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Abstract

Formation of amyloid-like fibrils is involved in numerous human protein deposition diseases, but is also an intrinsic property
of polypeptide chains in general. Progress achieved recently now allows the aggregation propensity of proteins to be
analyzed over large scales. In this work we used a previously developed predictive algorithm to analyze the propensity of
the 34,180 protein sequences of the human proteome to form amyloid-like fibrils. We show that long proteins have, on
average, less intense aggregation peaks than short ones. Human proteins involved in protein deposition diseases do not
differ extensively from the rest of the proteome, further demonstrating the generality of protein aggregation. We were also
able to reproduce some of the results obtained with other algorithms, demonstrating that they do not depend on the type
of computational tool employed. For example, proteins with different subcellular localizations were found to have different
aggregation propensities, in relation to the various efficiencies of quality control mechanisms. Membrane proteins,
intrinsically disordered proteins, and folded proteins were confirmed to have very different aggregation propensities, as a
consequence of their different structures and cellular microenvironments. In addition, gatekeeper residues at strategic
positions of the sequences were found to protect human proteins from aggregation. The results of these comparative
analyses highlight the existence of intimate links between the propensity of proteins to form aggregates with b-structure
and their biology. In particular, they emphasize the existence of a negative selection pressure that finely modulates protein
sequences in order to adapt their aggregation propensity to their biological context.
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Introduction

The conversion of peptides and proteins into insoluble fibrillar

aggregates is the hallmark of ca. 40 human diseases [1–2]. It is now

clear, however, that the formation of such well-organized fibrillar

aggregates, generally referred to as amyloid fibrils when deposition

occurs extracellularly, is not a characteristic of the few unfortunate

sequences associated with protein deposition diseases, but a generic

property of polypeptide chains [3]. This novel concept has raised the

question as to how protein aggregation is prevented effectively in

living organisms. Molecular chaperones and several dedicated

cellular quality control mechanisms can fulfill this requirement [4–

5]. However, it has also emerged that proteins have evolved

numerous sequence and structural adaptations to counteract their

natural tendency to aggregate into amyloid-like fibrils [6].

The generality of amyloid fibril formation has also suggested that

this phenomenon may be governed by simple and rationalizable

physicochemical factors, leading to the development of algorithms

capable of predicting aggregation parameters of unstructured

polypeptides directly from their amino acid sequence [7–14].

Computational methods based on atomistic description and/or

molecular dynamics were also developed [15–20]. These algorithms

have the potential to predict a number of aggregation-related

parameters, including the aggregation rate or aggregation propensity

of a polypeptide chain, the regions of the sequence that promote

aggregation and the effect of mutations on the aggregation behavior.

The simplicity of the sequence-based algorithms allowed their

application to the systematic analysis of all the protein sequences

composing the proteomes of one or more living organisms [21–

25]. By using this strategy, Serrano and co-workers demonstrated

that intrinsically disordered proteins have a lower aggregation

propensity than globular proteins [21]. The same group also

showed that in proteins from E. coli positions flanking aggregation-

promoting regions are enriched with residues with a low

aggregation propensity, such as proline, arginine, lysine, glutamate

and aspartate [22]. Interestingly, when the analysis is restricted to

the most highly aggregation-promoting regions, only proline,

lysine and arginine become dominant at these flanking positions

[22]. The over-representation of such residues at these positions

can result from their physicochemical properties, as well as from

the ability of E. coli co-translational chaperones to recognize them

when associated with hydrophobic stretches [22].

In another work the entire proteomes of D. melanogaster, S.

cerevisiae and C. elegans were analyzed [23]. Proteins normally

forming oligomeric complexes were found to have an aggregation

score lower than those operating in a free form in all three

organisms [23]. This was explained by considering that oligomer-

forming proteins are at risk for aggregation as they constantly

interact with other polypeptide chains. In addition, essential

proteins were found to have a lower aggregation score than non-

essential proteins, emphasizing the evolutionary pressure that has

acted on the former to minimize their aggregation propensity [23].
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Using another independently developed algorithm, Tartaglia and

co-workers demonstrated that the average aggregation propensity

of a proteome correlates inversely with the complexity and

longevity of the related organism, underlining the importance of

studying each organism independently [24]. The same authors

found that in the proteome of the yeast S. cerevisiae proteins with

different functions, as well as proteins featuring different

subcellular localizations, have very different aggregation potentials

[25].

In this work we use a previously developed algorithm [8,11,26]

to analyze the 34,180 protein sequences of the human proteome.

The algorithm is based on simple characteristics of the primary

sequence, such as hydrophobicity, b-sheet propensity and charge,

previously recognized to be important determinants of the

aggregation process [7]. It predicts the fibril elongation rate of

an initially unstructured polypeptide chain as well as the regions of

the sequence that promote its aggregation, and has been

extensively validated against experimental data [8,11,26]. This

algorithm represents therefore a valid and straightforward

computational tool to quantify the intrinsic aggregation propen-

sities of a large quantity of protein sequences and identify the

aggregation-promoting regions within them.

The application of this computational tool to the human

proteome enabled us to recognize unprecedented features,

including an inverse correlation between aggregation propensity

and protein length, and a discrepancy between the aggregation

propensities of proteins taking the secretory pathway (operating in

the endoplasmic reticulum, Golgi apparatus, lysosomes and

extracellular media) and those operating in other intracellular

compartments (nucleus, mitochondria, ribosomes, cytoskeleton).

We were also able to reproduce some of the results obtained with

other algorithms, demonstrating that the results obtained do not

depend on the type of computational tool employed, and cross-

validating the different existing algorithms. In addition, the

previously published results have in general been obtained by

studying prokaryotes like E. coli or low-complexity eukaryotes like

S. cerevisiae, whereas our analysis focuses entirely on the human

proteome. Our results also show that different structural

subpopulations of the human proteome have actually different

average aggregation propensities, whereas proteins involved in

protein deposition diseases do not differ extensively from the

human proteome taken at a whole in terms of aggregation

propensity. Taken together, these results lend further support to

the view that modulation of the aggregation propensity has been a

driving force in protein evolution. It also helps identify the

categories of human proteins that are at risk for aggregation and

need a more strict control by the cellular machinery.

Results/Discussion

Determination of the Aggregation Propensity of All
Proteins from the Human Proteome

We have used a predictive algorithm [11,26] to calculate the

aggregation propensity of every protein sequence of the human

proteome. A set of parameters were calculated for each of the

34,180 sequences (Figure 1; see also Methods, Protocol S1, and

Figure S2):

– the average aggregation propensity of the sequence (Zagg) and

the intrinsic aggregation propensity profile (Zprof
agg), i.e. the

variation of aggregation propensity across the sequence;

– the frequency of the aggregation peaks (f peaks), i.e. the number

of stretches of at least 3 consecutive residues with an

aggregation propensity Zi
agg higher than 1, divided by the

number of residues in the sequence;

– the average length of all the aggregation peaks present in the

sequence (Lpeaks);

– the area of each aggregation peak, i.e. the surface under the

peak that lies above the threshold of Zi
agg = 1 (Sagg); Sagg was

then normalized by both the protein length (Sagg/Lprotein) and

the number of peaks (Sagg/Npeaks).

All membrane intrinsic proteins (5,279 sequences) were

removed from the database and analyzed separately, as they

differ significantly from the non-membrane proteins in terms of

charge and hydrophobicity [27], parameters that are preponder-

ant in determining the aggregation propensity of a protein [7].

The distributions of the aggregation parameters over the human

proteome cleared from the membrane protein were analyzed (see

Figure S1). The protein length (Lprotein) and the aggregation

propensity (Zagg) have a log-normal and a normal distribution,

Figure 1. Definition of the aggregation parameters calculated
for a sequence. The aggregation propensity profile and the
parameters shown in the figure refer to the peptide A-Dan, used here
as an example. Red area: surface of the aggregation peaks (Sagg); green:
flanking positions.
doi:10.1371/journal.pcbi.1000199.g001

Author Summary

Amyloid-like fibrils are insoluble proteinaceous fibrillar
aggregates with a characteristic structure (the cross-b
core) that form and deposit in more than 40 pathological
conditions in humans. These include Alzheimer’s disease,
Parkinson’s disease, type II diabetes, and the spongiform
encephalopathies. A number of proteins not involved in
any disease can also form amyloid-like fibrils in vitro,
suggesting that amyloid fibril formation is an intrinsic
property of proteins in general. Recent efforts in under-
standing the physico-chemical grounds of amyloid fibril
formation has led to the development of several algo-
rithms, capable of predicting a number of aggregation-
related parameters of a protein directly from its amino acid
sequence. In order to study the predicted aggregation
behavior of the human proteome, we have run one of
these algorithms on the 34,180 human protein sequences.
Our results demonstrate that molecular evolution has
acted on protein sequences to finely modulate their
aggregation propensities, depending on different param-
eters related to their in vivo environment. Together with
cellular control mechanisms, this natural selection protects
proteins from aggregation during their lifetime.

Human Proteome Aggregation

PLoS Computational Biology | www.ploscompbiol.org 2 October 2008 | Volume 4 | Issue 10 | e1000199



respectively. The fpeaks, Lpeaks, Sagg/Lprotein and Sagg/Npeaks

parameters do not have well-defined distributions, but approxi-

mate to log-normal distributions when proteins devoid of

aggregation peaks are not taken into account.

Longer Proteins Have Less Pronounced Aggregation
Peaks

We first looked at the dependence of the aggregation

parameters on protein length (Figure 2). When the aggregation

propensities Zagg of all the non-membrane proteins of the human

proteome are plotted against their lengths in amino acid residues,

no significant correlation is apparent (Figure 2A). To limit the

influence of the outlying longest proteins on the x2 calculation of

the linear correlation, polypeptide chains longer than 3,000

residues (0.6% of the proteome) were excluded from the analysis.

In addition, for each protein length interval of 50 residues, a single

Zagg value was determined as the average value of all proteins

falling in that interval. This allows the different intervals to have

similar weights in the correlation, regardless of the number of

proteins present in each case. Following these procedures, no

correlation is found between Zagg and protein length (Figure 2B).

The absence of correlation persists when different interval lengths

or length thresholds are used for the analysis. Similarly to Zagg, the

frequency of aggregation peaks (fpeaks) and their average length

(Lpeaks) do not change with protein length (Figure 2C and 2D). On

the contrary, the total surface of the aggregation peaks normalized

either by the protein length (Sagg/Lprotein) or by the number of

peaks (Sagg/Npeaks), correlate inversely with protein length

(Figure 2E and 2F). The R and p values obtained by analyzing

the plots with a best-fitting procedure and a linear function

indicate that such correlations are significant (Figure 2E and 2F).

However, the dependence of Sagg/Lprotein and Sagg/Npeaks on

protein length seems to be rather exponential or hyperbolic

(Figure 2E and 2F). Again, these results appear to be robust and

independent of the calculation method. From this analysis it can

be concluded that long proteins have, on average, less effective

aggregation-promoting regions than those present in short ones.

These results imply that while aggregation-prone residues are

present to similar extents in long and short proteins, their

clustering within short segments of the sequence is less pronounced

in long proteins. This feature has been demonstrated to be an

important determinant of the aggregation rate of a model

unstructured polypeptide chain [26], as well as of a set of proteins

(G-G. Tartaglia and M. Vendruscolo, personal communication).

For example, in apoMb1–29, a model unstructured polypeptide

that encompasses the first 29 residues of horse heart apomyoglo-

bin, the clustering of aggregation-prone residues in a narrow

region of the sequence was found to enhance dramatically the

aggregation rate [26]. Why have long proteins evolved to have less

pronounced aggregation peaks and, as a consequence, slower

aggregation rates? Reduced aggregation peaks could counteract

the fact that long proteins have, with respect to short ones, pI

closer to neutrality [28], a higher number of stretches of

alternating hydrophobic-hydrophilic residues [29], and slower

folding rates [30]. All these features have indeed been demon-

strated to increase the aggregation propensity of an unstructured

polypeptide [7,31–33].

Interestingly, it has been shown that two major cytosolic

mammalian chaperones, namely Hsc70 and the chaperonin TriC,

interact preferentially with large proteins [34]. A large fraction of

the Hsc70 protein substrates is heavier than 50 kDa [34]. The

chaperonin TRiC interacts predominantly with proteins between

30 and 60 kDa, but also with several larger proteins, with the

2000-residue myosin heavy chain representing its heavier

identified substrate [34–35]. It is noteworthy that the lower size

limits of Hsc70 and TriC substrates correspond approximately to

the inflection points of the exponential dependences of the

parameters Sagg/Lprotein and Sagg/Npeaks on protein length

(Figure 2E and 2F). In eukaryotes long proteins also tend to be

expressed at lower levels than short ones [36–37], which reduces

their local concentration and thus their susceptibility to aggregate.

This comparative analysis suggests that diverse complementary

mechanisms could have been developed through evolution to

counteract the particular susceptibility of long proteins to

aggregate. In addition to an assisted folding by chaperones and

reduced expression levels, our results show that long protein

sequences themselves have probably been constrained by evolu-

tion to reduce their intrinsic aggregation propensity, through an

attenuation of their aggregation-prone regions.

Proteins with Different Subcellular Localization Have
Different Aggregation Propensities

We then compared the distributions of the various aggregation

parameters in proteins from different subcellular localizations

(Figures 3 and 4; Table 1, lines 1–8). Membrane proteins were

excluded from the analysis. Subcellular localizations can be

divided in two groups. The proteins that take the secretion

Figure 2. Dependence of the aggregation parameters on
protein length. (A) All proteins are reported with their individual
values of Zagg and protein length. For graphical convenience, the log of
the protein length is represented. (B–F) Each point represents the
average value over all the sequences having a length comprised in an
interval of 50 residues. The membrane proteins are excluded from all
the analyses reported in the figure. Solid lines (E–F) represent the best
fits to an exponential function. The sizes of the substrates typically
targeted by the chaperones Hsc70 and TriC [34–35] are indicated as
horizontal solid lines (E–F).
doi:10.1371/journal.pcbi.1000199.g002
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pathway are more prone to aggregate than the human non-

membrane proteins taken as a whole (Figure 3; Figure 4A–4E;

Table 1, lines 1–4). Indeed, all the aggregation parameters of

proteins from the endoplasmic reticulum, the extracellular media

and the lysosomes are systematically higher than the ones of the

human non-membrane proteins in general (Figure 4A–4E;

Table 1, lines 1,3,4). None of the proteins from the endoplasmic

reticulum and the lysosomes and only 0.6% of the proteins from

the extracellular media are devoid of aggregation peaks (Figure 3).

Golgi proteins are also more prone to aggregate than human non-

membrane proteins (Figure 3; Figure 4A–4E; Table 1, line 2). In

this case the discrepancy is less marked, probably due to the lower

amount of sequences analyzed. On the contrary, intracellular

districts like the nucleus, cytoskeleton and ribosomes contain

proteins with particularly low propensities to aggregate, according

to every parameter analyzed (Figure 3; Figure 4F–4J; Table 1,

lines 6–8). The case of the mitochondria is intermediate between

these two cases (Figure 4F–4J; Table 1, line 5). The peculiarity of

this organelle in terms of aggregation propensity may reflect its

prokaryotic origin. To exclude a possible bias due to the presence

of specific signal peptides in the protein sequences of some

compartments, the analysis was repeated after removing signal

peptides from the protein sequences contained in our databases

(see Methods). This correction did not modify the above-

mentioned results (Table 1, lines 1–8).

How can the discrepancy between proteins taking the secretion

pathway and proteins confined to the intracellular media be

explained? Since proteins targeted for secretion or for other

cellular compartments on the way to secretion operate in areas

where chaperones are poorly represented, several strict quality

control mechanisms check whether such proteins are properly

folded or not [5,38]. This high level of extrinsic cellular control

balances and enables proteins with high intrinsic aggregation

propensities. On the contrary, in E. coli, periplasmic proteins have

Figure 3. Percentages of proteins without aggregation peaks in
different populations. The number of sequences composing each
population is given in parentheses.
doi:10.1371/journal.pcbi.1000199.g003

Figure 4. Cumulative distributions of the aggregation param-
eters in populations regrouping proteins from different
subcellular localizations. Black: proteome without membrane
proteins (28,901 sequences); purple: proteins from the endoplasmic
reticulum (331 sequences); dark blue: proteins from the Golgi apparatus
(93 sequences); light blue: proteins from the extracellular media (499
sequences); green: proteins from lysosomes (113 sequences); grey:
mitochondrial proteins (667 sequences); yellow: nuclear proteins (4,898
sequences); orange: proteins of the cytoskeleton (456 sequences); red:
ribosomal proteins (163 sequences). The membrane proteins were
excluded from all the subcellular populations analyzed.
doi:10.1371/journal.pcbi.1000199.g004
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been demonstrated to be more resistant to aggregation than

cytoplasmic ones, in relation to the paucity of quality control

machineries and molecular chaperones in the bacterial periplasm

[39]. The differences observed in the aggregation propensities of

proteins from different compartments can also partially reflect the

different proportions of intrinsically disordered proteins in these

compartments (see below; [40]), or differences in the conditions in

which proteins fold. Different organelles can differ in terms of pH,

redox potential, presence of proteases, molecular crowding, and

types and abundance of chaperones [41–42]. In particular, it has

been shown experimentally that the nuclear compartment creates

an environment that renders proteins more prone to denaturate

[42–43], which is in good agreement with our data. Thus, protein

sequences would be precisely adapted to the conditions in which

they evolve in vivo.

Remarkably, using a different predictive algorithm applied on

the proteome of the yeast S. cerevisiae, Tartaglia and colleagues

ordered the subcellular areas according to the b-aggregation

propensity of their proteins and obtained the same ranking [25].

The agreement between these two analyses on evolutionary distant

eukaryotic organisms, such as S. cerevisiae and H. sapiens,

emphasizes the generality of the observed phenomena. Evolution

seems to have modulated the average aggregation propensities of

different subcellular areas in a similar manner in such distantly

related organisms.

Membrane Proteins, Intrinsically Disordered Proteins, and
Folded Proteins Have Different Aggregation Propensities

We performed the same comparative analysis on different

populations of the human proteome. Membrane proteins have

significantly higher values of every aggregation parameter

analyzed than the whole human proteome (Figure 5A–5E;

Table 1, line 9). Moreover, only 0.3% of membrane proteins do

not contain aggregation peaks, whereas this fraction rises to 7.9%

for the whole human proteome (Figure 3). Thus, membrane

proteins constitute a very distinct and peculiar group.

The intrinsically disordered proteins form another distinct

group. In our analysis we considered proteins or protein segments

(.40 residues) that were experimentally shown to be intrinsically

disordered (43 sequences; see Methods for details). For all the

parameters studied, the values of the intrinsically disordered

proteins were particularly low, and significantly lower than the

corresponding parameters from the reference database (Figure 5A–

5E; Table 1, line 10). A majority of them (63%) do not contain any

aggregation peak at all (Figure 3).

We then used the SCOP-derived database ASTRAL40 [44] to

have an experimentally determined population of folded human

proteins (1,391 sequences). Proteins from the ASTRAL40

database have higher values of Zagg, fpeaks and Sagg/Lprotein than

the reference database, most probably due to the significant

proportion of intrinsically disordered proteins in the latter

Table 1. Comparisons between the aggregation parameters in different populations.

Analyzed population Reference population Lprotein Zagg f peaks Lpeaks Sagg/Lprotein Sagg/Npeaks

Endoplasmic reticuluma all except membrane proteins +++ +++ +++ +++ +++ +++

Golgi apparatusa all except membrane proteins +++ n.s. n.s. +++ n.s.c ++

Extracellular mediaa all except membrane proteins 2 2 2 +++ +++ +++ +++ +++

Lysosomesa all except membrane proteins +++ +++ +++ +++ +++ +++

Mitochondriaa all except membrane proteins 2 2 2 +++ +++ 2 2 n.s.c 2 2

Nucleusa all except membrane proteins +++ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Cytoskeletona all except membrane proteins +++ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Ribosomesa all except membrane proteins 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Membrane proteins all +++ +++ +++ +++ +++ +++

Intrinsically disordered proteins all except membrane proteins 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Folded proteins all except membrane proteins 2 2 2 +++ +++ 2 2 2 +++ 2 2 2

Proteins forming fibrillar aggregates in vivob all except membrane proteins 2 +++ ++ n.s. +d n.s.

Proteins from the extracellular media forming
fibrillar aggregates in vivob

extracellular media 2 2 2 +d n.s. n.s. n.s. 2 2

Proteins from the cytoskeleton forming
fibrillar aggregates in vivob

cytoskeleton n.s. n.s. n.s. n.s. n.s. 2d

Folded proteins forming fibrillar aggregates
in vivob

folded proteins n.s. n.s. n.s. n.s. n.s. n.s.

Folded proteins forming fibrillar aggregates
in vitro

folded proteins 2 n.s. n.s. n.s. n.s. n.s.

The distributions of the aggregation parameter values of the analyzed population are compared to the ones of the reference population using statistical tests (see
Methods).
+++ and 222 indicate that the analyzed population has a distribution significantly (p,0.001) shifted to higher or lower values than the reference population in the
statistical tests performed, respectively. ++ and 22, idem (p,0.01). + and 2, idem (p,0.05).
n.s., the distributions of the analyzed and reference populations are not significantly different (p.0.05).
aThe results remain unchanged when the sequences without signal peptides of the corresponding subcellular districts (membrane proteins excluded) are compared
with a reference database composed of all the human non-membrane protein sequences without the identified signal peptides.

bProteins forming amyloid fibrils and intracellular inclusions with amyloid-like characteristics.
cThe distributions of the two populations differ significantly although their median values are not significantly different (significant differences in the Kolmogorov-
Smirnov test and not in the Mann-Whitney test).

dThe difference was significant in the Mann-Whitney test but not in the Kolmogorov-Smirnov test (parameter lacking a defined distribution).
doi:10.1371/journal.pcbi.1000199.t001
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(Figure 5A, 5B, and 5D; Table 1, line 11). However, such folded

proteins have all aggregation parameters significantly higher than

intrinsically disordered proteins (Figure 5A–5E). Linding and co-

workers also compared intrinsically folded and disordered proteins

[21]. The analysis was performed with a different algorithm for the

prediction of b-aggregation, using only experimentally character-

ized proteins and with no restriction on the organism of origin

[21]. Following this approach these authors obtained a similar

separation between intrinsically folded and disordered proteins,

and similar values for the frequency of aggregation-prone regions

and percentage of proteins without aggregation-prone regions in

these two populations [21].

The differences in the aggregation propensities between the

membrane, folded and intrinsically disordered proteins could

possibly arise from their different structures. In membrane proteins,

pronounced aggregation peaks are perfectly soluble in the lipid

bilayer, as they are mostly hydrophobic [45]. Folded proteins can

also tolerate aggregation-prone regions, because such segments are

generally buried in the hydrophobic core of the protein, and thus

protected from inter-molecular interactions [6,21,46]. On the

contrary, intrinsically disordered polypeptides expose the whole

backbone to the solvent, and thus need peculiar sequence

adaptations to reduce their aggregation propensities [6,47].

Fibril Forming Proteins Do Not Differ Extensively from
the Other Human Proteins

Proteins that were found to form amyloid fibrils or structurally

related intracellular inclusions in the context of human protein

deposition diseases were also analyzed (31 sequences; see Protocol

S1 for a list). Proteins containing a poly-Gln stretch like huntingtin

were excluded from this list, as they aggregate through a different

mechanism [48]. Disease-related proteins are not found to be

systematically different from the other human non-membrane

proteins. Their Zagg and fpeaks values are significantly higher than

those of the reference database (Figure 5F–5G; Table 1, line 12).

However, the distributions of Lpeaks and Sagg/Npeaks are not

significantly different (Figure 5H and 5J; Table 1, line 12). The

distributions of Sagg/Lprotein differ to some extent, but we cannot

exclude that such difference arises from the shorter average length

of disease-related proteins with respect to the reference proteins

(Figure 5I; Table 1, line 12).

As described above proteins, from different subcellular com-

partments have different aggregation propensities. We thus

compared groups of proteins forming fibrillar aggregates in vivo

with proteins from the corresponding subcellular districts. This

was performed on fibril-forming proteins from the extracellular

media (23 sequences; Table 1, line 13) and from the cytoskeleton

(3 sequences; Table 1, line 14), comparing them with all

extracellular and cytoskeleton proteins, respectively. In these two

comparative analyses the differences between proteins forming

fibrils in vivo and corresponding human proteins are not

significant (Table 1, lines 13–14). Similar comparative analyses

could not be carried out for the other subcellular compartments as

the numbers of fibril-forming sequences were insufficient for

statistical analyses.

Finally, we compared the folded proteins associated with

diseases (15 sequences; see Protocol S1 for a list) with the

reference database of folded human proteins (ASTRAL40). None

of the aggregation parameters appeared to be significantly

different (Figure 5F–5I; Table 1, line 15). Similarly, 10 non-

disease folded proteins shown to form amyloid-like fibrils in vitro

(see Protocol S1 for a list) do not differ for any of the aggregation

parameters from the folded proteins of the ASTRAL40 database

(Table 1, line 16).

All these analyses support the view that no fundamental

differences exist in terms of intrinsic aggregation propensity

between proteins related to protein deposition diseases and the

remainder of the human proteome. This result cannot be due to

Figure 5. Cumulative distributions of the aggregation param-
eters in different populations. Grey: all proteome (34,180 sequenc-
es); pink: membrane proteins (5,279 sequences); black: proteome
without membrane proteins (28,901 sequences); green: folded proteins
(ASTRAL40 database; 1,391 sequences); blue: intrinsically disordered
proteins (43 sequences); red: proteins forming amyloids or related
intracellular inclusions in vivo and associated with human diseases (31
sequences); orange: folded proteins forming amyloids or related
intracellular inclusions in vivo and associated with human diseases
(15 sequences).
doi:10.1371/journal.pcbi.1000199.g005
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an inability of the used algorithm to detect differences in the

aggregation propensities of two populations of proteins when they

actually exist, as demonstrated by the remarkable discrepancies

observed between proteins from different subcellular compart-

ments (Figure 4) and between membrane, folded and intrinsically

disordered proteins (Figure 5). On the contrary, this finding

explains why proteins that are not associated with recognized

protein deposition diseases also have an inherent ability to form

amyloid-like fibrils in vitro [3,49]. It also suggests that the reason

why only a limited number of human proteins give rise to protein

deposition diseases has to be sought in the biology of such proteins,

rather than in specific traits dictated by their amino acid

sequences. These concepts have been proposed for the first time

almost a decade ago following individual experimental observa-

tions [3]. The result obtained here at the genomic scale is a strong

argument to support them.

Human Proteins Have Evolved To Secure Gatekeeper
Residues at Positions Flanking the Peaks

We analyzed the amino acid composition in the aggregation

peaks, their flanks, i.e. the regions of the sequence immediately

preceding and following the peaks (see Methods for an accurate

definition of the flanks) and the rest of the sequence (‘‘valleys’’). As

expected, residues with high intrinsic aggregation propensity, like

Trp, Phe, Tyr, Cys, Val, Ile and Leu, are mostly found inside the

peaks, whereas residues with low aggregation propensity, like Pro,

Arg, Lys, Asp and Glu, are poorly represented in the peaks

(Figure 6A). The latter are particularly highly represented at the

flanks, where they are more frequent than in both the peaks and

valleys (Figure 6A). On the contrary, residues with high intrinsic

aggregation propensity are poorly represented at the flanks and

even less frequent than in the valleys (Figure 6A). Thus, our

definition of flanks corresponds to a portion of the protein

sequences with a very specific amino acid residue composition.

Strikingly, the relative distributions of Pro, Arg, Lys, Asp and

Glu at the flanking positions change with peak length. While Pro,

Arg and Lys frequencies at the flanks increase significantly with

peak length, Asp and Glu frequencies decrease (Figure 6B).

Rousseau and colleagues obtained similar results on the E. coli

proteome, using TANGO as a predictive algorithm of b-

aggregation propensity [22]. The full agreement between the

two algorithms, even after a fine analysis such as the frequency of

specific residues at flanking positions and their dependence on

peak length, offers a cross-validation of both computational

methods and underlines the generality of the observation.

Thus, our results confirm the role of Pro, Arg and Lys as

‘‘gatekeeper residues’’ at the flanks of the aggregation peaks,

protecting proteins with particularly extended peaks from

aggregation. This specific role of these residues can be rational-

ized. Pro is conformationally constrained and thus an efficient

breaker of b-structures. Arg and Lys are charged, and their long

and flexible side-chains make the aggregation process entropically

disadvantageous. Moreover, Arg and Lys have been shown to be

specifically recognized by the most common chaperones when

associated with hydrophobic stretches (reviewed in [22]).

Conclusions
The analysis of the human proteome presented here has

revealed that protein sequences have been constrained by

evolution to finely modulate their aggregation propensity depend-

ing on their length, subcellular localization, and conformation. It

has revealed a striking synergy between the evolution of protein

sequences and biology. Modulation of the intrinsic aggregation

propensity of protein sequences by molecular evolution on the one

hand, and cellular protective mechanisms on the other hand, act

as complementary strategies to prevent proteins to aggregate

during their lifetime. The opportunities offered by a bioinformatics

approach that uses experimentally tested and cross-validated

algorithms are enormous. They will offer in the future new

strategies not just to understand the link between protein

aggregation and evolution, but also to learn the ‘‘tricks’’ set up

by Nature to effectively control protein aggregation in highly

crowded environments of living organisms.

Methods

Datasets
All the datasets cited in this work are available as Protocol S1 or

upon request. The ‘‘entire human proteins’’ dataset has been

downloaded from the ftp site of the National Center for

Biotechnology Information (NCBI) as fasta-formatted translations

of an mRNA collection (RefSeq database). The ‘‘intrinsically

disordered proteins’’ dataset has been extracted as fasta-formatted

sequences from the Database of Protein Disorder (DisProt), release

3.5 [50] using ‘‘homo sapiens’’ as a keyword for the ‘‘search by

source organism’’ filter. Swiss-Prot based accession numbers were

synchronized with the ‘‘entire human proteins’’ dataset (with

NCBI based protein identifiers, GIs) with automated local BLAST

searches [51]. The dataset was then adjusted to include both fully

disordered proteins and non-redundant non-overlapping protein

fragments of length .40 residues extracted from full sequences of

partially disordered proteins. The ‘‘verified structured proteins’’

Figure 6. Gatekeeper residues in the human proteome. (A)
Amino acid frequencies at different positions, relative to their global
frequencies in the human proteome. A relative frequency of 1.0 for a
given residue at a given position means that the residue occupies that
position with a frequency identical to that in the whole human
proteome. Black: inside the aggregation peaks; grey: at the flanking
positions; white: outside the aggregation peaks and far from the flanks
(‘‘valleys’’). (B) Dependence of the frequencies of the gatekeepers at the
flanks on the length of the aggregation peak. Filled circles: average
frequencies of Pro, Arg and Lys; empty circles: average frequencies of
Asp and Glu. The membrane proteins are removed from the database.
doi:10.1371/journal.pcbi.1000199.g006
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dataset has been obtained as fasta-formatted sequences from the

ASTRAL40 database, release 1.71 [44]. Each protein in this

dataset shares less than 40% sequence identity with all other

proteins.

Information on protein subcellular localization has been

extracted from Gene Ontology (GO) annotations [52]. Subgroups

were constructed according to the following GO terms: integral to

membrane (GO:0016021; 5279 sequences), lysosomes

(GO:0005764; 113 sequences), nucleus (GO:0005634; 4898

sequences), mitochondria (GO:0005739; 667 sequences), Golgi

apparatus (GO:0005794; 93 sequences), endoplasmic reticulum

(GO:0005783; 331 sequences), cytoskeleton (GO:0005856; 456

sequences), ribosomes (GO:0005840; 163 sequences) and extra-

cellular media (GO:0005615; 499 sequences).

In a second time, all the above-mentioned datasets were rebuilt

by removing signal peptides as a possible source of bias due to

their peculiar amino acid composition. The position and extension

of the signal peptides were taken, when available, from NCBI

Protein database by an automatic and systematic analysis of

protein annotations.

Other datasets include: proteins forming amyloid fibrils or

intracellular inclusions with amyloid-like characteristics, all related

to protein deposition diseases (with the exception of proteins

containing a poly-Gln segment as they aggregate through a

different mechanism); a subpopulation of these proteins containing

only the folded ones; proteins forming amyloid-like fibrils in vitro,

but unrelated to protein deposition diseases. These databases have

been constructed by extensive search in literature and are listed in

Protocol S1.

Determination of Aggregation Parameters
The parameters Zagg, Zprof

agg, fpeaks, Lpeaks and Sagg have been

determined for each protein sequence as described in Protocol S1,

and previously [11,26].

Flanking Regions and Gatekeepers
The definition of flanking regions has been accurately refined by

a recursive procedure aimed at avoiding overlaps of flanks with

neighbor peaks. The algorithm we used has two parameters for

defining both the position (Fp) and length (Fl) of the flank. Given a

region of the sequence defined as the pattern oooooo^^^^^oooooo,

(^ = residue with zi
agg$1, o = residue with zi

agg,1), Fp defines the

starting position of the flank from both extremities of the peak and

Fl defines the length of the flank at both extremities. The

optimized values were found to be Fp = 23 (the flanks start from

the residue o that is 3 residues distant from the first, or last, residue

^) and Fl = 3 (see Figure 1, or consider the pattern

oooooo^^^^^oooooo, where flanks are underlined). These values

were valid for peaks of every length.

Amino acid compositions of peaks, flanks, peaks-free regions

and whole sequence were calculated, for each naturally occurring

amino acid, according to:

Fp
r ~ 100

Lp

Pp

j~1

nr,j F f
r ~ 100

Lf

Pf

j~1

nr,j Fg
r ~ 100

Lg

Xg

j~1

nr,j ð1Þ

where Fr
p, Fr

f, Fr
g are the percentages of the rth amino acid residue

in peaks, flanks and global respectively; p, f and g are the number

of peaks, flanks and protein, respectively; and Lp ,Lf and Lg are the

total peak, flank and protein length calculated over the whole

dataset, respectively.

Statistics
The distributions of the aggregation parameters of two different

protein populations were compared using the Student, Mann-

Whitney and Kolmogorov-Smirnov tests for Zagg and the log of

Lprotein (normal distributions), and Mann-Whitney and Kolmo-

gorov-Smirnov tests for the other parameters studied (fpeaks, Lpeaks,

Sagg/Lprotein and Sagg/Npeaks).

Some of the parameters studied have a log-normal distribution,

and have to be statistically analyzed in a different way than

parameters with a normal distribution. For a normally distributed

parameter X, the interval m(X)6SD(X) (where m(X) and SD(X) are

the arithmetic mean and associated standard deviation of X,

respectively) covers a probability of 68.3%. For a parameter Y

having a log-normal distribution, the same probability is covered

by m[log(Y)]6SD[log(Y)] or by m*(Y) N/SD*(Y), where m*(Y) =

em[log(Y)] is the geometric mean of Y, SD*(Y) = eSD[log(Y)] is the

multiplicative standard deviation of Y, and N/means ‘‘times/

divided by’’. The importance of log-normal distributions in

biology and the way to analyze them were previously discussed

[53].

Supporting Information

Figure S1 Distributions of the aggregation parameters in the

human proteome. All the non-membrane proteins are considered

in the analysis (28,901 sequences). For parameters that do not have

a normal distribution, their log-normal distribution is given in

insets.

Found at: doi:10.1371/journal.pcbi.1000199.s001 (1.43 MB TIF)

Figure S2 Independence of magg (A) and sagg (B) on protein

length.

Found at: doi:10.1371/journal.pcbi.1000199.s002 (0.22 MB TIF)

Protocol S1 Supporting Information

Found at: doi:10.1371/journal.pcbi.1000199.s003 (0.12 MB RTF)
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27. Tusnády GE, Simon I (1998) Principles governing amino acid composition of
integral membrane proteins: application to topology prediction. J Mol Biol 283:

489–506.
28. Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, et al. (2007)

The relationships between the isolelectric point and the length of proteins,

taxonomy and ecology of organisms. BMC Genomics 8: 163.
29. Wong P, Fritz A, Frishman D (2005) Designability, aggregation propensity and

duplication of disease-associated proteins. Protein Eng Des Sel 18: 503–508.
30. Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, et al. (2003)

Contact order revisited: influence of protein size on the folding rate. Protein Sci

12: 2057–2062.
31. West MW, Wang W, Patterson J, Mancias JD, Beasley JR, et al. (1999) De novo

amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A
96: 11211–11216.

32. Schmittschmitt JP, Scholtz JM (2003) The role of protein stability, solubility, and

net charge in amyloid fibril formation. Protein Sci 12: 2374–2378.

33. Idicula-Thomas S, Balaji PV (2007) Correlation between the structural stability

and aggregation propensity of proteins. In Silico Biol 7: 0023.

34. Thulasiraman V, Yang CF, Frydman J (1999) In vivo newly translated

polypeptides are sequestered in a protected folding environment. EMBO J 18:

85–95.

35. Srikakulam R, Winkelmann DA (1999) Myosin II folding is mediated by a

molecular chaperonin. J Biol Chem 274: 27265–27273.

36. Coghlan A, Wolfe KH (2000) Relationship of codon bias to mRNA

concentration and protein length in Saccharomyces cerevisiae. Yeast 16:

1131–1145.

37. Lemos B, Bettencourt BR, Meiklejohn CD, Hartl DL (2005) Evolution of

proteins and gene expression levels are coupled in Drosophila and are

independently associated with mRNA abundance, protein length, and number

of protein-protein interactions. Mol Biol Evol 22: 1345–1354.

38. Ni M, Lee AS (2007) ER chaperones in mammalian development and human

diseases. FEBS Lett 581: 3641–3651.

39. Liu Y, Fu X, Shen J, Zhang H, Hong W, et al. (2004) Periplasmic proteins of

Escherichia coli are highly resistant to aggregation: reappraisal for roles of

molecular chaperones in periplasm. Biochem Biophys Res Commun 316:

795–801.

40. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and

functional analysis of native disorder in proteins from the three kingdoms of life.

J Mol Biol 337: 635–645.
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