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Abstract

The Mediator complex provides an interface between gene-specific regulatory proteins and the general transcription
machinery including RNA polymerase II (RNAP II). The complex has a modular architecture (Head, Middle, and Tail) and
cryoelectron microscopy analysis suggested that it undergoes dramatic conformational changes upon interactions with
activators and RNAP II. These rearrangements have been proposed to play a role in the assembly of the preinitiation
complex and also to contribute to the regulatory mechanism of Mediator. In analogy to many regulatory and transcriptional
proteins, we reasoned that Mediator might also utilize intrinsically disordered regions (IDRs) to facilitate structural
transitions and transmit transcriptional signals. Indeed, a high prevalence of IDRs was found in various subunits of Mediator
from both Saccharomyces cerevisiae and Homo sapiens, especially in the Tail and the Middle modules. The level of disorder
increases from yeast to man, although in both organisms it significantly exceeds that of multiprotein complexes of a similar
size. IDRs can contribute to Mediator’s function in three different ways: they can individually serve as target sites for multiple
partners having distinctive structures; they can act as malleable linkers connecting globular domains that impart modular
functionality on the complex; and they can also facilitate assembly and disassembly of complexes in response to regulatory
signals. Short segments of IDRs, termed molecular recognition features (MoRFs) distinguished by a high protein–protein
interaction propensity, were identified in 16 and 19 subunits of the yeast and human Mediator, respectively. In
Saccharomyces cerevisiae, the functional roles of 11 MoRFs have been experimentally verified, and those in the Med8/
Med18/Med20 and Med7/Med21 complexes were structurally confirmed. Although the Saccharomyces cerevisiae and Homo
sapiens Mediator sequences are only weakly conserved, the arrangements of the disordered regions and their embedded
interaction sites are quite similar in the two organisms. All of these data suggest an integral role for intrinsic disorder in
Mediator’s function.
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Introduction

The Mediator complex is a gigantic (1 MDa) multi-protein

complex that plays a number of essential roles in eukaryotic gene

regulation [1]. It functions as a co-activator, a co-repressor as well

as a general transcription factor by transmitting information from

the regulatory factors bound at enhancers to the RNAP II

transcription machinery [1,2]. Mediator is recruited by promoter-

and/or enhancer-bound activators [3] followed by association of

general transcription factors and RNAP II with the promoter in

vivo [4,5] (Figure 1). Mediator dissociates from RNAP II after

initiation, and remains attached to the promoter [6,7] providing a

pre-formed scaffold for the reinitiation [8].

Interactions with RNAP II and regulatory proteins induce

dramatic conformational changes in Mediator [9,10]. Activator

induced specific rearrangements in Mediator expose cryptic

RNAP II binding site and modulate the assembly of the pre-

initiation complex (PIC) [11,12]. This suggests that activators/

repressors regulate transcription by altering the structure of the

RNAP II holoenzyme. These conformational changes were thus

proposed to underlie the regulatory mechanism of Mediator [13].

Mediator consists of 20–30 subunits that are organized in a

modular fashion, with Head, Middle, and Tail regions [14]

(Figure 1). The Tail can serve as the main target for activators/

repressors [15]. The Med9 submodule of the Middle may connect

the regulatory signals to the Head [16], which could in turn

interact directly with RNAP-TFIIF for pre-initiation complex

formation [17]. The Middle also receives repression signals from

the CDK module, which dissociates prior to transcription [18].

The functions of the individual subunits however, are rather

obscure apart from the reported kinase activity of the Cdk8 [19]

and the histone acetyltransferase activity of the Med5 [20], which

are non-essential for Mediator’s function. Mediator protein

sequences are highly variable with the exception of a few subunits
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[21]. The majority of the subunits have no apparent domains, not

even the expected domains for chromatin modification such as

chromo [22] or bromo domains [23] (Y.T. unpublished data).

Nevertheless, based on cryo-electron microscopy, the overall

structural organisation of several eukaryotic Mediator complexes is

similar [24].

The low sequence conservation of Mediator proteins and the

absence of known globular domains suggest the presence of

disordered regions in Mediator. Such disordered regions might be

responsible for similar structural characteristics in different organ-

isms observed in EM studies [24] despite the lack of sequence

conservation. IDRs can contribute to Mediator’s function in three

different ways: they can provide flexible target sites that can adapt to

different partners with variable architectures; they can act as

malleable linkers connecting globular domains that impart modular

functionality on the complex; and they can also facilitate assembly

and disassembly of complexes in response to regulatory signals.

To understand whether IDRs play a role in transcription

regulation of the Mediator, 340 sequences of 30 subunits were

collected (Table S1) and their tendencies for intrinsic disorder

were predicted using bioinformatics approaches [25,26]. Out of

the 27 eukaryotic organisms Saccharomyces cerevisiae and Homo sapiens

sequences were analyzed in detail and the results were corrobo-

rated using all available sequences (shown in the Supporting

Information, Figures S1, S2, S3, S4, S5 and S6). The estimated

level of disorder increases from yeast to man and in both

organisms the propensity of disordered regions substantially

exceeds that of signaling proteins and also that of multi-protein

complexes of similar size. Subunits that interact with activators/

repressors or function in regulatory signal transfer, located mostly

in the Tail and Middle modules, are most abundant in IDRs.

Overall, 43 sites for protein-protein interactions were predicted in

16 subunits in Saccharomyces cerevisiae and 79 sites in 19 subunits in

Homo sapiens Mediator. In yeast, 11 of the predicted molecular

recognition features (MoRFs) overlap with experimentally detected

binding sites or post-translational modification sites, out of which

those in Med7/Med21 [27] and Med8/Med18/Med20 [28]

complexes have been structurally confirmed. The arrangement of

ordered/disordered regions and location of disordered interaction

sites are similar in Saccharomyces cerevisiae and Homo sapiens, although

sequences of IDRs are only weakly conserved. All these results

suggest that Mediator functions as a malleable machine in

transcription regulation with an integral role for intrinsically

disordered regions for the gene-specific regulatory functions.

Results

Overall Disorder of Mediator Proteins
Preference of Mediator proteins for intrinsic disorder was

assessed by two independent bioinformatics approaches: PONDR-

VSL1 that is a support vector machine algorithm [25] and IUPred

that utilizes statistical inter-residue potentials [26]. Disorder

predictions for Mediator proteins were carried out by both

Figure 1. Mediator transmits regulatory signals from gene-specific activator proteins to the general transcription machinery,
including RNA polymerase II (RNAP II, yellow), and general transcription factors (IIB, IID, IIE, IIF, IIH, light green). The Tail interacts
with a variety of activators/repressors and the regulatory signals are transferred via the Middle module to the Head that physically contacts RNAP II.
The Middle also receives signals from the CDK module that dissociates prior to transcription. The shades of the blue colors correlate to the level of
disorder in the different modules in Saccharomyces cerevisiae as computed in the present work.
doi:10.1371/journal.pcbi.1000243.g001

Author Summary

Intrinsically disordered proteins/regions do not adopt well-
defined three dimensional structures; instead, they func-
tion as conformational ensembles. They are distinguished
in molecular recognition and involved in various regula-
tory processes. Several components in the transcription
machinery–for example, the transactivator domains of
transcription factors–are disordered. Mediator, which is a
large complex that transduces regulatory information from
activators/repressors to the core apparatus, was found to
contain a preponderance of intrinsically disordered regions
in its various subunits. Such disordered regions are
commonly involved in conformational changes coupled
to functional transitions, in protein–protein interactions, or
in posttranslational modifications. Several such predicted
recognition sites were in good agreement with experi-
mental data. Intrinsically disordered regions illuminate a
novel aspect of Mediator’s regulation and could explain its
versatility and specificity in handling transcriptional
signals. Their integral role in Mediator function is further
underscored by the conserved arrangements of ordered/
disordered segments and of the embedded interaction
sites.

Intrinsic Disorder in Mediator’s Regulation
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techniques at the amino acid level using sequences of individual

proteins and the disorder scores were averaged over the entire

sequence. As the two prediction methods provided consensus

results, in the following only those obtained by the IUPred

algorithm will be detailed. A preponderance of intrinsic disorder

(average disorder above the 0.5 threshold value) was found in 4

and 6 out of 25 subunits in Saccharomyces cerevisiae and Homo sapiens,

respectively (Figure 2). In addition, Med9 (in yeast) and Med4 (in

man) have a level of disorder that is comparable to the disordered

proteins assembled in the DisProt database [29]. These proteins

likely lack a well-defined tertiary structure in the free form, but can

partly or fully fold upon interacting with their partners [30]. The

inherent flexibility of these subunits however, can contribute to

structural organisation and molecular interactions of the complex.

Overall, the levels of disorder (as averaged over all subunits) are

higher in man than in yeast, suggesting an increase in the propensity

or length of disordered regions. In Saccharomyces cerevisiae the Tail is

most enriched in subunits with preference for intrinsic disorder

(Med2, Med3, Med15), while in Homo sapiens the Middle module

appears to be most abundant in malleable proteins (Med1, Med9,

Med19, Med26). In the Head only Med8 is predicted to be

disordered in Homo sapiens. Disorder scores averaged over sequences

from all available organisms also indicate large variations in some

subunits (please note, that in this case the number of sequences/

subunits differ; Figure S1). This might implicate functional changes

of various Mediator proteins during evolution.

The amino acid compositions of Mediator proteins in

Saccharomyces cerevisiae and Homo sapiens are also incompatible with

a folded structure [31] (Figure 3), although they exhibit some

variations. As compared to globular proteins, yeast and human

Mediator proteins are depleted in hydrophobic (I, L, V), aromatic

(W, Y, F) and C residues (designated as order-promoting); and

enriched in polar (Q, N, T, S), charged (E, D) and structure-

breaking (P) residues (designated as disorder-promoting). Such a

composition resembles the general characteristics of intrinsically

disordered proteins [32]. Various subunits, like the Med4 and

Med15 are abundant in potential post-translational modification

sites (S and T) that are preferably embedded in disordered regions

[33]. Generally disordered polyQ and polyN regions frequently

appear in various subunits, such as Med1, Med9, Med10, Med12

and Cdk8 (Figure S2). The Q-rich region in Med15 in

Saccharomyces cerevisiae for example is involved in glucocorticoid

receptor transactivity [34]. The propensity of Q-rich regions also

increases from yeast to man. Repeat expansion may contribute to

rapid evolutionary changes of Mediator proteins and may have

created linkers between globular segments [35].

Disordered Regions in Mediator Subunits
Intrinsically disordered regions of any length have been

observed to be involved in biological functions, but those of 30

residues or longer have been especially well studied [36]. The

function of these regions are diverse but are frequently related to

molecular recognition [37]. IDRs are usually exploited for

regulatory purposes as 6665% of cell-signaling proteins [38],

and 90% of transcription factors were predicted to contain IDRs

(longer than 30 aa) [39,40]. In Saccharomyces cerevisiae 80% of

Mediator subunits have predicted IDRs equal to or longer than 30

residues, and 24% have IDRs above 100 residues in length [25]

(Figure S3). In Homo sapiens, IDRs longer than 30 and 100 residues

appear in 75% and 32% of Mediator proteins, respectively (Figure

S3). This suggests that the length of IDRs increased from yeast to

man. The number of disordered segments is also higher in the

human complex than in the yeast complex (Figure 4). This is

mostly due to the discrepancy in the number of IDRs in the

Figure 2. Average disorder of the available Mediator subunits in Saccharomyces cerevisiae (grey) and in Homo sapiens (crosshatched)
as computed by the IUPred algorithm [26]. 0.5 (dashed line) is the threshold for disordered state and 0.4 (dotted line) is the average disorder of
all disordered segments in the DisProt database [29]. Subunits belonging to the different modules (Head, Middle, Tail, Cdk) are separated by vertical
lines.
doi:10.1371/journal.pcbi.1000243.g002

Intrinsic Disorder in Mediator’s Regulation
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Middle. This module is the most abundant in disordered regions in

Homo sapiens. In the Head the propensity of IDRs is also slightly

higher (below 70 residues in length) in man than in yeast. In

Saccharomyces cerevisiae, disordered regions are preferably located in

the Tail, some exceeding 100 residues in length. Along these lines,

the longest IDRs in yeast are found in Med2 (334), Med3 (256),

Med15 (263) of the Tail, whereas in human Mediator, Med1 (645),

Med9 (241), Med26 (261) of the Middle are equipped with the

longest IDRs (Figure 5 and Table S2). Med13 of the CDK appears

to have a long IDR in both organisms: 226 and 162 in yeast and

human, respectively.

Large multi-protein complexes generally take advantage of the

plasticity of their components; i.e., the population of intrinsically

disordered segments increases with complex size [41]. Multi-

protein complexes of 11–100 proteins fulfilling various functions,

have IDR propensity with median value of 12%, which estimates

the percentage of disorder required to assemble a complex of a

given size. The percentage of amino acids in IDRs is 32% and

33% in yeast and human Mediator, respectively (Figure S4), and

these values considerably exceed those obtained for other

complexes of similar size. One possibility is that the Mediator

IDRs perform additional (eg., regulatory) tasks besides the self-

assembly of the complex. Indeed, the level of disorder in Mediator

is even higher than in signaling proteins (Figure S3).

Molecular Recognition Features (MoRFs) in Mediator
Proteins

Molecular recognition by IDRs is achieved by short, distinguish-

able segments, such as preformed elements [42], molecular

recognition features [43], primary contact sites [44] and linear

motifs [45,46]. Preformed elements [42] and molecular recognition

features [43] are predisposed to fold upon binding, and this reduces

the entropy penalty of the recognition process. Primary contact sites

[44] or linear motifs [45] are usually short, exposed segments that

facilitate formation of highly specific interactions. In general all these

recognition sites have higher local hydrophobicity than their

environment and often exhibit transient secondary structure [46].

In Saccharomyces cerevisiae and Homo sapiens Mediators, we focused

on those recognition sites that are biased for an a-helical

conformation, termed a-MoRFs. These segments fold onto an a-

helix in the bound form and can be predicted from the

irregularities in computed disorder patterns using a neural network

algorithm with 0.8760.08 accuracy [47]. A prototypical example

of an a-MoRF is the short a-helical segment in the disordered

transactivator domain of p53 that mediates binding to Mdm2

[48,49]. Multiple, tandem binding sites can be found in the

BRCA1 protein that serve a scaffold function [50]. In yeast,

predictions indicate the presence of 43 a-MoRFs in total,

distributed over 16 subunits (Table 1). Some subunits have

multiple a-MoRF regions, with Med15 of the Tail (11 a-MoRFs)

and Med13 of the CDK module (6 a-MoRFs) in yeast having the

largest numbers of these regions. In accord with the increased level

of disorder, 79 interaction sites were identified in 19 subunits in

Homo sapiens (Table S2). Most interaction sites were located in

Med3 of the Tail (18 a-MoRFs) and Med1 of the Middle (14 a-

MoRFs) and Med13 of the CDK (8 a-MoRFs).

The predicted a-MoRFs in Saccharomyces cerevisiae, which may

serve as potential target sites for protein-protein interactions or for

post-translational modifications, were compared to experimentally

Figure 3. Amino acid compositions, relative to the set of globular proteins, of the Mediator (black), and its modules, Head (orange),
Middle (green) and Tail (yellow) CDK (blue) in Saccharomyces cerevisiae (A) and in Homo sapiens (B). Compositional profiling of intrinsically
disordered proteins from the DisProt database is shown for comparison (red). The arrangement of the amino acids is by peak height for the set of
disordered proteins from DisProt [29]. Confidence intervals were estimated using per-protein bootstrapping with 1,000 iterations.
doi:10.1371/journal.pcbi.1000243.g003

Intrinsic Disorder in Mediator’s Regulation
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verified binding sites reported in literature or assembled in protein-

protein interaction databases. So far 11 out of the of the 43

predicted a-MoRFs in yeast have been experimentally corrobo-

rated (Table 1). For example, the a-MoRF encompassing residues

333–350 of Med3 likely corresponds to the Gcn4 target site [51],

while the a-MoRF 195–212 predicted in Med7 serves as a contact

site with Med10 [52]. Specific mutation sites in Med17 at the

interaction sites with the Middle and Tail modules [2] (and Y.T.

unpublished data) also coincide with the identified MoRFs. The

region 116–255 of Med15 that interacts with Gal4 [53] contains

two predicted a-MoRFs. The 261–351 segment of Med15 that is

responsible for transcriptional activation of glucocorticoid receptor

also contains one a-MoRF that matches the observed interaction

site [34]. The region 396–655 of Med13 contains 3 predicted a-

MoRFs and has been observed to contact various partners: Caf1,

Crc4, Not2 as well as Cdk8 [54]. The predicted phosphorylation

site at T237 in Med4, which might play role in enhancement of

RNAP CTD phosphorylation by TFIIH [55], matches the

experimentally determined position.

In the case of Med7 and Med8, the available crystal structures

of the Med7/Med21 [27] and the Med8/Med18/Med20 [28]

complexes can be used for structural validation of a-MoRFs

(Figure 6). The Med7/Med21 heterodimer serves as a hinge that

was proposed to be responsible for large scale changes in the

Mediator’s structure [27]. In the complex three a -helices of Med7

were observed that constitute a coiled-coil. The predicted a-MoRF

195–212 is located at the C terminal end of a3 that makes contacts

with a3 helical region of Med21. In accord with its predicted

increase in flexibility, this segment has elevated B-factors in the

bound form. Of course the elevated B-factor values might simply

stem from its terminal location. The C-terminal fragment

encompassing residues 193–210 of Med8, which was predicted

as an a-MoRF, adopts an a-helical conformation in the Med8/

Med18/Med20 complex [28]. While 27 residues of Med8 were

used for crystallization, only 16 were observed in the complex,

indicating the presistance of disorder even in bound form. This

segment is embedded in a larger disordered region, encompassing

the linker between the C and N terminal of Med8. This linker

exhibits enhanced sensitivity to proteolytic digestion in the free

protein corroborating its disordered state. This region was shown

to be essential for transcription in vivo by harboring elongin B and

C [56].

Figure 4. Abundance of IDRs in the Mediator complex and its modules. The number of disordered segments of given length in
Saccharomyces cerevisiae (grey) and in Homo sapiens (crosshatched) as computed by the IUPred algorithm [26] is shown in the Mediator complex (A),
in the Head (B), Middle (C) and Tail (D) modules.
doi:10.1371/journal.pcbi.1000243.g004

Intrinsic Disorder in Mediator’s Regulation
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An independent argument for the functional importance of the

predicted a-MoRFs in 6 subunits (Med7, Med9, Med10, Med11,

Med15, Med17, cf. Table 1) is underscored by their overlap with

helical regions that have been proposed to be highly conserved

from yeast to man [21].

Conservation of Intrinsically Disordered Regions
IDRs in homologous proteins often exhibit remote sequence

relationships. The functioning of IDRs likely relies on their biased

amino acid composition and their short motifs [43,44,46], the

latter of which enables a rapid evolution of IDRs [57,58]. Hence,

the presence of IDRs might account for the weak sequence

conservation of Mediator proteins despite their similar functions or

architectures [14,24]. As anticipated, a remarkable difference

between the sequence conservation of disordered and ordered

regions were also seen in Saccharomyces cerevisiae and Homo sapiens

Mediators (Figure 7). This distinction can also be observed if

Mediator subunits from all available organisms are aligned (Figure

S5). In contrast to the sequence behaviors, the propensities of

order and disorder promoting amino acids in IDRs were found to

be highly conserved (Figure S5).

Recently we introduced a method to assess the conservation of

IDRs based on the arrangements of ordered and disordered

segments, as predicted by the IUPred algorithm, in different

sequences [59]. This can be evaluated at the level of residues, i.e.,

by computing the percentage of residues designated as ordered or

disordered at the same position in sequence alignments. On the

average 74.5% of residues are located in regions with the same

character (disordered or ordered) in Saccharomyces cerevisiae and Homo

sapiens (Figure S6). Alternatively, the overlap between ordered and

disordered segments in different sequences can be measured by

adopting the accuracy measures of secondary structure predictions

[59,60]. In this case the arrangement of ordered/disordered

segments in different sequences is compared to each other in terms

of the persistence of their location in different organisms. The

overlap between the patterns of ordered/disordered regions in yeast

and human Mediator is 73.2%. This value significantly exceeds the

corresponding value determined from randomized sequences with

the same amino acid composition (Figure 8). Thus it appears that, in

contrast to the sequences themselves, the arrangements (patterns) of

disordered regions are conserved in different organisms, providing a

further support for their functional importance.

Discussion

Transcriptional control requires an intimate interplay between

the enhancer- and repressor-bound factors and the basal

transcription machinery. In eukaryotic organisms large co-

activators, such as the Mediator complex [1] or CBP/p300 [61]

are responsible for transducing regulatory information to the core

Figure 5. Schematic representation of the Mediator complex: Head (orange), Middle (green), Tail (yellow), CDK (blue). Subunits with
higher than 50% average overall disorder (Med2, Med3 in Tail; Med9, Med19, Med26 in Middle and Med8 in Head) or subunits containing intrinsically
disordered regions longer than 100 residues (Med12, Med13 of the CDK, Med1, Med9, Med26 of the Middle and Med15 of the Tail) in either
Saccharomyces cerevisiae or in Homo sapiens are displayed by darker colors. Med19 and Med26 was assigned to the Middle module according to
reference [80].
doi:10.1371/journal.pcbi.1000243.g005

Intrinsic Disorder in Mediator’s Regulation
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apparatus and link chromatin remodeling to m-RNA synthesis.

The mechanism by which these large assemblies impart versatility

and specificity on transcription regulation however, remains to be

uncovered. It has been proposed that dramatic conformational

changes that occur upon interactions with regulatory proteins [10–

13] as well as with RNAP II [9] could serve as a basis of the

Mediator’s control mechanism [13]. Such large-scale structural

rearrangements could be facilitated by highly flexible/malleable

segments that can serve as molecular ‘‘hinges’’ [10]. Furthermore,

based on the abundance of intrinsically disordered proteins in

signaling [36], we reason that the signal transducer function of

Mediator is also intertwined with IDRs. IDRs mediating specific,

transient interactions were observed at various checkpoints of

transcription [62], like in histone tails [63], transactivator domains

of transcription factors [64] and the C-terminal domain of RNAP

II [65].

In this study, bioinformatics approaches were employed to

assess the preference of Mediator proteins for intrinsic disorder,

focusing on the comparison of Saccharomyces cerevisiae and Homo

sapiens Mediator complexes. Various subunits, located mostly in

the Middle (Med1, Med9, Med19, Med26) in human and in the

Tail (Med2, Med3, Med15) in yeast are predicted to be enriched

in disordered regions (Figure 2 and Figure 4). As the level of

disorder in these proteins is higher than that of proteins assembling

into other complexes of similar size, IDRs are likely exploited for

additional, regulatory functions besides facilitating the self-

assembly of the complex. Along these lines, the propensity of

disordered regions in both yeast and human Mediator exceed that

in signaling proteins. Results obtained on all available Mediator

sequences (340) presented in Supporting Information (Figures S1,

S2, S3, S4, S5 and S6) also corroborate the results obtained on the

two organisms emphasized here.

Because the predictions were performed on individual sequenc-

es, we cannot exclude the possibility that regions predicted to be

intrinsically disordered adopt a well-folded structure upon

interacting with other Mediator subunits or with regulatory

proteins. Electron microscopy results however indicate the

pliability of the complex at low ionic strength (Francisco Asturias,

private communication) that argues against the complete loss of

disordered state in the Mediator complex. An independent

argument comes from the structure-function analysis of complexes

of intrinsically disordered proteins. In many cases IDRs were

found to remain disordered even bound to their partners and yet

critically affect binding affinity or specificity [66]. In these ‘fuzzy’

complexes IDRs interact via short segments, while the embedding

regions may remain structurally variable.

To probe if IDRs are utilized for macromolecular communi-

cation, sites of protein-protein interactions were predicted in

disordered regions and are biased for an a-helical conformation.

In total 43 a-MoRFs were identified in yeast Mediator, with 79 a-

MoRFs in human Mediator. The roles of a-MoRFs as protein-

protein interaction sites is also suggested by the overlap of the

predicted and experimentally observed binding regions. For

example, in Saccharomyces cerevisiae 11 a-MoRFs were predicted in

Med15 of the Tail that is likely to be the main sensor for regulatory

proteins, while 6 a-MoRFs in Med13 of CDK is embedded in a

region that hosts various trancriptional proteins (Table 1). Overall,

the functional importance of 11 predicted a-MoRFs either as

interaction sites or post-translational modification sites have been

experimentally confirmed in yeast. In the cases of the Med7/

Med21 [27] and the Med8/Med18/Med20 [28] complexes,

structural data corroborate the role of the predicted a-MoRFs as

recognition sites that adopt an a-helical structure in the bound

state. Although less experimental data are available for human

Mediator, 5 a-MoRFs predicted in Med1 fall into regions

interacting with various transcriptional proteins (Table S2). For

example, the N-terminal 306 residues of Med1 is involved in the

Table 1. a-Helical molecular recognition features (MoRFs)
predicted in Saccharomyces cerevisiae.

Mediator Subunit MoRF_start MoRF_end Reference

MED1 373 390

459 476

MED2 95 112

153 170

403 420

MED3 333 350 [51]

380 397

MED4 235 252 [55]

MED5 1076 1093

MED6 276 293

MED7 21 38

195 212 [27], C

MED8 193 210 [28,52]

MED9 125 142 C

MED10 140 157 C

MED11 1 18

99 116 C

MED13 376 393

439 456 [54]

536 553 [54]

614 631 [54]

716 733

783 800

MED14 1 18

MED15 122 139 [34]

212 229 [34], C

285 302

319 336 [53]

350 367

389 406

508 525

723 740

839 856

1022 1039

1061 1078

MED17 12 29 [2]

77 94

106 123

197 214 C

600 617

Cdk8 1 18

132 149

517 534

References indicate experimentally confirmed protein binding sites. MoRFs
marked by C correspond to a-helical regions that were found to be highly
conserved from yeast to man [21].
doi:10.1371/journal.pcbi.1000243.t001

Intrinsic Disorder in Mediator’s Regulation
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Figure 6. Location of a-MoRFs predicted by the PONDR VL-XT algorithm in Med7 and Med8 subunits of Saccharomyces cerevisiae in
(A) Med7/Med21 (1yke) [27] and (B) Med8/Med18/Med20 (2hzs) [28] complexes. The recognition motifs in Med7 (195–212) and Med8
(193–210) that are biased for an a-helical conformation in the bound state are shown by red.
doi:10.1371/journal.pcbi.1000243.g006

Figure 7. Amino acid conservation of ordered (crosshatched) and disordered (gray) regions in Saccharomyces cerevisiae and in Homo
sapiens. Total amino acid conservation shown in black.
doi:10.1371/journal.pcbi.1000243.g007
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transactivator function of BRCA1 [67], while the 433–803 region

(with 4 predicted a-MoRFs) hosts the nuclear receptor LXRb and

KIF1a [68].

So how does intrinsic disorder contribute to the function of

Mediator? IDRs represent an ensemble of conformations [69] that

imparts extreme flexibility onto the complex. In response to

regulatory signals IDRs can adopt different conformations [70]

and thereby induce functional transitions. In this way they could

contribute to the observed pleomorphism of Mediator. IDRs with

multiple binding sites indicated by the MoRFs may provide a

scaffold-like function and thereby can be important to organize the

complex. IDRs can also serve as malleable linkers between

globular domains and may underlie modular functionality of the

Mediator complex that enable it to interpret different combina-

tions of transcriptional inputs [71]. IDRs can also facilitate

assembly/disassembly of large complexes [37], for example

association of Mediator with TFIID triggers assembly of the

PIC. IDRs can be involved in complex signaling events [72] due to

their adaptability. The same IDR can accommodate different

partners [73] that may exert different, even opposite outcomes on

transcription [74]. For example, the disordered N-terminal region

of Med3 can host both Gcn4 and Tup1 proteins [51], or the C-

terminal 100 residues of Med19 are involved in both transcrip-

tional activation and repression [75]. IDRs are also preferred

environments for post-translational modification sites [33] that

provide a further regulatory tool for the Mediator complex (cf.

T237 in Med4 [55]).

The presence of disordered regions also highlight an evolution-

ary aspect of Mediator’s function. We observe that the propensity

of disordered regions as well as the number of embedded

interaction sites increases from yeast to man. This not only argues

for an integral role of IDRs in Mediator’s function, but may

explain why the human Mediator is capable of processing a

significantly larger number of regulatory signals (eg. the number of

transcription factors increase by one order of magnitude from

yeast to man [76]). Even if IDRs are conserved, as it was

demonstrated by their similar arrangements in Saccharomyces

cerevisiae and Homo sapiens their sequences are tolerant to substantial

Figure 8. Conservation of disordered regions in Saccharomyces cerevisiae and in Homo sapiens. The arrangement of ordered/disordered
segments is compared to each other using positional (A) segmental overlap (B) measures on the actual Mediator protein sequences in MED_ALSEQ
dataset (grey) and on the corresponding randomized MED_ALRAN dataset (crosshatched).
doi:10.1371/journal.pcbi.1000243.g008
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changes as long as the amino acid composition is biased for

disorder [58,66]. Only sequences of short segments that serve as

recognition sites need to be restrained, as seen in case of 6 a-

MoRFs [21]. On the other hand it is very easy to turn on and off

the functionalities carried by these short motifs [45].

In conclusion, we propose that conserved intrinsically disor-

dered regions contribute to the gene-specific regulatory function of

the Mediator. IDRs with weak sequence restraints can provide an

evolutionarily economic solution for the Mediator to handle a

steadily increasing amount of complex regulatory signals. These

results argue for the functional conservation of the Mediator and

may account for the evolution of its regulation complexity.

Materials and Methods

Databases
Mediator protein sequences were extracted from the UniProt

and NCBI databases using a large number of Mediator subunit

names. Overall 556 sequences were identified out of which the

redundant ones above 90% identity were removed by the CD-hit

program [77]. In addition, a PSI-BLAST [78] search was

performed using the 196 sequences from 10 organisms in the

reference [21]. All resulting sequences were assembled in the

MED_ALSEQ database that contained 340 sequences of 30

Mediator subunits derived from 27 eukaryotic organisms (Table

S1). The corresponding randomized sequences (50 times each)

were collected in the MED_ALRAN database. As a nomenclature

for the Mediator subunits we adopted the unified convention

proposed in reference [79]. Med19 and Med26 was assigned to the

Middle module according to the reference [80].

Disorder Calculation
Intrinsic disorder preferences of sequences in the MED_AL-

SEQ and MED_ALRAN databases were predicted at amino acid

level using the IUPred (http://iupred.enzim.hu) [26] and

PONDR VSL1 [25] algorithms. Intrinsically disordered segments

were defined as regions with more than 30 subsequent residues

with predicted disorder above 0.5, allowing a maximum of 3

residue long ordered gaps. MoRFs were computed using the

reported algorithm [47]. Likely phosphorylation sites were

identified using the DisPhos program [33].

Calculation of Amino Acid Composition
The fractional difference is calculated as (CX2Cordered set)/

Cordered set, where CX is the averaged content of a given amino

acid in a protein set and Cordered set is the corresponding averaged

content in a set of ordered proteins from the PDB.

Alignment Algorithms
Due to the presence of low-complexity regions, an iterative PSI-

BLAST [78] based profile generation algorithm was performed to

align full-length sequences of Mediator proteins [59]. Groups of

homologous sequences were defined based on mutual sequence

similarity (below the treshold of E = 1025) between all members of

the group. The final multiple alignment was generated by the

CLUSTALW algorithm [81] using the BLAST profiles extracted

from sequence groups. The performance of the alignment as

compared to previous alignments [21,27] are presented in Tables

S3 and S4.

Sequence Conservation
The sequence conservation of the Mediator proteins was

evaluated comparing individual amino acid types (AAcons) using

a simple Sum-of-Pairs (SP) score formula [82]. The score was 1 if

identical residue was present in each positions of the alignment,

otherwise it was 0 and these scores were averaged over the entire

sequence.

Overlap of Disordered Regions
Similarity between patterns of disordered and ordered regions

was assessed using accuracy measures of secondary structure

predictions [59,60]. The overlap between ordered and disordered

motifs (excluding gap positions) at residue level (Q) was

characterized by the accuracy matrix defined as Q2 = 100

(MOO+MDD)/N, where MOO and MDD are the number of

positions associated with the same motif type. Overlap between

the segments were computed as

SOV~
100

N

XM

i~1

X

Si

min ov(S1; S2)zd(S1; S2)

max ov(S1; S2)
|len(S1)

where S1 and S2 stand for segments in two distinct sequences,

respectively, minov(S1; S2) is the length of the overlap between S1

and S2, maxov(S1; S2) is the total extent of S1 and S2 in the given

conformational state and len(S1) is the length of the segment in the

reference sequence. d(S1; S2) is the minimum of [(maxov(S1; S2)–

minov(S1; S2); minov(S1; S2); int(len(S1)/2); int(len(S2)/2)]. The

normalization factor N is given by the number of residues in

conformational state i and the second summation runs over all M

conformational states. Q and SOV values obtained for each

possible pair within a given group of aligned sequences were

averaged. The significance of the results was probed against the

overlap values computed on the MED_ALRAN database.

Supporting Information

Figure S1 Average disorder of Mediator subunits computed on

sequences from all available organisms by PONDR VSL1 (grey)

and IUPred (crosshatched). 0.5 (dashed line) is the threshold for

disordered state and 0.4 (dotted line) is the average disorder of all

disordered segments in the DisProt database [29]. Error bars

represent standard deviations of organisms. Subunits belonging to

the different modules (Head, Middle, Tail, Cdk) are separated by

vertical lines.

Found at: doi:10.1371/journal.pcbi.1000243.s001 (0.02 MB PDF)

Figure S2 Alignment of sequences of Mediator subunits from all

available organisms (Table S1). Disordered regions are highlighted

by yellow, alpha-MoRFs predicted in Homo sapiens and Saccharo-

myces cerevisiae are marked by orange. PolyQ, polyN and repeat

regions (above 10 residues in length) are marked by boxes. Groups

of similar amino acid residues are colored as R/K/H (cyan) A/S/

T (green), I/L/V/M/C/F/Y/W (blue), G/P (magenta) and E/D/

N/Q (red). Graphical representation was prepared by the

ALSCRIPT program.

Found at: doi:10.1371/journal.pcbi.1000243.s002 (1.76 MB PDF)

Figure S3 Abundance of IDRs in the Mediator complex and its

modules in Saccharomyces cerevisiae (A) and in Homo sapiens (B).

Percentages of proteins from the Mediator (black) and its different

modules: Head (orange), Middle (green), Tail (yellow) with long

disordered regions of given length. Corresponding data for

signaling proteins (red) are shown for the comparison.

Found at: doi:10.1371/journal.pcbi.1000243.s003 (0.02 MB PDF)

Figure S4 The ratio of the total length of all intrinsically

disordered regions (IDRs, black) as determined by the IUPred

algorithm and the longest unstructured segment (grey) relative to

the full length of the protein in Saccharomyces cerevisiae (A) and in
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Homo sapiens (B) and averaged over all available organisms (C).

IDRs were considered as a continuous stretches of more than 30

residues that are predicted to be disordered with a maximum gap

length of 3 ordered residues. Error bars represent the standard

error of the mean values. Vertical lines separate subunits

belonging to different modules.

Found at: doi:10.1371/journal.pcbi.1000243.s004 (0.02 MB PDF)

Figure S5 Amino acid conservation of Mediator subunits in all

available organisms in ordered (gray) and disordered (cross-

hatched) regions (A). Propensities of order-promoting (grey) and

disorder-promoting (crosshatched) amino acids in IDRs of

homologous Mediator protein sequences (B). Small error bars

indicate a high conservation of disorder/order promoting amino

acid composition.

Found at: doi:10.1371/journal.pcbi.1000243.s005 (0.02 MB PDF)

Figure S6 Conservation of intrinsically disordered regions

(IDRs) as computed at amino acid (A) and segmental (B) level.

Positional and segmental overlap obtained on the actual Mediator

protein sequences (MED_ALSEQ, crosshatched) is compared to

the overlap between IDRs in the corresponding randomized

sequences (MED_ALRAN, grey). The IDRs are defined based on

the scores by the IUPred algorithm.

Found at: doi:10.1371/journal.pcbi.1000243.s006 (0.02 MB PDF)

Table S1 Sequences of Mediator subunits in the MED_ALSEQ

database. Uniprot or NCBI codes are reported. Sequences, which

were obtained as the Supplementary material of the reference [21]

(and no corresponding sequences are found in Uniprot or NCBI

by BLAST search), are marked by their reference number.

Found at: doi:10.1371/journal.pcbi.1000243.s007 (0.06 MB XLS)

Table S2 a-Helical molecular recognition features (MoRFs)

predicted in the Mediator complex in Homo sapiens

Found at: doi:10.1371/journal.pcbi.1000243.s008 (0.10 MB

DOC)

Table S3 Conservation scores computed on Homo sapiens and

Saccharomyces cerevisiae sequences aligned by the reference [27] and

also by the present iterative alignment scheme. Scores were

obtained using groups of similar amino acid residues: R/K/H, A/

S/T, I/L/V/M/C/F/Y/W, G/P and E/D/N/Q.

Found at: doi:10.1371/journal.pcbi.1000243.s009 (0.03 MB

DOC)

Table S4 Conservation scores computed on full sequences

aligned by the reference [21] and the present iterative algorithm

using the same sequences. AAcons was obtained using individual

amino acid residues. For consistency, sequences only from those

organisms were used that were found to be homologous by the

present algorithm.

Found at: doi:10.1371/journal.pcbi.1000243.s010 (0.04 MB

DOC)
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