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Abstract

The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA
sequence. However, less is known about the functional consequences of this encoding. Here, we address this question
using a genome-wide map of ,380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution
of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and
demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new
nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT) tracts are an important
component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large
nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to
their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate
gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin
efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered) chromatin
organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively
open (nucleosome-depleted) organizations over other factor sites, where factors bind without competition.
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Introduction

DNA in eukaryotes is highly packaged into nucleosome arrays,

which together compact ,75–90% of the genome [1]. Because

most DNA is wrapped in nucleosomes, and nucleosomes occlude

their DNA from access to most other DNA binding proteins,

revealing the detailed organization of nucleosomes across genomes

and understanding the mechanisms that control their positioning is

critical for understanding transcription factor binding and thus

transcriptional regulation.

Several studies predicted in vivo nucleosome positions directly

from the DNA sequence [2–6], suggesting that nucleosome

organizations are partly encoded in the genomic sequence itself,

through the nucleosomes’ intrinsic DNA sequence preferences,

which vary greatly between differing DNA sequences [7,8].

However, an intriguing and less explored question concerns the

functional roles that this encoding may have.

Studying this question requires detailed measurements of

nucleosome organizations and availability of large-scale functional

genomic data with which to compare these measurements. We

thus focused on yeast, where many dynamic aspects of

transcriptional regulation have been experimentally measured

genome-wide, and where nucleosome occupancy have been

measured using DNA microarrays [5,9,10]. To improve the

resolution of the measured nucleosome organization, we used a

parallel sequencing technology whose reads are longer than one

nucleosome length, and obtained ,380,000 fully sequenced yeast

nucleosomes, resulting in a genome-wide map of nucleosome

occupancy with high accuracy and dynamic range. While this

manuscript was in review, two other studies that used parallel

sequencing to map nucleosomes were published [11,12].

Here, we first use our map to better understand how

nucleosome organizations are encoded by intrinsic signals in

genomic DNA, and find that the genomic sequence is highly

predictive of nucleosome organizations in yeast. By isolating

nucleosome-bound sequences from fly and human, we further

show that the key positioning signals in yeast are also predictive of

nucleosome organizations in higher eukaryotes. Our results

suggest that the yeast genome utilizes these intrinsic nucleosome

positioning signals to encode both relatively open (nucleosome-

depleted) and relatively closed (nucleosome-covered) chromatin

organizations, resulting in two distinct modes of regulation by

chromatin with different biological functions. In promoters that

encode relatively open chromatin architectures, transcription

factors can access their sites more freely, resulting in a

homogeneous cell population with relatively low cell-to-cell

expression variability, or transcriptional noise. Genes associated

with these promoters are enriched in essential genes and in
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ribosomal protein genes. In contrast, in promoters that encode

relatively closed chromatin architectures, factors compete with

nucleosomes for access to the DNA, resulting in a heterogeneous

cell population with higher transcriptional noise. Genes associated

with these promoters are enriched in non-essential genes and in

genes that are active only in specific biological conditions. Finally,

we provide evidence that the encoding of relatively open and

closed chromatin architectures may also play a role in DNA

replication, such that replication origins that encode open

chromatin organizations initiate replication with higher efficiency.

Taken together, our results reveal new insights into the

mechanisms by which the genomic DNA sequence dictates the

nucleosome organization, and by which genomically encoded

nucleosome organizations may influence chromosome functions.

Results

Obtaining a Single Molecule Map of Nucleosome
Positions

To obtain a single molecule map of yeast nucleosomes, we

isolated mononucleosomes from eight independent biological

replicates and fully sequenced ,503,000 of the nucleosome

DNAs, using a parallel sequencing technology whose sequence

reads are ,200 bp long. Thus, aside from the limitations imposed

by using micrococcal nuclease to isolate nucleosomes, our

approach is optimal for mapping nucleosomes, since it extracts

only the DNA segments of interest with little flanking DNA, and

then reads them in full. Such full length nucleosome reads allow us

to map the nucleosome organization with potentially greater

resolution compared to approaches that map only one nucleosome

end, because the kinetics of nuclease digestion result in

nucleosomal DNA fragments that vary in length relative to the

canonical 147 bp nucleosome, and thus, mapping only one end

leaves considerable uncertainty regarding the location of the other

end, for any given nucleosome DNA molecule. In addition, the

sequencing method affords a large dynamic range, limited only by

the number of sequence reads obtained. Compared to using

microarrays as the readout of nucleosome occupancy, a sequenc-

ing-based approach provides an experimental decomposition of

the average nucleosome occupancy, such as that measured by

microarrays, into discrete nucleosome configurations.

After excluding nucleosomes that map to repetitive regions, we

obtained ,380,000 uniquely mapped nucleosomes such that on

average, every basepair is covered by five nucleosome reads

(Figure 1). To validate our nucleosome map, we compared it to

,100 nucleosome positions mapped using conventional sequenc-

ing [2], three large collections of generic nucleosomes mapped

using microarrays [5,9,10], and two collections of generic [11] and

H2A.Z [13] nucleosomes mapped by sequencing one end of each

nucleosome. Our map shows significant correspondence with all

existing maps but differs in both the detailed locations and

occupancy of many measured nucleosomes (Figure S1).

The Genomic Sequence Is Highly Predictive of
Nucleosome Occupancy

Before exploring the functional consequences of the intrinsically

encoded nucleosome organization, we used the high resolution of

the sequence-based nucleosome map to refine our understanding

of how nucleosome organizations are encoded by the genomic

sequence. Several models for predicting nucleosome positions

from DNA sequence were recently constructed [2–6]. Our

motivation for constructing a new model was twofold. First, none

of these models were constructed from a genome-wide map of

nucleosome positions based on direct sequencing, and we thus

sought to utilize the high resolution and accuracy of such a map

for constructing a model. Our second motivation was to combine

into one model, two primary components that were each,

separately, the basis of the previously published models. One of

these components consists of periodicities of specific dinucleotides

along the nucleosome length, on which earlier models were based

[2,3]. The other component includes sequences that are generally

disfavored by nucleosomes, regardless of their position along the

nucleosome length, whose incorporation was shown to increase

the predictive power [4–6].

Regarding the periodic component, several studies [2,3,14,15]

characterized the nucleosomes’ intrinsic sequence preferences

primarily by ,10 bp periodicities of specific dinucleotides along

the nucleosome length, thought to facilitate the sharp bending of

DNA around the nucleosome [16]. We find similar periodicities in

our new large nucleosome collection, demonstrating that these

periodic dinucleotides are important genome-wide (Figure 2A and

Figure S2). These same periodicities also arise in H2A.Z-

containing nucleosomes [13], and in every in vivo and in vitro

nucleosome collection obtained by direct sequencing from any

organism [2,11,15,17–19]. Moreover, these periodicities are also

present in yeast transcription start sites (Figure 3), worm introns, 59

and 39 UTRs [20], human CpG dinucleotides not in CpG islands

[21], and HIV integration sites in human [22].

Other studies [4–6] focused on sequences that are generally

disfavored by nucleosomes, regardless of their detailed position

along the nucleosome. We thus used our map to systematically

identify sequences that are generally disfavored by nucleosomes,

by extracting from our map contiguous regions not covered by any

nucleosome, and comparing the frequencies of 5-mers in these

linker DNA regions to their frequencies in the nucleosome-bound

sequences. Indeed, we find that many 5-mers are enriched in

linkers, including AAAAA as the most dominant signal, as well as

all other 5-mers composed exclusively of A/T nucleotides, and the

repetitive sequence CGCGC, shown to disfavor nucleosome

Author Summary

The detailed positions of nucleosomes along genomes
have critical roles in transcriptional regulation. Conse-
quently, it is important to understand the principles that
govern the organization of nucleosomes in vivo and the
functional consequences of this organization. Here we
report on progress in identifying the functional conse-
quences of nucleosome organization, in understanding the
way in which nucleosome organization is encoded in the
DNA, and in linking the two, by suggesting that distinct
transcriptional behaviors are encoded through the ge-
nome’s intrinsic nucleosome organization. Our results thus
provide insight on the broader question of understanding
how transcriptional programs are encoded in the DNA
sequence. These new insights were enabled by individually
sequencing ,380,000 nucleosomes from yeast in their
entirety. Using this map, we refine our previous model for
predicting nucleosome positions and demonstrate that
our new model predicts nucleosome organizations in yeast
with high accuracy and that its nucleosome positioning
signals are predictive across eukaryotes. We show that the
yeast genome may utilize these nucleosome positioning
signals to encode regions with both relatively open
(nucleosome-depleted) chromatin organizations and rela-
tively closed (nucleosome-covered) chromatin organiza-
tions and that this encoding can partly explain aspects of
transcription factor binding, gene expression, transcrip-
tional noise, and DNA replication.

Distinct Modes of Regulation by Chromatin
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formation [23] (Figure 2B). Notably, these same 5-mers are

enriched in nucleosome-depleted regions from human [24],

further suggesting that they represent nucleosome-disfavoring

elements, and that such disfavoring elements may be universal.

We thus constructed a probabilistic nucleosome–DNA interac-

tion model that integrates both the (nucleosome-favorable)

position-specific periodic component and the (nucleosome-disfa-

voring) position-independent 5-mer component, and scores the

nucleosome formation potential of every 147 bp sequence as the

ratio between these components (Figure 2C). In our model, the

periodic component dictates the high-resolution positioning of

nucleosomes (known as the rotational setting), because its ,10 bp

periodicity results in strongly correlated scores between genomic

positions separated by 10 bp, and strongly anti-correlated scores

between positions separated by 5 bp. In contrast, the 5-mer

nucleosome-disfavoring component scores each 147 bp sequence

based on the set of its constituent 5-mers without regard to their

exact position within the 147 bp sequence. Thus, scores of the 5-

mer component primarily vary over longer genomic distances and

hence this component dictates the absolute level of nucleosome

occupancy of a region (known as the translational setting).

To validate our new model, we tested whether its predictions

agree with the in vivo nucleosome map at the scale of individual

nucleosomes. Specifically, we defined linkers as contiguous regions

of lengths 50–500 bp that are not covered by any nucleosome, and

evaluated the model’s ability to separate these linkers from sets of

nucleosomes with various levels of occupancy (1, 2, 4, 8, and 16),

where the occupancy of a nucleosome is defined by the number of

nucleosome reads whose center is within 20 bp of its own center.

We then scored each of the resulting linkers and nucleosomes as

the mean score (identical results were obtained by selecting the

max score) that our model assigns to the region that is 20 bp from

the center of the linker or nucleosome, respectively. We used a

cross validation scheme, in which model predictions on any given

chromosome are computed from a model whose parameters were

estimated only from the data of all other chromosomes. This way

we can generate genome-wide nucleosome occupancy predictions

at each chromosome, where the predictions on each chromosome

were computed from models that were trained on other

chromosomes. We use these cross-validation predictions in all of

the following validation analyses.

If the model were fully predictive of our in vivo map, then the

model score of every nucleosomal region would be higher than that

of every linker region. A standard quantification of this predictive

power is the receiver operating characteristic (ROC) curve, whose

area under the curve (AUC) is 1 for perfect performance and 0.5 for

random guessing. We found a near-perfect AUC performance of

0.97 in separating ,8,000 linkers from ,12,000 regions that

contain nucleosomes with a high occupancy of at least 8 nucleosome

reads, and an AUC of 0.89 for separating these ,8,000 linkers from

,84,000 regions that contain nucleosomes with the minimal

possible occupancy of one nucleosome read (Figure 2D). For

Figure 1. Nucleosome organization at two genomic regions. Shown are the raw data measured in this study at two 1000bp-long genomic
regions. Every cyan oval represents the genomic location of one nucleosome that we sequenced in its entirety. Also shown is the average
nucleosome occupancy per basepair predicted by the sequence-based nucleosome model that we developed here (red), the raw hybridization signal
of two microarray-based nucleosome maps [5,10] (green and purple traces), and the locations of nucleosomes that were computationally inferred
from these hybridization signals [5,10] (green and purple ovals). Note that although the nucleosome calls from the microarray maps are close to
nucleosome locations from our map, the microarray map does not reveal the underlying variability in the detailed nucleosome read locations that we
observe in our data. Annotated genes [63], transcription factor binding sites [47], TATA sequences [53], and Poly(dA:dT) elements in the region are
also shown (top).
doi:10.1371/journal.pcbi.1000216.g001

Distinct Modes of Regulation by Chromatin
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Figure 2. Nucleosome positioning signals in genomic sequence. (A) Fraction (normalized, see Methods) of AA/AT/TA/TT and separately, CC/
CG/GC/GG dinucleotides at each position of our center-aligned nucleosome-bound sequences with length 146–148, showing ,10 bp periodicity of
these dinucleotide sets. (B) Many 5-mers are enriched in linker or nucleosome regions. Shown is the distribution of (log base 2) ratios between the
frequency of 5-mers in linker regions and in nucleosomal DNA regions for all 5-mers (green line), and for the 32 5-mers composed exclusively of either
G/C (red bars) or A/T (blue bars) nucleotides. Linkers are taken as contiguous non-repetitive regions of lengths 50–500 bp that are not covered by any
nucleosome read in our data. (C) Illustration of the key features of our probabilistic nucleosome–DNA interaction model, including the periodic
dinucleotides patterns preferred within the nucleosome, and the 5-mers preferred in linkers. (D) Our model classifies linkers from nucleosomal DNA
with high accuracy. Shown is the fraction of all measured nucleosomes that our model correctly classifies as nucleosomes (y-axis; true positive rate)
against the fraction of all measured linkers that our model incorrectly classifies as nucleosomes (x-axis; false positive rate), for each possible threshold
on the minimum score above which our model classifies a region as nucleosomal. The score of each measured nucleosome or linker is the mean score
that our model assigns in the region that is within 20 bp from the center of the nucleosome or linker, respectively. Scores of the model are assigned
using a cross validation scheme, in which every measured nucleosome or linker on a given chromosome is assigned a score using a model that was
trained from the data of all other chromosomes. Linkers are defined as contiguous non-repetitive regions of lengths 50–500 bp that are not covered
by any nucleosome in our data. Results are shown for separating these 8,017 linkers from nucleosomes with various levels of occupancy (1, 2, 4, 8,
and 16), where the occupancy of a nucleosome is defined by the number of nucleosome reads whose center is within 20 bp of its own center. The
number of nucleosomes in each classification group are 84,410 (occupancy 1), 69,703 (occupancy 2), 38,787 (occupancy 4), 12,076 (occupancy 8), and
1,601 (occupancy 16). (E) Shown is the combined nucleosome fold depletion over all homopolymeric tracts of A or T (Poly(dA:dT) elements) of length
k, for k = 5,6,7,…, and for Poly(dA:dT) elements with exactly 0, 2, 4, or 6 base substitutions (mismatches). Each graph is trimmed at a length K in which
there are less than 10 elements, and the fold depletion at this final point is computed over all elements whose length is at least K. The combined fold
depletion of a set of genomic elements (y-axis) is the ratio between their expected and observed nucleosome coverage, where the expected
coverage is the average coverage of any basepair according to our data, and the observed coverage is the average coverage of a basepair from the
set (see Methods). The number of underlying elements at various points in the graph is indicated (N). See Figure S4 for a graph of all possible
mismatches and showing the number of elements at all points.
doi:10.1371/journal.pcbi.1000216.g002
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example, at the model score threshold in which 90% (true positive

rate) of the nucleosomes of occupancy 8 are correctly predicted, less

than 10% (false positive rate) of the linkers are incorrectly predicted

as nucleosomes. The absolute performance in these tests is

remarkable, and demonstrates that our model is highly predictive

of nucleosome occupancy in yeast. We also find that the

performance of the model in this cross validation scheme is nearly

identical to its performance on the training data, suggesting that our

model does not overfit the input data (Figure S3). The fact that the

model performs better in classifying nucleosomes with higher

occupancy indicates that the probability that a nucleosome will

occupy a region within the genome is higher at regions that match

the sequence preferences of nucleosomes, as represented by our

model. Note that since our predictions are done in a cross validation

scheme, this result is not a trivial consequence of our training

procedure, since a trained model does not have access to the level of

occupancy of the nucleosomes on which its predictions are tested.

To calibrate the performance of our model, we compared it to the

performance of previously published methods, and found that our

model performs better than previous approaches when tested on our

data (Figure S3). Similarly, we observed highly significant predictive

power on two microarray-based nucleosome maps [5,10] (Figure

S3). Here, three models achieved the best, equivalent performance

[5,6], and our model was among them. Despite the outcome of these

comparisons, we note that it is difficult to conclude from these tests

which model is best, since for such an objective evaluation, each

model should be trained using exactly the same input data, and such

a comparison is out of our current scope and objective.

Nevertheless, the performance of all of these models strongly

supports the overall conclusion that the genomic sequence is highly

predictive of nucleosome organizations in yeast.

Recent analyses of genome-wide nucleosome occupancy

measurements in yeast identified different classes of nucleosome

occupancy patterns in gene promoters, by clustering the

nucleosome occupancy patterns [5]. Notably, we find that our

model is also able to accurately predict the occupancy patterns of

these different classes, suggesting that these differing nucleosome

occupancy patterns are partly encoded in the DNA sequence,

through the nucleosome sequence preferences (Figure 4).

Taken together, we conclude, in accord with other recent

studies [2–6], that the genomic sequence is highly predictive of the

nucleosome organization in yeast.

Universal Genomic Signals for Nucleosome Positioning
Finally, we tested whether the nucleosome positioning signals of

our model are also predictive of nucleosome occupancy in higher

eukaryotes. To this end, we obtained nucleosome datasets from

yeast [13], worm [17], and chicken [15], and also isolated and

sequenced two new independent nucleosome collections from fly

and two from human. Since there is variability in the base

composition of different regions in the human genome, in one of the

human collections, we extracted nucleosome-bound sequences from

regions of the human genome that are strongly enriched in G/C

nucleotides (60% G/C, see Methods), allowing us to evaluate the

model performance on regions with atypical base compositions. In

addition, we isolated and sequenced nucleosomes reconstituted in

vitro on human genomic DNA and also obtained a previous such in

vitro-selected collection from yeast [2], allowing us to test whether

the model mainly captures nucleosome sequence preferences (since

the in vitro experiments are done with purified histone octamers

assembled on purified genomic DNA). To test whether the

nucleosome positioning signals that we find in yeast are also

important in these in vitro collections and in the collections from

higher eukaryotes, we evaluated the model’s performance locally

around the ,200–2000 nucleosomes that were mapped in each

collection. The idea behind this test is that relative to the genomic

location of a given nucleosome-bound sequence, a predictive model

should assign higher scores to the position of that sequence,

compared, for example, to scores that it assigns to positions that are

half a nucleosome away from that position. For all of the following

tests, we used our above model, learned only from the nucleosome-

bound sequences that we measured in yeast.

Notably, in all of the above 12 nucleosome collections, our model

assigns, on average, significantly higher scores around the center of

the mapped nucleosome locations compared to scores that it assigns

to nearby regions, suggesting that the nucleosome positioning

signals of yeast are indeed predictive of nucleosome organizations in

other eukaryotes (Figure 5). We also separately evaluated each of the

two components of our model. We find that in all 10 collections

obtained by direct sequencing, the periodic dinucleotide component

alone predicts the correct rotational setting to within a 5 bp

resolution, since on average, it assigns a higher score to the center of

the nucleosome bound sequences in each collection compared to the

score that it assigns to positions that are 5 bp away from that center

(Figure 5). Similarly, in all 12 collections, the nucleosome

disfavoring component of our model alone predicts the correct

translational settings of the nucleosomes in each collection, since on

average, it assigns a lower score to the center of the nucleosome

bound sequences in each collection, compared to scores that it

assigns in nearby regions (Figure 5). We also note that the 4th order

Markov model alone (this component is the constituent repeating

component of the 147 bp nucleosome disfavoring component),

readily reveals that its preferred and disfavored 5-mers, learned only

from yeast, show similar preferences in these nucleosome collections

from higher eukaryotes, such that linkers contain more nucleosome-

disfavoring sequences (Figure 5).

The success of our model, which is trained only on yeast

nucleosomes, in predicting nucleosome locations across several

eukaryotes, suggests that the key nucleosome positioning signals of

our model, such as its periodic pattern and 5-mer sequence

preferences (and negative preferences), represent nucleosome

sequence preferences, and are universal across eukaryotes. Clearly,

although this result demonstrates that the nucleosome positioning

Figure 3. Periodicity of A/T and G/C dinucleotides around
transcription start sites in yeast. Shown is the frequency of
dinucleotides composed exclusively of T/A dinucleotides (blue line), or
of G/C dinucleotides (red line) around transcription start sites of yeast
genes. Both sets of dinucleotides exhibit ,10 bp periodicities, but with
opposite phases, across a ,50 bp region.
doi:10.1371/journal.pcbi.1000216.g003
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signals of yeast apply to higher eukaryotes, it does not show that

these positioning signals are the only ones that determine

nucleosome positioning in higher eukaryotes, and it will be

interesting to examine these questions using recent large-scale

nucleosome maps in higher eukaryotes [25,26].

Poly(dA:dT) Tracts Create Boundary Zones That
Demarcate Nucleosome Positions

To better understand the effect of nucleosome-disfavoring

sequences on the local depletion of nucleosomes, we focused on

the association between nucleosome occupancy and homopoly-

meric tracts of A or T, termed Poly(dA:dT) elements, since in our

data, AAAAA is the 5-mer with the strongest enrichment in linkers

(Figure 2B). Several studies examined this relationship [27–33],

and suggested that Poly(dA:dT) elements may be rigid in vitro [30]

and in vivo [28], resulting in a reduced affinity to nucleosomes

[34]. These elements are enriched in eukaryotic, but not in

prokaryotic, genomes [35], and were shown to have important

functions in vivo [27,29], most likely mediated by their

nucleosome disfavoring action [29,36,37]. Consistent with this

hypothesis, microarray-based maps of yeast [5,9] and human [24]

Figure 4. Our model predicts distinct nucleosome organizations around transcription start sites. Shown is the average nucleosome
organization around transcription start sites of four sets of genes that were reported in [5] by clustering their measured nucleosome occupancy
profiles. One of the four clusters reported in [5] corresponds to promoters that lack a significant nucleosome depleted region (cluster 1; red line in
plots). The other three clusters have a clear nucleosome depleted region in their promoters, and are also reported in [5] as enriched for protein
biosynthesis (cluster 2; green line), ribosome biogenesis (cluster 3; blue line), and protein modification (cluster 4; cyan line). The average nucleosome
occupancy is shown from the original data of [5] (top) that was used for the clustering, and for our data (middle), as well as for the predicted
occupancy of the nucleosome positioning model that we developed here (bottom).
doi:10.1371/journal.pcbi.1000216.g004

Distinct Modes of Regulation by Chromatin
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Figure 5. Testing the universality of nucleosome positioning signals across eukaryotes. Our nucleosome model trained from yeast
predicts nucleosome locations across several eukaryotes. For various nucleosome collections, including five new ones in fly and human that we
isolated here, shown are scores assigned by our full model (‘‘1’’; score(S) from Equation 1 of the Methods section), by only the (position-independent)
individual 5-mer component of the nucleosome-disfavoring component (‘‘2’’; Pl from Equation 1 above), by the entire nucleosome-disfavoring
component of our model (‘‘3’’; PL from Equation 1 above), and by the (position-dependent) periodic component of our model (column ‘‘4’’; PN from
Equation 1 above). The sequences in each collection were mapped to their respective genome, and the score shown in each column at x-axis position
i is the average score across all sequences in the collection, of the 147 bp (5 bp for column ‘‘2’’) sequence whose center is i basepairs away from the
center of the mapped sequence. For the full model (‘‘1’’) and nucleosome-disfavoring component (‘‘3’’), scores are shown in a window that extends
up to 73 bp (half a nucleosome) around the center of the mapped nucleosome. Successful predictions assign their highest (‘‘1’’) or lowest (‘‘3’’) score
at x-axis position zero. The p-value represents a student t-test that tests whether the distribution of scores in the 40 bp region centered on the
mapped nucleosome is significantly higher (‘‘1’’) or lower (‘‘3’’) than that in the outer 40 bp (20 bp on each end of the mapped nucleosome). For the

Distinct Modes of Regulation by Chromatin
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nucleosomes showed nucleosome depletion over Poly(dA:dT)

elements. However, none of these studies focused specifically on

quantifying the fold depletion over Poly(dA:dT) elements.

To quantify the fold depletion over a set of Poly(dA:dT) elements

of interest, we compare the observed and expected number of

nucleosomes that cover these elements. For example, 100 Poly(-

dA:dT) elements whose combined length is 1,470 bp and that are

collectively covered by only one nucleosome read are depleted by

50-fold, since according to the average genome-wide coverage of

our map, which is 5 nucleosomes per basepair, we expect these

regions to be covered by 50 nucleosome reads. Plotting these fold

depletions over Poly(dA:dT) elements of varying lengths, we find

large depletions over these elements, that steadily increase with their

length (Figure 2E and Figure S4). For example, there is a 12-fold

depletion of nucleosomes over the 225 Poly(dA:dT) elements in the

yeast genome whose size is at least 17 bp.

We found similarly large fold depletions over Poly(dA:dT)

elements with several basepair substitutions and in clusters of short

Poly(dA:dT) elements that alternate between strands (Figure 2E

and Figure S4). The depletion over these imperfect elements also

increases with their length. The large nucleosome fold-depletions

over these sequence elements mean that these elements effectively

create boundary zones, dividing the genome into discrete

chromatin blocks; for simplicity, we henceforth refer to the

sequence elements themselves as ‘‘boundaries’’. The strength of a

boundary, defined here as the fold depletion over all of its

instances in the genome, can be estimated from DNA sequence

alone, based on the length and perfection of its Poly(dA:dT)

components. For example, Poly(dA:dT) elements of length 20 with

two basepair substitutions have a 6-fold nucleosome depletion

(Figure 2E). We find 673 boundary elements in the yeast genome

even at fold depletions of more than 10, and these elements are

primarily located in non-coding regions (Figure S5).

Nucleosome Depletion over Boundary Elements Is
Unlikely To Be an Artifact

A possible concern is that the nucleosome depletion that we

observe over sequence boundaries results from artifacts in our

experimental method. Two main concerns arise in this respect.

First, the depletion over boundaries may result from biases in the

sequencing technology that we employed. Arguing against this,

however, are the facts that nucleosome depletion over Poly(dA:dT)

elements was observed using the independent technologies of

microarrays [5,9,10,24]; using alternative sequencing-based ap-

proaches that utilize short reads only and thus do not need to read

through a Poly(dA:dT) element itself [13]; and that the effect we

see is not restricted to perfect Poly(dA:dT) elements, which could

conceivably be problematic [38], but includes elements with many

basepair substitutions (Figure 2E) and elements that alternate

between Poly-A and Poly-T tracts on each strand (Figure S4).

Together, these facts imply that the observed depletions do not

result from an inability of our procedure to provide sequence reads

from DNA fragments that contain Poly(dA:dT) elements.

A second possible concern may arise from the use of

micrococcal nuclease to isolate nucleosomes, since this enzyme

was used in both our study and in all of the studies that used

microarrays or alternative sequencing-based strategies to map

nucleosomes. The concern is that if the sequence specificity of

micrococcal nuclease was biased towards Poly(dA:dT) elements,

then its use may select against nucleosome DNAs containing these

sequence elements. However, such an effect is unlikely because

stretches of pure Poly(dA:dT) do not match the known specificity

of micrococcal nuclease [24,39], and hybridizations of micrococcal

nuclease-treated naked DNA show little correlation with measured

nucleosome locations [9].

To confirm that nucleosome depletion over Poly(dA:dT)

elements is not a result of the sequence specificity of micrococcal

nuclease, we examined the ,1 million cut sites of micrococcal

nuclease provided by our data (since we sequenced ,500,000

individual nucleosomes altogether, and each nucleosome is

sequenced in full, thereby providing two cut sites). By aligning

all of these cut sites, we find that the sequence specificity in these

cut sites is highly similar to that reported previously [39], and that

it has very little information content (i.e., the specificity of the

nuclease is low, confined mainly to two basepairs). This means that

a preferred sequence for micrococcal nuclease can be found in

nearly every small stretch of DNA in the yeast genome (Figure 6A).

Moreover, ranking all of the 4096 possible 6-mers by their

preference to be cut by micrococcal nuclease, defined as the ratio

between the probability that they appear as a cut site and the

probability that they appear in the yeast genome, we find that

AAAAAA is ranked 1782 out of the 4096 possible 6-mers as a

micrococcal nuclease cleavage site (Figure 6B), while it ranks

number 1 for its observed in vivo nucleosome depletion

(Figure 2A). In addition, plotting the distribution of Poly(dA:dT)

elements as a function of their distance from all cut sites obtained

in our data, we find that the most likely position for Poly(dA:dT)

elements relative to cut sites is ,50 bp from the cut site, which is

consistent with the enrichment of Poly(dA:dT) elements in linker

DNA regions, but not with the idea that Poly(dA:dT) elements are

preferentially cut by micrococcal nuclease (Figure 6C). Thus, the

relative lack of nucleosome occupancy over Poly(dA:dT) elements

in vivo is not attributable to these sites being preferentially

degraded by the micrococcal nuclease.

Taken together, the existing literature, the above analyses, and

additional new experimental data that we present in a later section

below, strongly suggest that the in vivo depletions that we observe

over Poly(dA:dT) elements are not an artifact of our analysis, but a

real phenomenon.

Depletion over Boundaries Likely Results from Their
Reduced Nucleosome Affinity

What may cause the observed nucleosome depletion over

boundaries? One possible mechanism is through the action of

DNA binding proteins that recognize and bind these elements. To

date, a single protein in S. cerevisiae, called Datin (Dat1p), that

recognizes Poly(dA:dT) elements has been identified [40]. The

binding specificity of Datin requires at least 9 basepairs of A or T

nucleotides, and it appears to be the only DNA binding protein in

S. cerevisiae that binds Poly(dA:dT) elements, since cell extracts of a

Datin deletion yeast strain do not exhibit any detectable protein

binding to Poly(dA:dT) elements [40]. However, Datin is unlikely

periodic component (‘‘4’’) scores are shown in a 10 bp window around the center of the mapped nucleosome, such that successful predictions assign
the highest score at x-axis position zero; the P-value tests whether the distribution of scores in the 5 bp centered on the mapped nucleosome is
significantly higher than that in the outer 6 bp (3 bp on each side, i.e., bp 25,24,23 and bp +3,+4,+5 from the center of the mapped nucleosome).
Note that in several collections (e.g., worm), the 5-mer component itself (‘‘2’’) precisely demarcates the nucleosome positions, by assigning higher
scores at the linker regions (more than 73 bp away from the center) compared to the nucleosomal regions (central 147 bp). For all four columns, the
y-axis is scaled between the minimum and maximum score of the entire 293 bp region centered around the mapped nucleosome.
doi:10.1371/journal.pcbi.1000216.g005
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to be the major cause of nucleosome depletion over boundaries,

based on the sequence diversity of Poly(dA:dT) elements that we

find to be depleted yet that do not match the binding specificities

of Datin, on the steady increase of the depletion with the length of

the Poly(dA:dT) elements (Figure 2E), and on other studies that

concluded that Datin is not important for the function of

Poly(dA:dT) elements [28,29,36,37,41,42].

Another possibility is that the binding of transcription factors to

sites near the boundaries causes nucleosome depletion over

boundaries. Indeed, such an effect is to be expected on

thermodynamic grounds; the question is the relative significance

of this effect. To test this, we compared the nucleosome occupancy

over boundaries that are near factor binding sites, to that over

boundaries that are far from factor sites. We find strong

nucleosome depletion over boundaries regardless of whether or

not they are near factor sites (Figure 7B). This result is not sensitive

to binding site annotations, since we find a similar strong depletion

over boundaries in intergenic regions that are not promoters,

thought to be largely devoid of factor sites (Figure 7B). These

results suggest that transcription factor binding is not the main

cause of nucleosome depletion over the boundary sequences.

A remaining alternative is that Poly(dA:dT) elements themselves

intrinsically disfavor nucleosome formation. This possibility was

suggested previously, on the basis of studies done on a handful of

Figure 6. The sequence specificity of micrococcal nuclease is not the cause of nucleosome depletion over Poly(dA:dT) elements. (A)
Shown is a standard sequence logo representation of the sequence specificity of micrococcal nuclease, as determined by aligning the ,1,000,000 cut
sites that we obtained in our study. In this standard representation, every position represents the probability distribution over the four possible
nucleotides at that position (relative to the yeast genome composition), by the information content contained in that distribution. As can be seen,
the information content is low, indicating that although micrococcal nuclease does have detectable sequence specificity, this specificity is low and
can thus be found in nearly every small stretch of DNA in the yeast genome. (B) Shown is the ranking of all 4096 possible 6-mers by their preference
to be cut by micrococcal nuclease, defined as the ratio between the probability that they appear as a cut site and the probability that they appear in
the yeast genome. The top ranking 6-mers are shown, along with the (low ranking) position of AAAAAA and TTTTTT. (C) Shown is the fraction of
micrococcal nuclease cut sites in which there is a Poly(dA:dT) element k basepairs away from the cut site, when k ranges from 2100 bp (i.e., 100 bp
inside the mapped nucleosome) to 250 bp (outside). For this analysis we took perfect Poly(dA:dT) elements of length 6 or greater. Note that the most
likely position for Poly(dA:dT) elements is not at the cut site but rather ,50 bp from the cut site.
doi:10.1371/journal.pcbi.1000216.g006
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genes [29–31,36,37], though other single gene studies [43,44]

concluded that nucleosome exclusion by Poly(dA:dT) elements

cannot account for the full effect of Poly(dA:dT) elements. Studies

of the structure and mechanics of Poly(dA:dT) elements further

support that these elements act through nucleosome exclusion,

since these tracts may be mechanically stiff and thus resist

wrapping into nucleosomes [30].

If nucleosome exclusion is the primary mechanism by which

Poly(dA:dT) elements exert their effect, then we might also expect

these elements to show a reduced affinity for nucleosome formation

in vitro. One study addressed this question, and demonstrated that

incorporating a perfect Poly-A(16) element into a (non-natural)

DNA sequence disfavors nucleosome formation, with an effect of

about two-fold on DNA accessibility [31]. To examine whether

Figure 7. Nucleosome depleted regions are created in the vicinity of Poly(dA:dT) boundaries. (A) A boundary constraint creates, on
average, a larger nucleosome-depleted region that extends far into regions flanking the boundary. Shown is a simple example focusing only on the
immediate neighborhood of the boundary. All (five) possible nucleosome configurations are illustrated, in which a nucleosome (cyan ovals) can be
placed within five basepairs of the boundary (blue triangle). The number and set of nucleosome configurations occupying each of the five basepairs
immediately adjacent to the boundary are shown in the graph and table, respectively. If all configurations are equally likely, then basepairs closer to
the boundary will exhibit lower nucleosome occupancy. (B) Boundaries exhibit strong and long-range nucleosome depletion regardless of whether
they are near transcription factor binding sites or whether they are in promoters or non-promoter intergenic regions. Shown is the average number
of nucleosome reads in our data at locations k (for k = 1,2,…,150) basepairs away from boundaries (strength .5) that are: more than 30 bp from any
factor site (green); within 30 bp of a factor site bound by its cognate factor [47] (purple); in intergenic regions that are not promoters (orange). The
strength of a boundary is defined by properties of the DNA sequence of the boundary, based on the length and perfection of the Poly(dA:dT)
components of the boundary (see Methods). Plots are symmetric by construction. (C) Boundaries enhance the accessibility of transcription factors to
cognate sites. Shown is the average number of nucleosome reads in our data at locations k (for k = 1,2,…,150) basepairs away from annotated factor
binding sites bound by their cognate factor [47] that are: more than 30 bp from any boundary (boundary strength .5) (blue); within 30 bp of any
boundary (strength .5) (red). Plots are symmetric by construction.
doi:10.1371/journal.pcbi.1000216.g007
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natural boundary sequences also exhibit reduced nucleosome

affinity in vitro, we selected three Poly(dA:dT)-containing regions

from the yeast genome that each contain multiple Poly(dA:dT)

elements and measured the relative affinities of these regions for

nucleosome formation along with the relative affinities of four

sequence variants that disrupt one of the Poly(dA:dT) elements in

each sequence. Like many of the other Poly(dA:dT) elements in the

genome, the Poly(dA:dT) elements that we selected exhibit

nucleosome depletion in vivo (Figure 8A–C). Consistent with earlier

measurements [31], we find that all seven Poly(dA:dT)-containing

sequences have significantly reduced affinities, comparable to

affinities of DNA sequences that were selected for their ability to

resist nucleosome formation [45] (Figure 8D and 8E). These relative

affinity measurements for nucleosome formation were performed as

previously described [2,7].

We also examined a systematic study of in vitro nucleosome

reconstitution on ,10 kbp from the b-Lactoglobulin locus of

sheep [8], and found strong nucleosome depletion over the one

Poly-T(13) element in the locus (Figure S6).

Taken together, these results demonstrate that sequence

boundaries have an intrinsically reduced affinity for nucleosome

formation. Thus, our new in vitro measurements of nucleosome

formation on boundaries, combined with the conclusions reached

by previous studies, and with the conclusion that Poly(dA:dT)-

binding proteins and transcription factors cannot account for the

in vivo depletion over Poly(dA:dT) elements, strongly suggest that

the large in vivo depletion over Poly(dA:dT) elements is the

consequence of a nucleosome-disfavoring character of these

elements.

Boundaries Enhance the Accessibility of Transcription
Factors to Their Sites

What may be the function of sequence boundaries? In the

extreme case, a strong boundary that cannot be occupied by a

nucleosome creates, on average, a nucleosome-depleted region

centered on but larger than the boundary itself, simply because

there are a smaller number of different nucleosome configurations

in which basepairs that are close to the boundary can be occupied

by a nucleosome, compared to basepairs located further away

from the boundary. For example, a basepair immediately flanking

the boundary can only be occupied by the one configuration in

which a nucleosome is placed immediately adjacent to the

boundary, whereas a basepair located 5 bp from the boundary

can be occupied by any of 5 different nucleosome configurations

(Figure 7A). Ignoring the nucleosome sequence preferences for a

moment, and assuming for simplicity that all allowed nucleosome

positions are equally likely, then, in the above example, the

basepair immediately flanking the boundary is 5-times less likely to

be occupied by a nucleosome, compared to the basepair located

5 bp away from the boundary. Thus, the mere presence of a

boundary acts as a force that, on average, creates a nucleosome-

depleted region extending into the adjacent DNA [46].

Based on the above reasoning, we hypothesized that the

flanking regions of our above Poly(dA:dT) boundaries will be

depleted of nucleosomes, and we expect the strength of the effect

to increase with the strength of the boundary. Indeed, examining

the nucleosome occupancy in the vicinity of boundaries, we find

large levels of nucleosome depletion even 50 bp away from a

boundary, regardless of whether or not the boundary is located

close to a transcription factor binding site, and whether or not the

boundary is located in a promoter region or in intergenic regions

that are not promoters (Figure 7B). Moreover, examining the

distribution of boundaries around transcription start sites where

previous studies [5,9,13] found a stereotyped nucleosome depleted

region, and around translation end sites where similar depletions

were observed [11,12,26], we find that both the depletion level

and length of these depleted regions strongly correlate with the

boundary strength (Figure 9A and 9B). As expected, these differing

nucleosome organizations around both transcription start sites and

translation end sites are accurately predicted by our sequence-

based model for nucleosome positioning (Figure 9C and 9D).

These results are consistent with the theoretical analysis of

Kornberg and Stryer [46], although, their boundary constraint

was thought to be due to transcription factors, whereas we show

that a boundary constraint arises also simply from the presence of

Poly(dA:dT)-based sequence elements, through their reduced

affinity for nucleosome formation. Our results thus suggest that

relatively large open chromatin regions can be accurately

predicted simply by the presence of Poly(dA:dT) elements,

consistent with the suggestion that boundaries such as Poly(dA:dT)

elements account for many aspects of the in vivo nucleosome

organization [9,12].

If boundaries indeed cause nucleosome depletion at their

flanking regions, then boundaries may enhance the accessibility of

transcription factors to binding sites that are located close to the

boundary. Indeed, we find strong nucleosome depletion over

factor sites that are near boundaries, compared to a much weaker

depletion over factor sites that are far from boundaries (Figure 7C),

suggesting that nucleosome depletion over many factor sites is

partly encoded through the sequence preferences of nucleosomes,

by the nucleosome-disfavoring action of Poly(dA:dT) elements.

These results are consistent with studies done at a few loci, which

suggested that Poly(dA:dT) elements may generally function to

enhance the accessibility of transcription factors to their cognate

sites [27,29].

We next asked whether nucleosome depletion over factor sites

depends on the boundary strength and factor-boundary distances.

Notably, the level of nucleosome depletion over factor sites

increases significantly with both the strength of the boundary and

its proximity to factor sites (Figure 10A). Specifically, for 50 of 51

factors for which more than 10 sites are annotated [47], we find

stronger nucleosome depletion at the subset of its sites that are

near boundaries compared to its other sites (Figure 10B). The only

exception is Reb1, a highly abundant factor that possesses ATP-

independent chromatin remodeling activity [48]. Taken together,

our results demonstrate that boundaries enhance the accessibility

of transcription factors to their cognate sites, by depleting

nucleosomes from the adjacent DNA, with the magnitude of such

depletion increasing with both the strength of the boundary and its

proximity to the factor site.

Two Different Types of Regulation by Chromatin in Yeast
Promoters

We hypothesized that since factor binding sites near boundaries

are depleted of nucleosomes, factors could bind such sites in

promoters with little or no competition with nucleosomes, leading

to a homogeneous cell population with relatively low cell-to-cell

expression variability, or transcriptional noise. In contrast, since

steric hindrance may not permit simultaneous binding by factors

and nucleosomes, factors that bind sites that are far from

boundaries may need to compete with nucleosomes for access to

the DNA. Such a competition may result in a mixed population

comprising both cells in which a nucleosome covers the factor’s

site and the promoter is inactive, and cells in which that

nucleosome is displaced and the promoter is active. To test this

hypothesis, we utilized a dataset [49], which for the majority of the

genes in yeast, used a GFP-tagged strain to measure their protein

expression variability in single-cells. Since they are easier to obtain,
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Figure 8. Poly(dA:dT) elements have a reduced affinity for nucleosome formation in vitro. (A–C) Experimental maps of nucleosome
occupancy at three genomic loci for which we measured the relative nucleosome affinity of Poly(dA:dT)-containing sequences (blue triangles). Every
cyan oval represents the genomic location of one nucleosome that we sequenced in its entirety. Also shown is the average nucleosome occupancy
per basepair predicted by the sequence-based nucleosome model that we developed here (red), the raw hybridization signals of two microarray-
based nucleosome maps [5,10] (green and purple traces), and the locations of nucleosomes that were computationally inferred from these
hybridization signals [5,10] (green and purple ovals). Annotated genes [63], transcription factor binding sites [47], and TATA sequences [53] in the
region are indicated. (D) Poly(dA:dT)-containing sequences have low nucleosome affinities. Shown are measurements of relative affinity for
nucleosome formation of seven Poly(dA:dT)-containing sequences (blue bar; shown are mean and standard deviation for seven measured sequences:
three boundary regions from yeast that each contain multiple Poly(dA:dT) elements, and four sequence variants that disrupt one of the Poly(dA:dT)
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such measurements of variability at the protein level are typically

used as a proxy for variability measurements at the RNA level

[49–51]. This approach is justified by the experimental observa-

tion that variability in protein expression is dominated by

variability in RNA levels [49]. Using these data, we compared

the noise of promoters in which the sites [47] are covered by

nucleosomes, to the noise of promoters in which the sites are not

covered. Indeed, the former promoter set exhibits significantly

more noise (P,1025, Kolmogorov-Smirnov test). A similar model,

in which high noise promoters are those where nucleosomes

compete successfully with transcription factors, was suggested and

validated for the Pho5 gene [51]. That model further suggested

that the presence of TATA sequences should confer even more

noise, presumably through facilitation of transcription re-initiation

[51,52]. Thus, under this noise model, we expect, and indeed find,

that within each of our two promoter sets above, the presence of

TATA [53] elements further increases transcriptional noise

(Figure 11A).

We further examined those promoters having TATA elements

and nucleosome-covered factor binding sites, and those promoters

Figure 9. The level and length of nucleosome depletion around gene start and gene end sites correlate with boundary strength. (A)
Boundaries were classified into five groups by their nucleosome fold depletion (strength) using sequence rules (see Methods), and every gene was
annotated by the classification of the strongest boundary that it has in the 200 bp region upstream of its transcription start site. Shown is the average
number of nucleosomes per basepair around the transcription start site of genes from each of the four boundary classification groups. (B) Same as
(A), but when annotating each gene by the classification of the strongest boundary that it has in the 200 bp region downstream of its translation end
site (translation end site was chosen since transcription end sites are poorly annotated). Note that for a given boundary class, the corresponding
genes in (A) are distinct from the corresponding genes in (B). (C,D) Same as (A) and (B), but plotting the average nucleosome occupancy predicted by
the sequence-based nucleosome positioning model that we developed here. Predictions are generated in a cross validation scheme, such that the
predicted nucleosome occupancy across each chromosome is computed by a model that was learned using only the nucleosome data of all the
other chromosomes.
doi:10.1371/journal.pcbi.1000216.g009

elements in each sequence). For comparison, also shown are the relative affinities of sequences selected for their relative resistance to nucleosome
formation [45] (yellow bars), and of sequences selected for their high nucleosome affinity from the mouse genome [18] (green bars) and from
chemically synthesized random sequences [7,19] (red bars). All results are presented relative to the 5S reference sequence, defined as 0. (E) The
sequences of the Poly(dA:dT)-containing elements of (a–c) that we measured, along with their chromosomal locations.
doi:10.1371/journal.pcbi.1000216.g008
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lacking TATA elements and having nucleosome-depleted factor

binding sites, since these promoter sets are the most and least noisy

promoters, respectively (Figure 11A), and they each have more

genes than would be expected (Figure 11B). Intriguingly, in

addition to their differential noise, we also find distinct promoter

architectures and nucleosome dynamics in these two promoter

types. Type I promoters, which contain TATA elements and

whose sites are nucleosome-covered, have many factor sites spread

across the promoter region, a weaker signal of nucleosome

depletion at the typical nucleosome depleted region (NDR), and

are enriched in targets of condition-specific factors and non-

essential genes (Figure 12A and 12B and Figure S7). These

promoters are targets of chromatin remodeling complexes [54]

and their rate of histone turnover [55] is significantly high

(Figure 11C), consistent with an ongoing dynamic competition

between nucleosome assembly and factor binding. In contrast,

type II promoters, which are TATA-less and whose sites are

nucleosome-depleted, have strong nucleosome depletion, many

boundary elements at the typical NDR, low histone turnover, and

an overall smaller number of factor sites but with a high preference

for these sites to be located at the NDR (Figure 12A). Type II

promoters are enriched in essential genes and in ribosomal protein

genes, the latter presumably owing to the fact that these proteins

are highly expressed and are required stoichiometrically in a large

complex, thereby conferring a benefit to regulation with low noise

(Figure 12B).

While our paper was in review, analysis of nucleosome

occupancy data resulted in a similar two-class partition of yeast

promoters [56]. We find that our sequence-based nucleosome–

DNA interaction model accurately predicts the different nucleo-

Figure 10. Boundaries enhance the accessibility of transcription factors to their cognate binding sites. (A) Nucleosome depletion over
factor sites increases with their proximity to, and with the strength of, boundaries. Shown is the combined nucleosome fold depletion over factor
sites (y-axis) that are within a certain range of distances from boundaries that themselves have a particular nucleosome fold depletion (boundary
strength; x-axis). Plots are shown for four different ranges of factor-boundary distances and for the four boundary strength groups of nucleosome
fold depletions that we defined based on sequence rules (see Methods). (B) Factor binding sites near boundaries are depleted of nucleosomes. For
each factor, shown is the combined nucleosome fold depletion over its annotated sites [47,67] that are within 30 bp from a boundary whose fold
depletion is at least 5 (blue bars), and over the rest of its sites (green bars). The combined fold depletion of a set of genomic elements is the ratio
between their expected and observed nucleosome coverage (see Methods).
doi:10.1371/journal.pcbi.1000216.g010
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Figure 11. Two different types of regulation by chromatin in yeast promoters. (A) Promoters with TATA elements and whose binding sites
are located in regions covered by nucleosomes exhibit large transcriptional noise. Genes were divided into four groups based on the presence or
absence of TATA elements [53], and by whether their binding sites are covered by nucleosomes or are nucleosome-depleted as measured in our map
(see Methods). For each group of genes, shown is the fraction of its genes (y-axis) whose noise level is within the k most noisy genes (x-axis;
expressed as fraction), for all possible values of k. Measurements of transcriptional noise are available for 2197 genes [49] and are presented in their
ranked value. (B) Yeast promoters are enriched with architectures that are associated with high- and low-noise. For each of the four gene sets from
(A), shown is the actual number of genes in each set (red bar) compared to the expected number of genes in each set (blue bar). The number of
genes in the two extreme promoter types (type I: leftmost columns, genes with TATA elements and nucleosome-covered factor sites; type II:
rightmost columns, genes without TATA elements and with nucleosome-depleted factor sites) is significantly more than would be expected just from
the counts of the number of genes with/without TATA elements and with nucleosome-depleted/nucleosome-covered sites (P,10216,
hypergeometric test). (C) Promoters with TATA elements and whose binding sites are located in regions covered by nucleosomes as measured in
our map exhibit large degrees of histone turnover. For each of the four gene sets from (A), shown is the fraction of its genes (y-axis) whose histone
turnover level [55] is within the k promoters with the largest degree of histone turnover (x-axis; expressed as fraction), for all possible values of k.
Measurements of histone turnover are presented in their ranked value. (D) Promoters with distinct transcriptional noise characteristics can be
predicted from sequence alone. Same as (A), but when dividing genes using only sequence information, based on the presence of Poly(dA:dT)-
boundaries and TATA elements. Genes were divided into four groups based on the presence of TATA elements [53], and by whether or not they have
a boundary of strength .5 within the 200 bp region upstream of their transcription start site (where the boundary strength is defined based on DNA
sequence alone).
doi:10.1371/journal.pcbi.1000216.g011
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Figure 12. Type I and Type II promoters have distinct architectures. (A) Shown is a schematic illustration of promoter architectures for the
two extreme types of promoters from Figure 11A. The schematic illustrates that in the high noise (Type I, left column) promoters, factor binding sites
are measurably occupied by both their cognate factors and nucleosomes (in a cell population), suggesting that their high noise results from
competition between nucleosomes and factors for DNA access. In contrast, the low noise (Type II, right column) promoters exhibit a characteristic
nucleosome-depleted region upstream of the transcription start site in which bound factor sites are highly concentrated. Also shown is the average
number of nucleosome reads in our data (cyan), and the distribution of factor sites (brown) and TATA elements (green, only for Type I promoters),
around the transcription start site of the genes in each of the two extreme types of promoters from (A) (left column, Type I promoters; right column,
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some organizations observed for each promoter type, suggesting

that their distinct nucleosome architectures are partly encoded in

the genome through the sequence preferences of nucleosomes

(Figure 12C). In fact, we can distinguish low- and high-noise

promoters using only sequence information, by partitioning

promoters according to the presence of our Poly(dA:dT)-

boundaries and TATA elements (Figure 11D). Taken together,

our results point to a strong association between chromatin and

transcriptional noise at the genome-wide level, as suggested on the

basis of one gene [51], and further uncover two distinct types of

chromatin architectures by which high or low noise may be

implemented in yeast promoters.

Nucleosome Positioning Signals May Play a Role in
Efficiency of DNA Replication

Finally, analogous to the cell-to-cell variability observed in gene

expression [49], DNA replication origins also exhibit variability,

with some origins initiating replication in most cell divisions and

others initiating only occasionally. We examined whether this

variability can be partly explained by differing nucleosome

positioning signals in the two types of origins. In general, DNA

replication origins are A/T- and Poly(dA:dT)-rich [57,58] and

thus may disfavor nucleosome formation. Indeed, we find an

overall (both measured by our data and predicted by our model)

nucleosome depletion around replication origins in S. cerevisiae

(Figure 13A), and similar (predicted) depletion around origins in S.

pombe (Figure 13B). Consistent with the hypothesis that competi-

tion with nucleosomes may affect the efficacy of replication

initiation [59], a systematic sequence deletion study [60] around

one replication origin in S. pombe found that deletion of a strong

nucleosome-disfavoring element (Poly-A(20)) resulted in the largest

reduction in replication efficiency (Figure 14). Similarly, for S.

pombe, where data on efficiency of replication initiation are

available [61] (such data are not available for S. cerevisiae), we

find on a genome-wide scale, that replication origins with lower

(predicted) nucleosome occupancy initiate replication with higher

efficiency (P,1026; Figure 13C and 13D).

Discussion

Recently, progress was made in understanding the way in which

nucleosome organizations are encoded in the DNA sequence.

Separately, many studies revealed that the detailed positions of

nucleosomes have critical roles in transcription factor binding and

transcriptional regulation. Here, we present advances on both

questions, and identify a link between the two, by showing that

distinct transcriptional behaviors are partly encoded through the

genome’s intrinsic nucleosome organization.

Utilizing the high spatial accuracy of the full length sequence-

based map of yeast nucleosomes, we improve our understanding of

the intrinsic genomic signals that determine nucleosome occupan-

cy, and find that these signals include important contributions

both from periodicities of specific sequences along the nucleosome

and from sequences that are generally disfavored by nucleosomes

regardless of their position along the nucleosome. When

combining these signals into a probabilistic sequence-based

nucleosome–DNA interaction model, we achieve high accuracy

in predicting nucleosome organizations in vivo, even across new

nucleosome collections that we isolated from fly and human,

suggesting that nucleosome positioning signals are universal.

Among the nucleosome disfavoring signals, variants of Poly(-

dA:dT) sequences are most dominant. We find thousands of such

Poly(dA:dT) elements in the yeast genome with large levels of

nucleosome depletion, where the depletion level can be estimated

from DNA sequence alone, suggesting that these elements act as

boundaries to exclude nucleosome formation.

Our results suggest that the yeast genome utilizes these nucleosome

positioning signals to encode both relatively open (nucleosome-

depleted) chromatin architectures that result in low transcriptional

noise, and relatively closed (nucleosome-covered) chromatin archi-

tectures that result in high noise. We show that closed chromatin

architectures may be important for encoding condition-specific

transcriptional programs. We find that the effect of chromatin on

the activity of a binding site is determined mainly by whether the site

is located in an encoded open or closed chromatin region. We

hypothesize that such a mechanism may allow the same factor to

regulate different targets with different activation kinetics, by having

some of its sites located in encoded open chromatin regions and

others of its sites at regions encoded to be in closed chromatin

architectures. Similarly, we find that DNA-encoded open and closed

chromatin architectures may impact the efficiency of DNA

replication initiation. It will be interesting to identify other

chromosome functions where nucleosome positioning signals play a

role and to see whether similar rules apply in higher eukaryotes.

URLs
For our data, model and genome-wide occupancy predictions in

yeast, worm, fly, mouse, and human, and sequences provided by

researchers, see http://genie.weizmann.ac.il/pubs/field08. Our

results are also viewable in Genomica (http://Genomica.

weizmann.ac.il).

Methods

Parallel Sequencing of Yeast Nucleosomes and Data
Processing

Mono-nucleosomes were extracted from log-phase yeast

(Saccharomyces cerevisiae) cells using standard methods. The DNA

(pooled together from eight independent biological replicates) was

extracted, and protected fragments of length ,147 bp were

sequenced using 454 pyrosequencing. Each of the resulting

503,264 sequence reads was mapped to the yeast genome using

BLAST [62] requiring at least 95% identity. Sequences were

further filtered by requiring that they: map to a unique genomic

location; are of length 127–177 bp; do not overlap the ribosomal

RNA locus (chromosome 12: 451550–490540 bp). The resulting

378,686 nucleosomes constitute the nucleosome collection used in

all of our analyses. We used a sequencing technology whose reads

are ,200 bp in length, and thus, each of the nucleosomal DNA

fragments was read in full. These full sequence reads allow us to

map both ends of each nucleosomal DNA fragment to the

genome, without having to infer its other end, as is the case when

using sequencing technologies with shorter reads that map only

one nucleosome end.

Type II promoters). (B) Genes of the high- and low-noise promoter classes exhibit distinct functional enrichments. Shown is a selected list of
functional categories that are significantly enriched (P,1025) in the set of genes associated with each promoter type (see Figure S7 for the full list
and details of all enrichments). (C) The distinct nucleosome organizations in high- and low-noise promoters can be predicted from DNA sequence.
Shown is the average nucleosome occupancy predicted by the sequence-based model for nucleosome positioning that we developed here, for each
of the two promoter types in (A).
doi:10.1371/journal.pcbi.1000216.g012
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Figure 13. Nucleosome positioning signals may explain DNA replication efficiency. (A) Nucleosomes are depleted from origins of DNA
replication in S. cerevisiae. Shown is the average number of nucleosome reads in our data (cyan) per basepair around 82 annotated origins of
replication from yeast [63]. Note that the typical length of the nucleosome depleted regions is greater around replication origins than it is around
transcription start sites (e.g., compare to the length of the depleted region from Figure 9A and 9B). Also shown is the average nucleosome occupancy
predicted by the nucleosome positioning model that we developed here (red), per basepair around the same 82 origins. (B) Nucleosome depletion is
predicted around replication origins from S. pombe. Shown is the average nucleosome occupancy predicted by our nucleosome positioning model
(red), per basepair in the vicinity of 386 annotated origins of replication from S. pombe [61]. The exceptionally large length of the nucleosome
depleted regions around these replication origins may reflect the lower resolution with which S. pombe origins are mapped (,3 Kb), compared to
their S. cerevisiae analogs. (C) Shown is a schematic illustration of replication origins with low and high replication efficiency. The schematic illustrates
that in the low efficiency origins (‘‘type I’’, left column), binding sites for the replication machinery are measurably occupied by both their replication
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Sequencing of Human and Fly Nucleosomes and Data
Processing

Two fly and one human in vivo nucleosome collections were

obtained from fly (Drosophila Melanogaster, S2 cells) and human

(HeLa cells). Nuclei were prepared using standard methods, and

the chromatin digested to primarily mononucleosomes using

micrococcal nuclease. The DNA was extracted, and protected

fragments of length ,147 bp were cloned and sequenced as

described [2]. An additional human in vivo nucleosome collection

that is strongly enriched in G/C nucleotides (60% G/C) was

obtained by digesting the isolated human mononucleosomal DNA

with two restriction enzymes: Mse I, and Tsp509, with specificities

of TTAA and AATT, respectively. DNA fragments remaining

,147 bp in length following these digestions were gel purified,

cloned, and sequenced. A collection of human in vitro nucleosome

sequences was obtained as described previously from yeast [2]

except using human genomic DNA instead of yeast DNA [7]. The

resulting sequences from each experiment were mapped to their

respective genomes using BLAST [62] requiring at least 97%

identity. Sequences were further filtered by requiring that they

map to a unique genomic location and have a length in the range

142–152 bp. The resulting sequences constitute the three fly and

three human nucleosome collections used in our analyses and they

have 99 (fly 1; in vivo), 170 (fly 2; in vivo), 329 (human 1; in vivo),

208 (human 2; in vivo G/C), and 176 (human 3; in vitro)

sequences.

Datasets
The yeast genome sequence (May 2006 build) and gene and

chromosome annotations were obtained from SGD [63]. Yeast

transcription start sites were compiled from [64–66]: for each

gene, the transcription start site was taken as that with the most

sequence reads from [64,65], or from [66] when no sequencing

data was available. Functional transcription factor DNA binding

sites in yeast, defined as sites that are bound by their cognate

transcription factor were obtained from [47,67]. TATA elements

in yeast were obtained from [53]. Functional annotations for yeast

genes were downloaded from Gene Ontology [68]. Yeast genes

bound by chromatin remodeling factors were obtained from [54].

Measurements of protein expression variability, referred to here as

transcriptional noise, were obtained from [49]. Histone turnover

rates at yeast promoters were obtained from [55]. Nucleosome-

bound DNA sequences were obtained from: yeast [2,5,9,10],

worm [17], chicken [15]. Microarray-based nucleosome maps of

yeast (3 maps) and human (1 map) were obtained from [5,9,10,24].

Computing the Nucleosome Fold Depletion of a Set of
Genomic Regions

The nucleosome fold depletion over a set of genomic regions of

interest is defined as the ratio between their expected and actual

nucleosome coverage. The expected coverage is equal to the

average number of nucleosomes that cover a basepair in the

genome, computed by dividing the total number of basepairs

covered by our 378,686 nucleosome reads, with the total number

of basepairs in the genome that are not in the ribosomal DNA

locus or in repetitive regions. The actual nucleosome coverage

over a set of genomic regions is computed as above, but only

across the basepairs in the given set of genomic regions. In our

data, the expected coverage is 5.27. Thus, for example, a set of

genomic elements whose actual average coverage per basepair is

0.1, is depleted by 5.27/0.1, or 52.7-fold.

Defining Boundary Elements from Sequence
We use two sequence definitions for boundary elements. The

first is based on single homopolymeric tracts of Poly-A or Poly-T

(Poly(dA:dT) elements), and the second on clusters of short

Poly(dA:dT) elements. For the definition based on a single

Poly(dA:dT) element, we iterate over allowed values

k = 0,1,2,…,20, for the number of mismatches relative to the

Poly(dA:dT) tract. For each k, we then identify all maximal

Poly(dA:dT) tracts in the genome with exactly k mismatches,

where the mismatch cannot occur at the first or last basepair of the

element. By maximal elements, we mean that if a Poly(dA:dT)

element with exactly k mismatches is fully contained within a

longer Poly(dA:dT) element with exactly k mismatches, then only

the longer element is considered. For the definition based on

clusters of short Poly(dA:dT) elements, we first define short

Poly(dA:dT) elements as all Poly(dA:dT) elements with zero

mismatches whose size is at least 5 bp. For each allowed value in

the range k = 0,1,2,…,20, representing the number of mismatches,

we then identify maximal clusters of the above short Poly(dA:dT)

tracts with exactly k mismatches. As with single Poly(dA:dT)

elements, mismatches cannot occur at the first or last basepair of

each cluster and maximal elements are defined similarly. Note that

in the definition based on Poly(dA:dT) clusters, the resulting

boundaries may contain Poly(dA:dT) elements that alternate

between strands (e.g., AAAAATTTTTT).

Grouping Boundary Elements by Their Strength
For various analyses, we partitioned boundaries into distinct

groups based on their nucleosome fold depletion, which we refer to

as their strength. To this end, we first compute the nucleosome

fold depletion (strength) over the set of boundaries with exactly k

mismatches and whose length is at least n, for k = 0,1,2,…,20 and

all values of n for which elements of that size exist. This

computation is performed separately for each of the two boundary

definitions above (single Poly(dA:dT) elements and clusters of

Poly(dA:dT) elements). For a given requested partition of

boundaries into strength groups, we then assign each set of

boundaries with strength s to the strongest group among the

groups whose strength is below s. Throughput this paper, we

factors and nucleosomes (in a cell population), suggesting that their low efficiency results from competition between nucleosomes and factors for
DNA access. In contrast, the high efficiency origins (‘‘type II’’, right column) exhibit a characteristic nucleosome-depleted region that allows the
replication machinery to access the origins and replicate the DNA with high efficiency. (D) Replication origins from S. pombe that have large
nucleosome depleted regions are utilized with greater efficiency. We computed the average (predicted) nucleosome occupancy in 500 bp windows
within the 3 kb region surrounding each of the 386 annotated origins from (B). With each replication origin, we associated the lowest nucleosome
occupancy in any of its 500 bp windows. The 3 kb region was selected since the data on replication efficiency have a ,3 kb resolution [61]; 500 bp
windows were selected since these are the typical lengths of the nucleosome depleted regions over origins in S. cerevisiae, where origins are mapped
with greater accuracy. Using these computed lowest nucleosome occupancies for origins, we grouped together the 100 origins that have the highest
of these values (type I), and the 100 origins that have the lowest of these values (type II). For each of these two groups, shown is the fraction of its
origins (y-axis) whose efficiency of replication initiation as measured in [61] is within the k most efficient origins (x-axis; expressed as fraction), for all
possible values of k. Measurements of efficiency of replication initiation are presented in their ranked value.
doi:10.1371/journal.pcbi.1000216.g013
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partitioned boundaries into groups of strength 2, 5, 10, and 20.

Thus, for example, a set of boundaries whose strength is 30 will be

assigned to the boundary group of strength 20. In cases of overlap

in the genomic coordinates of boundary elements assigned to the

same group, we take only the boundary with the smaller number

of mismatches; and if the number of mismatches of the

overlapping boundaries is the same, we take only the longer

boundary. Finally, since the actual fold depletion of a boundary

Figure 14. Deletion of a Poly(dA:dT) element from a replication origin results in a reduction in replication efficiency. (A) Shown is the
average (predicted) nucleosome occupancy of the nucleosome positioning model that we developed here (red) at the 6 kb region surrounding the
one replication origin from S. pombe (‘‘ARS 3002’’) that was studied in the systematic sequence deletion study of [60]. Our model predicts a
nucleosome depleted region around the replication origin (‘‘ARS 3002’’). Annotated replication origins in the region were taken from [60] (B) Same as
(A), but only around the 815 bp region of the studied origin (‘‘ARS 3002’’). (C) Schematic representation of the 15 regions of length ,50 bp that were
each deleted in the study of [60]. The replication efficiency of each of these 15 regions was tested in [60], and it was found that of all 15 regions,
deletion of region 10 (which contains a Poly(dA:dT) element) resulted in the largest reduction in replication efficiency. (D) The DNA sequence of
region 10 from [60]. The Poly(dA:dT) element is indicated.
doi:10.1371/journal.pcbi.1000216.g014
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group by this procedure may differ from its original requested fold

depletion, we compute and use the actual fold depletion of the

boundary group for the various graphs that show plots as a

function of boundary strength.

Grouping Promoters by TATA Elements and Nucleosome
Coverage over Factor Binding Sites

For the analyses of Figure 11, we grouped promoters into four

classes, based on the presence of TATA elements and on whether

or not their binding sites are covered by nucleosomes or are

nucleosome-depleted. TATA boxes are taken from [53]. We

classify a promoter as having sites that are covered by nucleosomes

if at least 80% of the total basepairs of its binding sites are covered

by at least one nucleosome read from our data. We classify a

promoter as having sites that are nucleosome-depleted if at most

20% of the total basepairs of its binding sites are covered by at

least one nucleosome read. Binding sites are taken from [47,67].

Sequence-Based Model for Nucleosome Positioning
We represent nucleosome sequence preferences using a

probabilistic model that assigns a score to every 147 basepair

(nucleosome-length) sequence. As discussed above, our model

consists of two main components, each of which was separately

and previously explored by published models. The first compo-

nent, PN, represents the distribution over dinucleotides at each

position along the nucleosome length, and thus captures the

periodic signal of dinucleotides along the nucleosome. The second

component, PL, represents the position-independent distribution

over 5-mers at linker regions compared to nucleosomal DNA, and

thus captures sequences that are generally favored or disfavored by

nucleosomes regardless of their detailed position within the

nucleosome. We chose to represent this component using 5-mers,

since this is the highest order k-mer for which our data has

sufficient statistics to robustly estimate each of the associated

parameters, and the k-mer order that results in the highest AUC

performance in a cross validation scheme. The final score that our

model assigns to a 147 bp sequence S is then given by the log-ratio

of these two model components:

Score Sð Þ~log
PN Sð Þ
PL Sð Þ

~log
PN,1 S 1½ �ð Þ P

147

i~2
PN,i S i½ � S i{1½ �jð Þ

Pl S 1½ � P
147

i~2
Pl S i½ � S max 1,i{4ð Þ½ �, . . . ,S i{1½ �jð Þ

� �
ð1Þ

where PN,i is the ith component of the dinucleotide model

component and represents the conditional probability distribution

over nucleotides at position i given the nucleotide that appeared at

position (i21), and Pl is the position-independent component of

the second component of our model (PL). Note that PN,1 is

represented by a mononucleotide model over the nucleotide at the

first position.

We now describe in detail how each of the two components of

our model is derived. To compute the position-specific dinucle-

otide component of our model, PN, we start with a collection of

nucleosome-bound sequences, and estimate PN from the 23,076

nucleosome sequence reads of length 146–148. We restricted

ourselves to this length range of nucleosomes, since the border of

the nucleosome is the most likely cut site for the nuclease and thus

these nucleosome reads are likely to be mapped with the highest

accuracy. Indeed, these nucleosome reads exhibit clear periodic-

ities of dinucleotides along the nucleosome length, similar to those

reported previously [2,15] (Figure S2). For the estimation, we first

align all sequences about their center, where each sequence is

added twice to the alignment, once in its original form and once in

its reverse complement form, to account for the 2-fold symmetry in

the nucleosome structure [69]. Sequences of even length are

treated as two sequences, each with a weight of 0.5, once in a

configuration that has one more base at the left side of the

alignment, and once in a configuration that has one more base to

the right of the alignment. This accounts for the uncertainty we

have in the positioning of the even length sequences relative to the

center. With each position i, we then associate a dinucleotide

distribution, PN,i, which we estimate from the combined

dinucleotide counts at alignment positions [i22, i21], [i21, i],

and [i, i+1] (the two end positions of the nucleosome are averaged

with less positions). Combining the dinucleotides at the two

neighboring positions smoothes the resulting dinucleotide distri-

bution at each position with a 3 basepair moving average, and is

motivated by the experimental evidence that small 61 basepair

changes in spacing of key nucleosome DNA sequence motifs can

occur with relatively small cost to the free energy of histone–DNA

interactions [70]. To remove sequence composition biases from

this component, we normalize the distribution, by dividing the

final probability of every dinucleotide at each position by the

probability of that dinucleotide across all positions, and finally

normalize the resulting weights to a probability distribution. We

used this estimation procedure in the 127 central positions of the

nucleosome, and we force a uniform distribution over the 10

remaining positions at each end of the nucleosome profile. This

was done to avoid biases in nucleotide distributions that may arise

from the sequence specificity of the micrococcal nuclease used to

isolate the nucleosome, since this way we do not include statistics

that are taken from the cut site of the nuclease. Note that our

above construction produces a reverse complement symmetric

distribution, i.e., the probability of a sequence and its reverse

complement are equal.

The position-independent component of our model, PL, whose

purpose is to represent sequences that are generally favored or

disfavored regardless of their position within the nucleosome,

assigns a score to each 147 bp sequence, as the product of a

position-independent Markov model, Pl, of order 4. Thus, Pl

defines a probability distribution over every one of the 1024

possible 5-mers. We chose to model the distribution over 5-mers,

since this is the highest order in which our data still provides

sufficient statistics to robustly estimate the value of each of the

1024 parameters. Given a collection of nucleosome-bound

sequences, we set the weight of each 5-mer to the ratio between

the frequency of that 5-mer in the linkers, and the frequency of

that 5-mer in the nucleosome-bound sequences, where this ratio is

then scaled to be a probability by dividing it by the sum of ratios

across all 5-mers. As linkers, we take all 8022 contiguous non-

repetitive regions of length 50–500 bp that are not covered by any

nucleosome from the input collection. All 344,976 nucleosome-

bound sequences of length greater than 146 are taken as the set of

nucleosomes, and statistics are collected only from their central

127 bp to avoid alignment issues whereby the outermost regions of

any given nucleosome may in fact be linkers. From the above

linker DNAs, we ignored the statistics of the 5 basepairs at the end

of each linker, to avoid biases that may be introduced from the

sequence specificity of the micrococcal nuclease used in our

experiments to isolate nucleosomes. Thus, this Markov model, Pl,

includes contributions from both sequences that are disfavored by

nucleosomes and sequences that are favored by nucleosomes, since

it models the distribution over all 5-mers, with the disfavored
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sequences having a relatively high probability and the favored

sequences having a relatively low probability.

We note, that although we discuss each of the two model

components separately, these components are in fact not

independent, since each component captures some aspects of the

other component. For example, the position-independent compo-

nent, PL, may capture position-specific dependencies between

nucleotides separated by four basepairs, and such dependencies

are part of the position-specific component, and vice versa for the

periodic PN component.

Thermodynamic Model for Predicting Nucleosome
Positions Genome-Wide

The above probabilistic model assigns a nucleosome formation

score to each sequence of (nucleosome-length) 147 bp. We then use

the scores of this model to compute the genome-wide distribution

over nucleosome positions, taking into account steric hindrance

constraints between neighboring nucleosomes. To this end, we take

the partition function to be the space of all legal configurations of

nucleosomes on a sequence S, where a legal configuration specifies a

set of 147 bp nucleosomes and a start position for each of these

nucleosomes on S, such that no two nucleosomes overlap. A legal

configuration thus respects a simple approximation of the detailed

linker length-dependent steric hindrance constraints between

nucleosomes. We score a sequence S for its apparent nucleosome

binding affinity using the above formula for Score(S). For each

sequence S and legal configuration c with k nucleosomes positioned

at c[1],…,c[k], we assign a statistical weight Wc[S] defined as:

Wc S½ �~ P
k

i~1
t exp b:Score Sc i½ �,Sc i½ �z146

� �� �� �
,

where t represents an apparent nucleosome concentration, and b is

an apparent inverse temperature parameter. Our default parameter

settings are t = 1 and b = 0.5. In accord with the Boltzmann

distribution and under the assumption of thermodynamic equilib-

rium, it follows that the probability of every configuration is then

given by:

P Wc S½ �ð Þ~ Wc S½ �P
c’[C

Wc’ S½ � ,

where c9 goes over the space of all legal configurations C. A dynamic

programming method [2,71] can efficiently compute the probability

of placing a nucleosome that starts at each basepair in the genome.

The underlying idea is that the probability of placing a nucleosome

starting at a particular basepair i is equal to the sum of the statistical

weights of all configurations in which a nucleosome starts at position

i, divided by the sum of the statistical weights of all legal

configurations. Both of these sums can be computed efficiently in

three steps. The first is a forward step, in which we compute a set of

variables F1,…FN, where Fi represents the sum of the statistical

weight of all legal configurations of the sub-sequence S1,…Si, as

follows:

F0~1

Fi/Fi{1 1ƒiƒ146

Fi/Fi{1zFi{147t:exp b:Score Si{146,Sið Þf g i§147

:

The second step is a reverse step, in which we compute a set of

variables R1,…RN, where Ri represents the statistical weight of all

legal configurations of the sub-sequence Si,…SN, as follows:

RNz1~1

Ri/Riz1 i§N{145

Ri/Riz1zRiz147t:exp b:Score Si,Siz146ð Þf g iƒN{146

:

In the final step, we can directly compute the probability, P(i), of

placing a nucleosome that starts at each basepair i of S, where

i#N2146, as follows:

P ið Þ~ Fi{1t:exp b:Score Si,Siz146ð Þf gRiz147

R1
:

The probability that a basepair i in S is covered by any

nucleosome, referred hereto after as the average nucleosome

occupancy predicted by our model, is the sum of the probabilities

of starting a nucleosome at any of the positions from i2146 to i,

i.e.,
P146

k~0

P i{kð Þ.

Supporting Information

Figure S1 Our map shows significant correspondence with

microarray-based nucleosome maps. (A) Shown is the fraction of

our nucleosome reads (blue solid line; y-axis) whose center is within a

particular distance from the center of at least one nucleosome from

the nucleosome calls from [1]. For this plot, we only considered

nucleosome reads from our data that are contained in regions that

were mapped by probes from the microarray of [1], and we filtered

our nucleosome reads to contain only unique nucleosome centers,

by representing multiple nucleosome reads that have the same

center as a single nucleosome. To assess the significance of the

correspondence, we permuted the locations of our unique set of

nucleosomes within the regions covered by the microarray of [1],

and repeated this same plot for the permuted nucleosome set (dotted

blue line; y-axis). (B) Same as (A), but where the fraction of

nucleosomes shown is the reverse, i.e., the fraction of nucleosome

calls from [1] (red solid line; y-axis) whose center is within a

particular distance from the center of at least one nucleosome from

our nucleosome reads. (C,D) Same as (A,B), for a comparison

against the microarray nucleosome map of [2]. (E,F) Same as (A,B),

for a comparison against the microarray nucleosome map of [3].

(G,H) Same as (A,B), for a comparison against the sequence-based

nucleosome map of [4]. (I,J) Same as (A,B), for a comparison against

the sequence-based map of H2A.Z nucleosomes from [5]. (K,L)

Same as (A,B), for a comparison against 99 nucleosomes mapped in

the literature, and compiled in [6].

Found at: doi:10.1371/journal.pcbi.1000216.s001 (0.53 MB TIF)

Figure S2 Periodicity of dinucleotides along the nucleosome

length. Frequencies of all 16 dinucleotides at each position of our

center-aligned nucleosome-bound sequences with length 146–148.

Found at: doi:10.1371/journal.pcbi.1000216.s002 (0.34 MB TIF)

Figure S3 Comparison of different models for nucleosome

positioning. (A) Evaluation of the abilities of various models to

separate linkers from nucleosomal DNA. For every model tested,

shown is the fraction of all measured nucleosomes that the model

correctly classifies as nucleosomes (y-axis; true positive rate) against

the fraction of all measured linkers that the model incorrectly

classifies as nucleosomes (x-axis; false positive rate), for each

possible threshold on the minimum score above which the model

classifies a region as nucleosomal. For every model tested, the
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result is a standard receiver operating characteristic (ROC) curve,

whose area under the curve (AUC; shown in inset) is a quantitative

measure of the quality of the predictions, with the value 1 being

perfect and 0.5 being random guessing. The score of each

measured nucleosome (or linker) is the mean score that the model

assigns in the region that is 20 bp from the center of the

nucleosome (linker). For our model, scores are assigned once using

a cross validation scheme (orange line; annotated ‘‘Our model

CV’’), in which every nucleosome or linker on a given

chromosome is assigned a score using a model that was trained

from the data of all other chromosomes, and once using all the

data for training (blue line; annotated ‘‘Our model’’). For the other

five published models being compared, scores were taken from the

models trained by the authors. For the model of [7] (purple line;

annotated ‘‘Peckham (07)’’), which was designed to assign raw

scores to every 50 basepairs in the genome, the score of each

147 bp nucleosome was taken to be the average score of all 50 bp

regions contained within the 147 bp. For the model of [1] (cyan

line; annotated ‘‘Lee (07)’’), scores for 147 bp regions were

downloaded from the authors’ website. For the model of [8] (green

line; annotated ‘‘Yuan (08)’’), scores were computed by applying

code obtained from Dr. Yuan to every 147 bp region. For the

model of [9] (brown line; annotated ‘‘Ioshikes (06)’’), scores were

computed by applying code obtained from Dr. Yuan to every

147 bp region. For the model of [6] (red line; annotated ‘‘Segal

(06)’’) scores were downloaded from the authors’ website. For all of

these comparisons, linkers are taken as contiguous non-repetitive

regions of lengths 50–500 bp that are not covered by any

nucleosome in our data. Results are shown for separating these

linkers from all of the nucleosomes in our data. (B) Same as (A), for

separating linkers and nucleosomes that agree between two

genome-wide microarray-based nucleosome maps in yeast1,3.

To this end, we took the reported nucleosome positions from [1]

that were obtained by applying an HMM to the hybridization

signals, and the reported nucleosome positions of [3]. As linkers,

we took contiguous regions of lengths 50–500 bp that are

nucleosome-free in both maps. As nucleosomes, we took

nucleosomes whose center was within 20 bp of the center of a

reported nucleosome position in the other dataset. Note that the

model of [1] was learned from one of the two microarrays (from

[1]) on which the evaluation is shown.

Found at: doi:10.1371/journal.pcbi.1000216.s003 (0.27 MB TIF)

Figure S4 Large nucleosome depletion over Poly(dA:dT) ele-

ments. Graphs showing the nucleosome fold depletion over

Poly(dA:dT) elements as in Figure 2D, but for all possible number

of mismatches 0,1,2,…,20. (A) The number of elements in each of

the points shown in every graph from (panel c). (B) The number of

elements in each of the points shown in every graph from (panel d).

(C) Shown is the combined nucleosome fold depletion over all

homopolymeric tracts of A’s or T’s (Poly(dA:dT) elements) of length

k, for k = 5,6,7,…, and for Poly(dA:dT) elements with exactly

0,1,2,…,20 base substitutions (mismatches). Each graph is trimmed

at a length K in which there are less than 10 elements, and the fold

depletion at this final point is computed over all elements whose

length is at least K. The combined fold depletion of a set of genomic

elements (y-axis) is the ratio between their expected and observed

nucleosome coverage, where the expected coverage is the average

coverage of any basepair according to our data, and the observed

coverage is the average coverage of a basepair from the set (see

Methods). (D) As in (C), but for clusters of perfect Poly(dA:dT)

elements, where each element is at least 5 bp, and where the total

number of bases in the cluster that are not in perfect Poly(dA:dT)

elements (mismatches) is exactly 0,1,2,…,20.

Found at: doi:10.1371/journal.pcbi.1000216.s004 (0.64 MB TIF)

Figure S5 Number and genomic distribution of boundaries in

the yeast genome. (A) Shown is the number of sequence

boundaries in the yeast genome at various boundary strengths.

The strength of a boundary is a measure of its level of nucleosome

fold depletion and is defined using our data (see Methods). The

graph displays the overall number of boundaries (orange) and the

number of boundaries that intersect gene coding regions (green),

promoter regions (blue), 59 untranslated regions (59 UTRs; red),

and intergenic regions that are not promoters (brown). (B) Same as

(A), but represented as the frequency of boundary per basepair

across the entire genome (orange) and across the different types of

genomic regions from (A).

Found at: doi:10.1371/journal.pcbi.1000216.s005 (0.17 MB TIF)

Figure S6 Strong depletion in vitro over a Poly(dA:dT) element

in sheep. Shown are intensity measurements (y-axis) from [10],

corresponding to nucleosome occupancies at 1743 positions from a

,10 kb region around the b-Lactoglobulin locus of sheep, after in

vitro nucleosome reconstitution on this region. Positions are given

relative to the transcription start site of the gene. The only Poly-

T(13) element in the region is indicated, along with the sequence

context in which it is embedded. Note the strong nucleosome

depletion over this element.

Found at: doi:10.1371/journal.pcbi.1000216.s006 (0.33 MB TIF)

Figure S7 Genes with high- and low-noise promoter architec-

tures exhibit many (and different) functional enrichments. For

each of the four gene groups from (Figure 11A), shown is their

functional enrichment for genes with particular functional

categories from GO11, transcription factor binding sites12,13,

targets of chromatin remodeling complexes3,14, and essential

genes15. The two extreme promoter types from Figure 11A (type

I: first row, genes with TATA elements and nucleosome-covered

factor sites; type II: fourth row, genes without TATA elements and

with nucleosome-depleted factor sites) show many significant

enrichments, in contrast to the two other promoter types. The p-

value of a hypergeometric test is given for each category, along

with the number of genes from the group annotated as belonging

to the category (first number in parentheses), the number of genes

from the group (second number), the number of genes annotated

as belonging to the category (third number), and the total number

of genes that were both part of our four groups and were

annotated as belonging or not to the category (fourth number). We

report only p-values less than 1025.

Found at: doi:10.1371/journal.pcbi.1000216.s007 (0.40 MB TIF)
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