with a variance of 99.92%. (b) The percentile contribution

of the principal components. (c) The normalized power of the

dominant spatial mode is shown for the largest components.

Found at: doi:10.1371/journal.pcbi.1000196.s003 (0.10 MB TIF)

Figure S4 Results of PCA as instability sets in at the edge

marked A in Figure 2A. (a) Subnetworks as identified by dominant

PCA modes, 1st mode (blue) and 2nd mode (red) with a combined

total variance of 99.996%. (b) The percentile contribution of the

principal components. (c) The normalized power of the first two

dominant spatial modes is shown for the largest components.

Found at: doi:10.1371/journal.pcbi.1000196.s004 (0.10 MB TIF)

Figure S5 Results of PCA as instability sets in at the edge

marked C in Figure 2A. (a) Subnetwork as identified by dominant

PCA modes, 1st mode (blue) and 2nd mode (red) with a combined

total variance of 99.858%. (b) The percentile contribution of the

principal components. (c) The normalized power of the first two

dominant spatial modes is shown for the largest components.

Found at: doi:10.1371/journal.pcbi.1000196.s005 (0.10 MB TIF)

Figure S6 Results of PCA as instability sets in at the edge

marked D in Figure 2A. (a) Subnetwork as identified by dominant

PCA modes, 1st mode (blue) and 2nd mode (red) with a combined

total variance of 99.989%. (b) The percentile contribution of the

principal components. (c) The normalized power of the first two

dominant spatial modes is shown for the largest components.

Found at: doi:10.1371/journal.pcbi.1000196.s006 (0.10 MB TIF)

Figure S7 The results of the stability analysis are robust against

weight perturbations in the connectivity matrix. A cross section of

the stability diagram in Figure 2A is shown for c = 0.016. The

weights wij of the connection matrix are perturbed randomly, such

that the actual weight, wij 6E, varies with square error, E (color-

coded in legends). With increasing perturbation strength, the

degree of instability grows, but the actual shape of the curve does

not change.

Found at: doi:10.1371/journal.pcbi.1000196.s007 (0.08 MB TIF)

Figure S8 The results of the stability analysis are robust against

perturbations of the excitability parameter, a. A cross section of

the stability diagram in Figure 2A is shown for c = 0.016. The

excitabilities are perturbed randomly for each node dynamics,

such that the actual excitability, a 6E, varies with square error, E

(color-coded in legends). With increasing perturbation strength,

the degree of instability reduces, but the actual shape of the curve

does not change and for large perturbation system dynamics tends

to become unstable.
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Found at: doi:10.1371/journal.pcbi.1000196.s008 (0.08 MB TIF)

Figure S9 Disintegration following change of network topology.

A cross section of the stability diagram in Figure 2A is shown for

c = 0.016. The network is rewired randomly, where p is the

probability of rewiring the existing network. The characteristics of

the cross section are lost for small rewiring probabilities and are

not regained again.

Found at: doi:10.1371/journal.pcbi.1000196.s009 (0.08 MB TIF)

Figure S10 Correlation matrix computed from the simulated

BOLD signals for v R‘. Here, in full analogy to Figure 6, we

computed the BOLD signals from the network dynamics for the

case when the time delays are negligible, i.e., communication

speed between areas is infinite. All other parameters are identical

as in Figure 6.

Found at: doi:10.1371/journal.pcbi.1000196.s010 (0.27 MB TIF)

Table S1 Cross correlations of seed regions for v R‘.

Correlations computed from simulated data. Cross correlation of

seed regions for a network dynamics with negligible time delays. In

full analogy to Table 2, positive correlations are denoted by ‘+’

and negative correlations by ‘2’. Circle indicates deviation from

experimental findings.

Found at: doi:10.1371/journal.pcbi.1000196.s011 (0.03 MB

DOC)
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