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Abstract

The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the
temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe
biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show
that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are
recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal
changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus
position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation
invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to
propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its
applicability under in vivo constraints remains to be seen.
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Introduction

Sensory categorization is mediated, at least in part, by brain

processes that extract information from the precise points in time

at which neurons emit their first few spikes in response to the

presentation of a sensory object [1–7]. In that context, a

particularly attractive candidate representation primitive makes

use of the order of neuronal recruitment, computed from the

latencies to first spikes. The idea of representation by recruitment

order is physiologically and computationally appealing because of

its simplicity, rapidity, robustness and ease of implementation

[7–10].

Spike order-based representation was shown to be applicable in-

vivo, under conditions where the input has a fixed temporal order,

either because of temporally structured stimulus features (e.g.,

[11]) or due to unique structure of peripheral receptor tuning

curves [8]. Order based representation can also result from an

underlying feed-forward network structure (e.g., [12]). But what if

these constraints are relaxed? Is recruitment order applicable for

representing stimuli that are not temporally ordered, in complex

large-scale recurrent neural networks? If applicable, how does it

handle trial-to-trial variations in spike times of individual neurons?

How sensitive is it to the temporal resolution of ordering and the

number of sampled neurons? How much of the network’s

classification capacity is conserved when absolute times of spikes

evoked in response to a given stimulus are compacted to vectors of

recruitment orders? The answers to these questions impact on the

general applicability of recruitment order as an ensemble neural

representation scheme.

Here we approach the above questions by examining the

capacity of recruitment order to classify between multiple stimuli

delivered to a large-scale recurrent network of cortical neurons

that develops spontaneously in-vitro; this is an experimental model

that matches the generic biophysical nature of the subject matter,

and provides exquisite control of relevant variables. Key functional

properties of in-vivo networks are conserved in this preparation

[13], including cell types and their electrophysiological character-

istics, synaptic and cellular level plasticity, developmental timeline

and sensitivities to pharmacological agents. Sensory objects are

defined in terms of identities of stimulating electrodes and the

evoked neuronal activities are monitored through substrate-

embedded array of spatially distributed extra-cellular recording

electrodes.

We show that recruitment order reliably classifies input sources

on a trial-to-trial basis and is invariant to significant temporal

changes in absolute spike times of individual neurons. Classifica-

tion accuracy monotonously increases with the number of sampled

neurons, and steeply sensitive to the temporal resolution of spike

ordering. The infrastructural origin of rank order representation is

interpreted in terms of effective network topology.

Results

Time Warping of Cellular and Population Responses
For spike-timing based representation to be applicable, latencies

between spikes should be consistent in repeated presentations of a

given sensory object, and distinctive between different objects.

Both requirements strongly depend upon trial-to-trial variability of
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spike times. While directly stimulated individual cortical neurons

can respond very reliably in terms of spike latencies [14,15],

evidence for trial-to-trial variability in spike times and spike counts

of network-embedded neurons in-vivo abound [16–21]. As shown

below, a large-scale recurrent network of cortical neurons that

develops spontaneously in-vitro presents a similar dichotomy:

Latencies to first spikes in ‘‘receptive sheath neurons’’—i.e.,

individual neurons that are directly activated by external stimuli—

can be very reliable; in contrast, trial-to-trial variability of latencies

and counts is extensive when ‘‘downstream’’ spikes are consid-

ered—i.e., spikes that are generated by propagation of the activity

from the receptive sheath neurons deeper into the network. Note

that the recurrent nature of the networks implies that a given

neuron may, and in most cases does, serve in both groups.

We find that at stimulation frequencies of 3 Sec21 or below,

which is the range used in this study, the single spike evoked by

each short (0.4 mSec) stimulus that is directly applied to a

receptive sheath neuron, occurs within less then 6–7 milliseconds

following the stimulus. In concurrence with previously reported

measurements from cortical neurons in-vitro [22,23], the latency

from the stimulus to the response in that range of stimulation

frequencies is very reliable (Figure S1).

In and by itself, reliable latency to first spike of directly activated

neurons can support representation by recruitment order that is

generated by stimulus dynamics (different receptive neurons

activated at different times [8,24]). But this is not what we are

after here; the present study aims at the next level of processing,

beyond the receptive sheath. Specifically, we ask how applicable

recruitment order representation is downstream to the point of

stimulus entry into a network, where spike time reliability is

degraded by the dynamics of synapses, intricacies of propagation

along axo-dendritic trees and the complexity of recurrent

connectivity. Figure 1 shows latencies to first spikes measured

downstream to the point of stimulus entry into a network. First

spike latencies from 35 spike-sorted units [25] are shown, evoked

in response to stimuli invading the network from two different

well-defined loci (‘‘sources’’), S1 and S2. To assure that we only

look at downstream neurons (rather than receptive sheath neurons

that are directly activated by the electrical stimulation), the first

10 mSec following each stimulus were removed from the data.

Figure 1 (Top two panels) indicates that in spite of the relatively

low rate of stimulation (compare with Figure S1), the latencies to

first downstream spikes are severely warped over a range of

100 mSec and more, they wax and wane in a seemingly random,

yet constrained manner. Note that the magnitude of time warping

for a given neuron depends on the stimulation source. The bottom

panel of Figure 1 shows that in many cases the correlation between

latencies of different neurons is stimulus source specific.

The above time warping is also observed at the population level,

provided that activity is not averaged across trials. The average

network response, expressed in terms of a population post-

stimulus-time-histogram (pPSTH), defined as the average number

of spikes recorded throughout the network in a time window of

500 mSec following each stimulus, registered in 1 mSec time bins,

shows a characteristic threshold-governed time amplitude trajec-

tory that lasts 0.1–0.2 Seconds [26], comparable to numerous

observations in-vivo [1,27–29]. To differentiate from averaged

population response, we denote the response of the network to a

single stimulation event network spike, and define it in terms of the

total number of neuronal action potentials counted over the entire

population as a function of post-stimulus time [26]. Figure 2A and

2B show the pPSTH and the underlying variance between

network spikes in response to a series of stimuli that were delivered

to the network from a single stimulation site at a frequency of

0.3 Sec21. Trial-to-trial variations appear in the time-delay

between the stimulus and the peak of the network spike, as well

as in the overall shape of network spikes. Note that the range of

temporal variations extends over several tens of milliseconds

within which the network response warps, shifts to the right (longer

delays) and back to the left (shorter delays) in a graceful manner or,

sometimes, in what seems like a sudden switch between response

modes. To appreciate the multiplicity and range of time scales

involved, we have sorted the data shown in Figure 2B based on the

time-delays from the stimulus to the peak of each network spike

(Figure 2C). Note the multiplicity of scales that are involved in the

latency from stimulus to the peak and the width and the activity

within network spikes, extending from below .01 Sec21 up to the

,40 Sec21 gamma range. The range and overall nature of

population time warping does not depend on the stimulation

source. This is demonstrated in Figure 3 that shows time warping

of network spikes in response to two series of stimuli, delivered

from two different stimulation sites, S1 and S2.

The above non-monotonic changes in absolute time delays

between stimulus and neuronal responses at the levels of individual

neurons and neuronal populations, set constrains on the capacity

of temporal measures to reliably classify input sources on a trial-to-

trial basis. In what follows we show how representation by

recruitment order, computed from the latencies to first spikes,

handles time-warped neuronal responses.

Stimulus-Specific Recruitment Orders
For a propagation path (and hence for a recruitment order) to

be invariant to neuronal response time warping in a large scale

recurrent network, one of the following two options must be

fulfilled: (i) Dynamics of membrane variables and synaptic

efficacies are scaled and homogeneously distributed throughout

the network; the idea is that under such conditions, paths of less

resistance to propagation of activity remain stable. This option,

however, is difficult to conceive biophysically and incompatible

with previously reported results (e.g., [30]). (ii) Propagation paths,

and hence order of recruitment, are constrained by chains of

Author Summary

The idea that sensory objects are represented by the order
in which neurons are recruited in response to stimulus
presentation was put forward over a decade ago, largely
based on computational biology considerations. While
intensively analyzed in simulation studies, the general
biological applicability of this highly compacted and
efficient representation scheme, as an ensemble neural
code, was never established. In recent years, algorithmic
and experimental technologies advanced to a stage that
allows for facing the challenge; here we took advantage of
this progress. We let a large-scale random network of
cortical neurons develop on top of a microfabricated,
multielectrode array that enables electronic interrogation
of the network, stimulating through various points in
space, and simultaneously recorded the resulting activities
from a large number of neurons. We applied state-of-the-
art classification algorithms and asked how well the rank
order representation scheme handles categorization tasks.
We show that recruitment order is generally applicable as
an ensemble code; it emerges spontaneously in a large
‘‘structureless’’ network of neurons as a functional code
that is invariant to significant temporal variance in spike
times and spike rates and flawlessly classifies inputs on a
trial-to-trial basis.

Representation in Neural Networks
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neuronal stations through which activity is required to pass in

order to propagate further into the network, regardless of the

status of membrane and synaptic dynamics; such stations are

natural consequences of physical or effective connectivity that are

inherent to the concept of synfire-chain [12,31] or certain forms of

broadly-distributed network connectivity [26,32]).

To identify chains of neuronal stations in large-scale neuronal

networks under time-warping conditions, we have analyzed the

recruitment order relationship between all recorded neuronal pairs:

Given n neurons, there are n(n21) different (i, j) neuronal pairs (i = 1,

2, 3, … n; j = 1, 2, 3, … n). The first spike times of a pair (i, j), in

response to each stimulation event, may appear in one of two orders,

iRj and jRi (we disregard the possibility of complete synchronous

occurrence, for the sake of simplicity). We measure the probability of

j to precede i for all possible pairs. If a given neuron (or a group of

neurons) is an ideal station through which activity is required to pass

in order to propagate further into the network, we expect that it

always be preceded by activity of a given subset of neurons, and

always be followed by the complement set of neurons. In other

words, each genuine station in a chain would act like a bottleneck,

separating all other neurons (or groups of neurons) into two groups

based on the temporal relation between their first spikes and its own:

a group of preceding neurons and a group of following neurons.

Figure 4A demonstrates three pair-order matrices, generated from

responses to three different stimulation sources of one network: The

matrices (each for one of the three stimulation sources) depict the

probability of each neuron to precede every other neuron. Neurons

are presented, in each of the matrices, sorted by their average rank.

All three matrices clearly show that recruitment is ordered (see

Figure S2 for more examples from different networks). The left and

middle matrices of Figure 4A demonstrate cases in which our

electrodes picked a small number of clear clusters of neurons; the

right matrix demonstrates a fairly homogeneous arrangement along

the diagonal and no clear clusters of neurons. The variety of matrix

forms shown in Figure 4A (and Figure S2) probably reflects the effect

of sparse spatial sampling of a common underlying structure that

enforces ordered recruitment: a chain of neural stations. Consider

the simple three-stations arrangement, XRYRZ. Let us assume

that X, Y and Z are clusters of highly interconnected neurons, and

that there is some overlap between these clusters (i.e., some neurons

in cluster X are also part of cluster Y and so on). Cluster X activates

cluster Y, which, in turn, activates cluster Z. In that respect, Y is a

bottleneck station between X and Z. If cluster Y is outside the

electrodes sampling area, the pair-order probability matrix is

expected to show sharp separation between clusters, X and Z; the

left and middle panels show this type of behavior, where white circles

indicate the existence of bottlenecks (the equivalents of Y) that reside

outside the sampling area. On the other hand, when all (or most) of

Figure 1. Latencies to first downstream spikes. Thirty-five columns are shown in the upper part of the figure, representing responses of 35
neurons (spike-sorted units) to two series of 180 stimuli that were applied at a rate of 0.2 Sec21 each, first from one stimulation site (S1, top row) and
then from another (S2, bottom row). In each column a vertical line depicts 10 mSec following stimulus time (see text), and a series of points represent
the latencies to first spikes detected thereon in response to consecutive stimuli. Latencies greater then 100 mSec are not plotted (see scale bar).
Bottom panel: Pair-wise correlation distributions for each of the two stimulation sources (bar charts). Each of the points in the main graph depicts the
correlation between first spike latencies of a given pair of neurons, computed from responses to S1 (X axis) and S2 (Y axis); there are 595 points in the
graph, representing all possible neuronal pairs.
doi:10.1371/journal.pcbi.1000228.g001
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the clusters are within the sampled area, we expect to see a more

homogeneous diagonal arrangement (i.e. a chain of bottleneck

stations) like the one exemplified in the right-hand panel of

Figure 4A.

Figure 4A also tells us that the rank order of different neurons is

stimulus site specific: The small black arrows to the right of the middle

panel depict a cluster of neurons that tend to respond close to each

other in terms of their recruitment order; each arrow indicates one of

these neurons. The dispersion of these arrows in the other (right and

left) panels indicates that the rank of any given neuron is stimulus site

specific. Thus, neurons appear at different ranks in responses to the

three different stimulation sites, providing the infrastructure for

recruitment order classification of input sources. Figure 4B shows that

the three paths shown in Figure 4A do not result from a spatial wave-

like propagation of activity across the recording area; rather,

propagation paths appear to randomly connect between the

recording electrodes, suggesting that the underlying structures are

embedded in a non-trivial manner in space.

In what follows we show that based on the two key features

demonstrated in Figure 4A, (ordered recruitment, which is stimulus

specific), rapid and reliable classification of inputs is readily

obtained by use of unsupervised as well as supervised algorithms.

Unsupervised Stimulus Classification by Recruitment
Order on a Trial-to-Trial Basis

Throughout this study, we have imposed two constraints on which

spikes are considered for analyses; both constraints are meant to

avoid trivialization of the order-based classification task: (i) we

omitted spikes that were evoked up to 10 mSec following each

stimulus (i.e. latency 0 means 10 mSec following a stimulus), thus

avoiding classification by first spike latencies emitted from receptive

sheath neurons. (ii) We only considered first spike latencies in

neurons that responded to more than 90% of stimuli from all sources,

thus making sure that classification is not based on neuronal

identities (in which case the task is trivialized by relying on a neuron,

or group of neurons, that has high response probabilities to stimuli

delivered from one of the sources, but not from other sources).

Figure 5 demonstrates the process of extracting recruitment

order from a network response to a stimulus. Note that

recruitment order is a reduced form of absolute latencies to first

spikes, a fact that will become crucial in a later section of this

report, where we address the question of how much of the network

capacity to classify input sources is lost in this reduction.

To test the capability to classify inputs by recruitment order, we

start by applying an unsupervised classification algorithm, that is –

classification without the need to learn from labeled examples. To

that end an order metric was applied, such that the distance between

different recruitment orders can be measured: A single character

symbolizes each neuron, and words are obtained, each of which

represents the first spike order of neuronal recruitment in response to

a given stimulus. For example, the word cgbdhefa stands for

the order in which 8 neurons (a--h) were recruited in response

to a given stimulus. The word cagbdhief stands for a response

to another stimulus (from the same or different input source), but this

time 9 neurons (a--i) were recruited to respond. The

Levenshtein Edit Distance string metric was used for measuring

the distance between any two strings, expressed in terms of the

minimum number of editing operations (insertion, deletion, or

substitution) needed to transform one string into the other.

Figure 6 demonstrates classification between two input sources

based on the Edit Distance metric. A network was stimulated from

two sources (S1 and S2) intermittently, at four different frequency

regimens. The top panel of Figure 6 shows the resulting Edit

Distance matrix; responses are ordered according to their stimula-

tion source, revealing clusters of similarity that clearly match the two

sources of input (depicted by white lines). Note that the four different

frequency (f) regimens yielded very different population spike counts

(low panel of Figure 6). Yet, the representation by recruitment order

remains invariant to these changes. In nine different networks that

were challenged with a two-source classification task, cluster analyses

(standard hierarchical algorithm, forced to identify two clusters)

using Edit Distance metric yielded average classification accuracies

ranging from 0.6 to 0.98 (median = 0.72; SD = 0.13). The

arbitrariness of our choice of Edit Distance metric is acknowledged;

to avoid possible bias in the interpretation of our results, other order-

based metrics were applied (e.g. Spearman correlation and Euclidian

metrics), yielding qualitatively similar results (data not shown).

The Compression of Precise Latencies to Recruitment
Orders Does Not Degrade Classification Accuracy

The electrical activity of neuronal networks is expressed in terms

of neuronal identities and their absolute spiking times; recruitment

order is a dramatically reduced form of that data. How much of

Figure 2. Latencies to population responses. (A) Population post-
stimulus time histogram (pPSTH). 52 electrodes in which spikes were
detected in .15% of the stimuli were considered for this analysis. The
number of spikes recorded in a time window of 500 mSec following
each of 484 stimuli was registered in 1 mSec time bins, averaged,
normalized to peak and plotted in black line; the absolute value at the
peak ,100 mSec is ,4 spikes/msec per 52 electrodes. The stimuli were
applied from a single stimulation site at a frequency of 0.3 Sec21. (B)
Horizontal lines, coded by a grayscale in which maximal spike counts
are depicted black, show the responses to each of the 484 individual
stimuli. Note trial-to-trial variations. (C) The individual responses of
panel 2B, sorted based on their time to peak. Note the range and
multiplicity of time scales involved.
doi:10.1371/journal.pcbi.1000228.g002

Representation in Neural Networks
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the classification capacity is conserved when absolute first spike

times, which are evoked in response to a given stimulus, are

compacted to lists of recruitment orders? To answer that question,

an estimate for classification capacity should be obtained for both

absolute spike times and recruitment order representations. The

dimensionality and statistical properties of our experimental data

Figure 4. Demonstration of neuronal stations through which activity is required to pass in order to propagate further into the
network. (A) Pair-order probability matrices, generated from responses to three different stimulation sources of one network: The matrices (each for
one of the three stimulation sources) depict the probability (color-coded) of each neuron to precede every other neuron. Neurons are presented in
these matrices sorted by their average rank. White circles depict the impact of presumed bottlenecks outside the sampled area. Small black arrows to
the right of the middle panel depict a cluster of neurons that tend to respond close to each other in terms of their recruitment order; each arrow
indicates one of these neurons. The dispersion of these arrows in the other (right and left) panels indicates that the rank of any given neuron is
stimulus site specific. (B) Activation pathways for the three sources shown in (A) above. The average rank vector of the responses to each source is
projected onto a map of the physical locations of each electrode. Note that propagation lines that connect between electrodes that are horizontally
or vertically aligned might mask each other and give the impression that a sequence has more than one endpoint; to overcome this graphical
problem, a color-coding for the rank of each arrow (Red to Blue) is used. Circles depict physical locations of neurons circled in 4A.
doi:10.1371/journal.pcbi.1000228.g004

Figure 3. Network response to two different series stimuli, delivered from two separate sources (180 from each source), S1 and S2.
The stimuli were delivered intermittently at two different frequency (f) regimens: during the first 900 seconds the network was stimulated at
frequencies fS1 = 0.02, fS2 = 0.2 Sec21; in the following 900 seconds, the network was stimulated at frequencies fS1 = 0.2, fS2 = 0.02 Sec21. In practice,
for both regimens, every 10th stimulus was applied from the ‘‘rare’’ stimulation source. Spike counts per mSec are coded by a grayscale in which
maximal spike count is depicted white; note scale on the vertical axes.
doi:10.1371/journal.pcbi.1000228.g003

Representation in Neural Networks
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renders simple and direct estimation of classification capacity from

response distributions impossible. To circumvent this limitation an

alternative approach is adopted, where a lower bound on the

classification capacity is estimated by the performance of a general

purpose supervised classifier, trained to recognize the sources of

stimulation. A Support Vector Machine (SVM) with an adaptive

Gaussian kernel (see Materials and Methods for details) was trained

to classify the different input sources based on labeled examples of

the data, and the classification capacity was estimated by its

performance on a test data set. In nine different networks that were

challenged with a two-source classification task, the median accuracy

(test sets only) obtained by use of absolute time to first spikes at

1 mSec resolution was .99 (SD = 0.03); the median accuracy

obtained by use of recruitment rank order using 1 mSec resolution

is .98 (SD = 0.12). In six different networks that were challenged with

a five-source classification task (data shown in the context of the

subsequent section), the median accuracy (test sets only) obtained by

use of absolute time to first spikes at 1 mSec resolution was .91

(SD = 0.03); the median accuracy obtained by use of recruitment

rank order using 1 mSec resolution is .94 (SD = 0.04). (Note that the

slightly better performance of the recruitment order based classifier,

compared to absolute time based classifier, reflects the lower

dimensionality of the first relative to the latter, and the entailed

effect on the sample size required for learning.) Thus, in a two-source

and five-source classification tasks, reduction from spike latencies to

recruitment order representation is practically lossless. The classifi-

cation capacity of these networks in a six input sources task yields

similar results (data shown in the context of the subsequent section).

Sensitivity of Order-Based Classification to the Number of
Sampled Neurons and Temporal Resolution

Up to this point, the presented classification results were based on

all the electrodes that responded beyond the 90% criterion

mentioned above. Theoretically, n neurons provide a space of n!

possible representations; thus, for instance, six sources can, in

principle, be classified based on the recruitment order of only three

neurons. How sensitive is classification by recruitment order to the

number of sampled neurons? Figure 7 shows the rank order

representation accuracy as a function of the number of sampled

electrodes for two different networks (two source discrimination task).

Here, each point in a continuous line depicts the mean accuracy of

200 random combinations of n electrodes (abscissa). Note the

monotonic increase in accuracy as a function of the number of

sampled electrodes; similar results were obtained in six experiments

of five sources classification task, shown in Figure S3, left panel.

Moreover, even though the classification accuracy based on spike

timing is significantly higher than that of rank based representation

at very small numbers of sampled electrodes, this difference

disappears when the number of electrodes increased. In other

words, as the number of sampled neurons increases, the information

carried by spike times becomes redundant to the information carried

by recruitment order. The apparent difference between the

performances of the two classifiers in low electrode numbers implies

that absolute spike times carry information about the stimulus source

that is not captured by recruitment order. It is important to note,

however, that the information carried by the exact latencies does not

mean that this information is available to decoders that are based on

precise times (e.g. coincidence detectors). In fact, our data implies the

contrary: The time-warping exemplified in the first part of the results

suggests that absolute times to first spikes are not precise, at least in

this preparation, and some non-trivial transformation of spike times

is required before a satisfactory classification may be achieved. The

relative simplicity of the recruitment order over spike times coding is

apparent in the success of classification using unsupervised methods

(Figure 6); this method was unsuccessful when applied to spike times

(various distance metrics were tried; data not shown). Indeed, it

seems likely that a tradeoff exists between the number of sampled

neurons and the complexity of the neural code.

Figure 5. An illustration of data reduction and terminology. Picture 6 neurons (a–f) responding to a single stimulation event by evoked spikes
(vertical lines). Spikes emitted during the first 10 mSec post stimulus are ignored. The recruitment order is derived from latencies to first spikes (Red
vertical lines). Neurons that fired within the same time bin were either ranked according to their alphabet (for string metric analyses) or credited an
equal rank (for SVM analyses; see Materials and Methods).
doi:10.1371/journal.pcbi.1000228.g005

Representation in Neural Networks
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Figure 8 demonstrates the impact of temporal resolution on the

accuracy of classification in a case of two sources classification task

(left panel) and six sources classification task (right panel). Data was

binned at temporal windows ranging from 1–100 mSec, and

latency and rank vectors were prepared as explained above

(Figure 5). Figure 8 shows that, in general, the classification

Figure 6. Order-based representation. Bottom trace: Stimuli were applied intermittently from the two sites, at four different frequency regimens
(f, Sec21): fS1 = 0.2, fS2 = 0.05; fS1 = 0.05, fS2 = 0.2; fS1 = 0.33, fS2 = 0.08; and fS1 = 0.08, fS2 = 0.33. The total number of spikes detected in all the electrodes
within 500 mSec following each of the 1600 stimuli is sorted according to stimulus site (S1 and S2), the order in which stimuli were applied, and the
frequency of stimulation. Note that the four different frequency regimens yielded very different spike counts. Upper panel: A matrix of Edit Distances
between first spike recruitment orders evoked in response to the repeated stimuli applied from the two stimulation sites. The matrix is temporally
aligned to the bottom panel. Distances are computed using the Levenshtein Edit Distance. Clusters of similarity that match the two sources (S1 and
S2) are clearly observed (depicted).
doi:10.1371/journal.pcbi.1000228.g006

Figure 7. Sensitivity of classification accuracy to the number of sampled electrodes. Two examples from two different networks are
shown (left and right panels). In both cases the networks were challenged with a two-stimulation sites classification task (black horizontal lines depict
chance accuracy level). Support vector machine (SVM) algorithm with a Gaussian Radial Based function kernel was applied to vectors of training sets
(see Materials and Methods). The resulting classifiers, one for first spike absolute latency and the other for recruitment order, were then validated
using test sets vectors. Mean test accuracy (thick lines) and confidence intervals (interrupted lines) are calculated from 200 random combinations of
electrodes per given sample size from all analyzed electrodes. Classification accuracy of first spike latency is depicted Red; that of recruitment order is
depicted Blue. Thin lines depict the best classifier for each group size.
doi:10.1371/journal.pcbi.1000228.g007

Representation in Neural Networks
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capacity is very high as long as the temporal resolution is in the

range of 10 mSec or less, decreasing significantly at lower

resolutions; similar results were obtained in six experiments of five

sources classification task, shown in Figure S3, right panel.

Importantly, the reduction of spike time data (Red) to recruitment

order (Blue) does not degrade the classification accuracy throughout

the range of analyzed resolutions. This result is evident in all of our

experiments (data not shown). In the nine different networks that

were challenged with a two-source classification task, a 50% drop in

accuracy was observed at a median temporal resolution of 43 mSec

(633 SD; range 15–71 mSec). The issue of temporal resolution

required for accurate representation by recruitment order is rather

subtle: our data indicates that while timing of individual spikes is lost

in the transition to recruitment order, the temporal precision

required for comparing the relative spike timing between different

neurons is crucial for an accurate classification.

Discussion

The extensive [33] and often conflicting array of hypotheses

concerning neuronal representation of objects (sensory, motor or

‘‘internally generated’’ ideas or concepts), reflects indeterminacy of

data to theory. Regardless of what the nature of neural

representation turns out to be, it should conform to elementary

physiological constraints. Perhaps the most severe constraint in

that respect is the multiplicity and wide range of timescales that are

characteristic of neuronal excitability and synaptic communica-

tion: At each and every level of observation, physiologists report an

ever-increasing range of reaction time scales that are involved in

the generation of action potentials and their transformation to post

synaptic signals [34–38]. It is hardly surprising, therefore, that the

temporal structure of neuronal responses to repeated presentations

of stimuli becomes inherently warped on a trial-by-trial base,

reflecting the long tail of sensitivities to previous activation

histories mediated by activity-dependent reactions underlying

both exciting and restoring forces. Here we show that the effective

structure that emerges spontaneously in large random networks of

cortical neurons leads to representation by recruitment order that

is invariant to response time warping. We bring evidence for the

existence of neuronal stations through which activity is required to

pass in order to propagate further into the network. We find it

convenient to think about these sequences of neuronal stations in

terms of chain-like effective structures [12]; thus, even in the face

of activity-dependent changes in synaptic efficacies or membrane

excitability, activity has nowhere else to go but through ordered

stations, reassuring that the rank remains stable. Network

architecture, in that sense, serves to protect the representation

by order from the effects of the dynamics driven by activity

dependence of reaction rates. Taken together with the observation

that the ranking is stimulus site specific, the basic conditions for

application of recruitment order representation are satisfied.

(Video S1 demonstrates a functional implementation of the above

results: a Braitenberg vehicle that classifies objects in its visual field

based on neuronal activity in a large-scale biological neural

network. See caption of Video S1 for methodological comments).

While ordered patterns of activations are observed at various

spatiotemporal scales in-vivo and in-vitro in several neuronal

preparations (e.g., [8,11,26,31,39–42]), the general applicability of

representation by recruitment order at the random ensemble level is

demonstrated, for the first time, in the present study. We provide a

direct measure for the efficacy of rank order representation in actual

classification tasks under well-controlled experimental conditions in

large-scale recurrent networks of cortical neurons. Recruitment

order is highly sensitive to the spatial features of stimuli and

accurately classifies them on a trial-to-trial basis. The accuracy of

spatial representation by the order of neuronal recruitment

monotonically increases with the number of sampled neurons, and

decreases with ordering time resolution. Furthermore, we show that

the process of data compression, from absolute first spike latencies to

recruitment order, is lossless from the point of view of stimulus

classification accuracy. These results, even when taken together with

the simplicity, rapidity, robustness and ease of physiological

implementation of representation by recruitment order do not

necessarily imply that it is superior to other representation primitives

(e.g. rate based or precise time delays); more likely the balance

between these features and task constraints govern the usefulness of a

representation primitive in a given context.

Several ways were proposed to realize a biologically plausible

mechanism to decipher recruitment order. These include, for

instance, a simple feed-forward network with shunting inhibition

[7], a decoder that is based on spike timing dependent plasticity

that re-distributes synaptic weights at the single neuron level [43],

as well as a tempotron-based decoder that relies on adaptive

integration time mechanisms [44]. Another issue that relates to the

physiological plausibility of a decoder for recruitment order, has to

Figure 8. Sensitivity of classification accuracy to the temporal resolution of sampled latencies to first spike times. Two examples from
two different networks are shown (left and right panels). In the left panel a network that was challenged with a two stimulation sites classification
task is shown; the right panel shows a case of a network that was challenged with a six stimulation sites classification task (black horizontal lines
depict chance level). Support vector machine (SVM) algorithm was applied (see Materials and Methods and caption of Figure 7). Mean test accuracy
(thick lines) and confidence intervals (interrupted lines) are calculated from a 5-fold cross validation procedure per given time resolution.
Classification accuracy of first spike latency is depicted Red; that of recruitment order is depicted Blue.
doi:10.1371/journal.pcbi.1000228.g008
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do with the temporal reference point to which the code is time

locked: In our experimental design, the classification is based on

prior knowledge of the time at which a stimulus is delivered, but

under real life situation such information is not available for the

decoder. Recent studies, however, show that the temporal

reference issue, which comes up whenever a time-based

representation scheme is proposed, can be handled either by

temporally referencing to population activity onset [45], or by

relying on time-based synaptic plasticity processes that tune the

distribution of synaptic weights such that a neuron becomes

sensitized to early spikes in a pattern [43].

Finally, from a more general perspective, it is interesting to

contemplate on the possible functional relations between activity

dependence of molecular transition rates underlying neuronal

excitability (e.g., [34]), the space of possible combinations of precise

latencies to first spikes and its degeneration to the form of recruitment

order: While activity-dependence of neuronal reactions is a valuable

driving force for exploration in a variety of adaptation and learning

processes (where representations are modified), it must be balanced

by mechanisms that allow for stabilization and hence exploitation of

existing representations. Representation by recruitment order

provides a particularly attractive solution to this tradeoff: neurons

dynamically change their absolute spike times relative to a reference

signal (e.g. stimulation time), thus exploring the space of possible

associations driven by machineries of spike-timing dependent

plasticity (e.g., [46,47]). Since many combinations of latencies to first

spikes may realize any given representation by recruitment order,

existing representations are invariant to the exploration process, as

long as the latter does not degrade the order of neuronal recruitment.

Effectively, a separation is formed between the level of absolute time

delays, where exploration for new representations occurs, and the

level of recruitment order where representations are stable enough to

adaptively interact with the environment. The analogy to the

separation between mutations at the genomic level, and selection at

the proteomic (phenotypic) level immediately comes to mind.

Materials and Methods

Network Preparation
Cortical neurons were obtained from newborn rats (Sprague-

Dawley) within 24 hours after birth using mechanical and enzymatic

procedures described in earlier studies [13,22,26,30,48–50]. The

neurons were plated directly onto substrate-integrated multi-

electrode arrays and allowed to develop functional and structural

mature networks over a time period of 2–3 weeks. The number of

neurons in a typical network is in the order of 300,000, over an area

of ,300 mm2; various estimates of connectivity suggest that each

neuron receives ,1000 synapses, with ,10% of these synapses being

inhibitory (see [13] for a comprehensive review of the preparation).

The preparations were bathed in MEM supplemented with heat-

inactivated horse serum (5%), glutamine (0.5 mM), glucose

(20 mM), and gentamycin (10 mg/ml), and maintained in an

atmosphere of 37uC, 5% CO2 and 95% air in an incubator as

well as during the recording phases. Multi electrode arrays (MEAs) of

60 Ti/Au/TiN electrodes, 30 mm in diameter, and spaced 200 mm

or 500 mm from each other (Multi Channel Systems, MCS,

Reutlingen, Germany) were used. The insulation layer (silicon

nitride) was pre-treated with poly-D-lysine. Long experiments lasting

over 3 hours were conducted using a slow perfusion system with

perfusion rates of ,100 mL/hour.

Measurements and Stimulation
A commercial 60-channel amplifier (MEA-1060-BC, MCS,

Reutlingen, Germany) with frequency limits of 1–5000 Hz and a

gain of 61024 was used. The MEA-1060-BC was connected to

MCPPlus variable gain filter amplifiers (Alpha-Omega, Nazareth,

Israel) for further amplification. Rectangular 200 mSec biphasic

10–50 mA current stimulation through randomly chosen pairs of

adjacent MEA electrodes was performed using a dedicated

stimulus generator (MCS, Reutlingen, Germany) coupled to a

blanking circuit that disconnects the amplifiers during each input

pulse. Data was digitized using two parallel 5200a/526 A/D

boards (Microstar Laboratories, WA, USA). Each channel was

sampled at a frequency of 16–24 ksample/second and prepared

for analysis using either the AlphaMap interface (Alpha Omega,

Nazareth, Israel) or a dedicated Matlab (MathWorks, Natwick,

MA, USA) interface developed by two of the authors (D.E. and

C.Z.). Thresholds (68 RMS units; typically in the range of 10–

20 mVolt) were defined separately for each of the recording

channels prior to the beginning of the experiment. All the activity

recorded in the 60 electrodes up to 500 mSec following each

stimulus were collected and stored for analyses. Where indicated,

spike sorting procedures were applied, using the AlphaSort PCA

package (Alpha-Omega, Nazareth, Israel). Previous studies

[13,22,26,30,48–50] show that the rate of spontaneous activity

in these networks is, at least, one order of magnitude smaller

compared to the activity evoked by stimulation, both when

considered at the level of individual neurons as well as at the level

of population responses; the interference of spontaneous activity

with our analyses and interpretation of the results is minute.

Stimulus Classification Experiments
Mature networks were chosen for experimentation based on

their ability to reliably respond to more than one source of low

frequency (0.05 Sec21) stimulation. Reliability of response is

defined as a reverberating network activity (that is time locked

to a stimulus), observed in over 50% of stimulus presentations. The

classification results presented here are based on a data set from 15

networks that were exposed to two (n = 5), three (n = 2), five (n = 6)

and six (n = 2) different stimulation sources. In the two-source

classification tasks the stimuli were delivered at several frequencies

as explained in the results section. In all cases, the order at which

stimuli were delivered through different stimulation sources was

shuffled throughout the experiment.

Classifiers
Wolfram’s Mathematica 5.2 environment was used for calcula-

tion of the Levenshtein string metric and for cluster analysis.

Neurons that fired within the same time bin were ranked according

to their alphabet. SVM classification analysis was performed using

MCSVM_1.0 (http://www.cis.upenn.edu/,crammer), a C code

package for multi-class SVM [51] using Gaussian Radial Based

Function kernel. Kernel parameter and confidence intervals were

set by a 5 fold cross-validation procedure. For SVM analyses,

neurons that fired within the same time bin were credited an equal

rank.

Supporting Information

Figure S1 Dynamics of first spike latencies in pharmacologically

isolated neurons. Excitatory synaptic transmission is blocked by

application of 50 mM APV and 10 mM CNQX. As a result, all

spontaneous activity and stimulus evoked reverberating responses

were completely abolished. The network was then stimulated

through all 60 electrodes sequentially to locate stimulation sites

that effectively evoke direct, electrically induced action potentials.

After selection of stimulating electrodes each network was

stimulated by a short pulse (400 mSec) for 100 seconds (ordinate)
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at three different frequencies (0.3, 3 and 30/Sec; Green, Black and

Red, respectively) in a shuffled manner. Five minutes were allowed

for recovery between each stimulation series. Examples from five

neurons are shown. The abscissa shows time post stimulus, in

mSec. Failures to respond are plotted at time 0. Under these

experimental conditions, neuronal responses to above-threshold

stimuli reflect direct generation of action potentials in neurons that

are nearby stimulating electrodes, free from the dynamics of

synaptic transmission. At frequencies of 3/Sec or below, neurons

are very reliable in their responses to directly delivered stimuli. At

the higher frequency regimen, response jitter develops gradually

over several seconds.

Found at: doi:10.1371/journal.pcbi.1000228.s001 (4.6 MB TIF)

Figure S2 Pair-order probability matrices. More examples of

pair-order probability matrices, similar to those shown in

Figure 4A. Each boxed set of matrices comes from a different

network. Each of the matrices within a box is constructed from

responses to a different stimulation source (networks that were

exposed to two and three input sources are shown). Numbers to

the left of each box depict preparation (network) identity. All cases

show ordered recruitment; in most cases matrices of different

stimulation sources (within each box) look different. Indeed, the

statistical analyses shown in Figures 6, 7, 8 and Supplementary

Item 3 clearly indicate that these differences are significant and

allow for rapid and reliable classification of inputs by use of

unsupervised as well as supervised classifiers (15 networks tested

altogether). Note: Neurons that are less ‘‘committed’’ to their

average rank appear as horizontal (and vertical) smeared lines

throughout the matrix.

Found at: doi:10.1371/journal.pcbi.1000228.s002 (4.6 MB TIF)

Figure S3 Examples of five-sources classification task. Results

from six different networks that were challenged with a five-

sources classification task. While variance in the sensitivities of

different networks to both the number of sampled neurons and

temporal resolution is apparent, the overall picture is fairly robust.

Left: Sensitivity of classification accuracy to the number of

sampled electrodes was measured in a five-stimulation sites

classification task. Horizontal line depicts chance accuracy level.

Support vector machine (SVM) algorithm with a Gaussian Radial

Based function kernel was applied to vectors of training sets (see

methods). The resulting classifiers were then validated using test

sets vectors. Mean test accuracy and standard deviation are

calculated from 10 random combinations of electrodes per given

sample size from all analyzed electrodes, using a 10-fold cross

validation procedure. Classification accuracy of first spike latency

is depicted Red; that of recruitment order is depicted Blue. Right:

Sensitivity of classification accuracy to to the temporal resolution

of sampled latencies to first spike times was measured in a five-

stimulation sites classification task. Horizontal line depicts chance

accuracy level. Support vector machine (SVM) algorithm was

applied (see methods and caption of Figure 7). Mean test accuracy

and standard deviation are calculated from a 30-fold cross

validation procedure per given time resolution. Classification

accuracy of first spike latency is depicted Red; that of recruitment

order is depicted Blue; adjacent Red-Blue curves result from the

same experiment (network).

Found at: doi:10.1371/journal.pcbi.1000228.s003 (4.6 MB TIF)

Video S1 Braitenberg Vehicle. In a small yet seminal book titled

Vehicles: Experiments in Synthetic Psychology (MIT Press, 1986),

Valentino Braitenberg describes a set of thought experiments in

which agents with simple structure behave in human-like ways;

Braitenberg blatantly put forward the hypothesis that the

primitives for realizing such machines are cellular and synaptic

processes that are amenable for physiological characterization.

The reasoning and results presented in this study make the

realization of a Braitenberg vehicle that classifies objects in its

visual field using a large-scale network of biological neurons a

trivial matter. This is demonstrated in the attached clip that was

prepared by Danny Eytan, David Ben Shimol and Lior Lev-Tov

from the Technion - Israel Institute of Technology. The main text

and data of the present study shows that the physical loci from

which stimuli are delivered to a recurrent, large scale random

network of cortical neurons, albeit causing temporally ‘‘noisy’’

neuronal responses, may be fully classified using the temporal

order at which neurons are recruited by the different stimuli. Here,

an application of this idea, in the form of a Braitenberg vehicle, is

demonstrated: Inputs from the two (Right and Left) ultrasonic

‘‘eyes’’ of a Lego Mindstorms vehicle are sampled at 0.2 Hz and

translated into stimulation of a large random network of cortical

neurons at two different sites. The side corresponding to the

nearest visual object (relative to vehicle’s longitudinal axis,

depicted by a red arrow) is classified using an Edit-distance metric

based on the recruitment order of 8 neurons, similar to procedures

shown in Figure 6 of the manuscript. Based on the classified

activity, a command is sent to the appropriate motor attached to

one of the wheels. The red trace on the left represents the total

network activity (points depict evoked activity); the blue numbers

in front of vehicle’s ‘‘eyes’’ show distances (in cm) from the right

and left sensed objects; the Edit distance of the evoked recruitment

orders, from a predefined internal representation of the Right and

Left objects, is shown in red numbers. Top left: time in seconds.

Found at: doi:10.1371/journal.pcbi.1000228.s004 (3.4 MB MOV)
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