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Abstract

Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional
importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12
organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the
sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are
conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal
network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in
kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the
previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in
signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system
biology approaches and simulations of biological networks.
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Introduction

Protein-protein interactions are the central elements in all signal

transduction processes. The life times of protein complexes as well

as regulatory processes need to be tightly controlled for proper

systems functioning. Affinities are used to characterize the strength

of protein interactions and the affinities between proteins involved

in signaling processes have been shown to correlate with the

activities (output/response) in such signal transduction processes

[1,2]. In the majority of the cases, affinities between proteins and

protein-ligands are determined using equilibrium binding meth-

ods, like isothermal titration calorimetry and fluorescence based

methods, while rate constants of association and dissociation are

only rarely determined. However, correlations of either association

or dissociation rate constants with in vivo activity suggest that

kinetic properties play a role in the cellular context [3–7]. As the

affinity (Kd) can be described as the ratio between the dissociation

(koff) and association (kon) rate constants, different ratios of kon and

koff values can give rise to similar affinities. Kinetic rate constants

have been shown to be important for signal transduction, however

to which extent kinetics influence signaling might depend on the

actual network and network topology. We could speculate that fast

kon and koff values could result in rapid activation and deactivation

upon short pulses of a stimulus, while slow ones could filter noise

and result in prolonged signaling. If this is true it might open new

aspects of cellular signal transduction regulation and could

probably lead to conceptually new strategies in drug design. It is

likely that the answer will depend on the network topology:

rate constants might be important in some signaling branches, in

others not.

Evolutionary conservation of protein composition and bio-

chemical properties is usually a valuable indication for the cellular

importance of a specific protein complex. In this study we have

selected the Ras-effector complex formation, in order to analyze

whether kinetic rate constants are evolutionary conserved. Ras

proteins belong to the Ras superfamily of small GTPases and they

have key roles in various signal transduction pathways, like

proliferation and differentiation [8]. They act as molecular

switches by cycling between an active GTP-bound and an inactive

GDP-bound state [9,10]. Active Ras (Ras?GTP) can interact with

effector molecules such as the Ser/Thr kinase Raf. The resulting

Raf activation triggers the MAP kinase pathway, which leads to

the transcription of target genes in the nucleus [11,12]. Other

Ras?GTP binding effector proteins that have been identified are

the PI3-kinase, members of the RalGDS family, and AF6 [13–16].

Effector proteins bind to Ras?GTP via a common domain with a

ubiquitin-like topology [17–22], and various structures of effector

domains in complex with Ras proteins have revealed a similar

binding mode that involves mainly two antiparallel ß-sheets of the

RBD and Ras, respectively [23–29].

As Ras-effector protein interactions play a key role in cells,

pathways involving Ras-effector interactions can be assumed to be

at least partially conserved during evolution. In this study we

analyzed whether the affinities and the association rate constants

are conserved for 10 Ras-effector complexes in 12 different

species, including worms, flies, fishes, and mammalian organisms.

We used homology interface modeling and energy calculations,

using FoldX 2.8 (http://foldx.crg.es/) [30,31] in order to model

Ras-effector interactions of proteins from different organisms.

FoldX uses an algorithm based on the original work of Schreiber
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and co-workers to calculate relative changes in kon which has been

validated experimentally numerous times [32]. Homology mod-

eling was performed in a similar way as done in a previous study,

on a genome-wide level for all human Ras-effecter complexes

[33,34].

Results

Importance of Electrostatic Charge Complementarity for
Ras-Effector Association Kinetics

Binding of effector proteins to Ras proteins is mediated via a

domain with an ubiquitin-like topology [35]. Members of the

ubiquitin domain superfamily are the RA, the RBD, the PI3Krbd,

the UBQ and the B41/ERM domain families [36]. However, the

binding of Ras to effector domains does not depend on the fold

itself, but rather on certain amino acid residues on the surface that

are crucial for binding.

An important observation found in Ras-effector complex

structures is the high charge complementarity between the proteins

of the complex, where Ras is mainly negatively charged and the

effector RBDs are mainly positively charged [23–29]. Various

studies have shown that a strong electrostatic surface complemen-

tarity in a protein complex enhances the association rate constant by

forming of a low affinity encounter complex before the final high

affinity complex is formed [37–42]. The complex formation itself is

promoted by electrostatic steering which stabilizes the transition state

by decreasing the energy barrier for association [42,43]. In

agreement with this concept of electrostatic steering and encounter

complex formation, the association rate constants between Ras and

effector domains were found to be fast (reviewed in [44]).

Interestingly, the variance in binding energies when comparing

different Ras-effector complexes is mainly the consequence of

different association rate constants, while the dissociation rate

constants are in a similar range [45–47]. For example, RafRBD is

highly positively charged in its Ras binding region, and here the

association rate constant was found to be very high in complex with

the mainly negatively charged Ras proteins. In contrast, RalGDS

has a mixed charged distribution (Figure 1A), and the kon in complex

with Ras is much lower. Interestingly, introducing positively charged

residues at the edge of the interface of RalGDS can change binding

kinetics and these RalGDS mutants were shown to bind ‘‘Raf-like’’

to Ras [43]. In Figure 1B–F we show the electrostatic surface

potentials of several other RA/RB domains, which can bind to Ras

(Rgl1, Rgl2, Grb7, AF6_RA1, PLCe_RA2) and for which structures

have been solved, either by NMR or X-Ray, and we orient them

similar as the RA domain of RalGDS in complex with Ras. In all

cases the interface surface areas have a strong positively charged

electrostatic potential, which suggests that association kinetics are

important for these RA/RBD domains as well.

FoldX Electrostatic Interactions and Association Rate
Constants Correlate with Experimental Association Rate
Constants in Ras/Raf and Ras/RalGDS Complexes

Although the algorithm developed by Schreiber and co-workers

implemented in FoldX (http://foldx.crg.es/) [30,31], has been

validated experimentally on many different proteins, still it is a

prediction method and as such needs some validation on the

particular system under study. For this, we have selected the Ras-

Raf complex and calculated kon values (DG kon) at different salt

concentrations, ranging from 0 to 800 mM NaCl (corresponding

to an ionic strength of ,50 to 850 mM in 50 mM Tris-buffer),

and compared these results with experimental kon values measured

at different ionic strength using stopped-flow (Table S1; [48]). The

experimental kon values range from 7.4 to 60 mM21 s21 and an

excellent correlation with calculated association rate constants was

observed (R = 0.99) (Figure 2A). Further, we used FoldX in order

to generate in silico a series of mutations of charged residue in

RalGDS, located either in the binding site, or at the edge of the

binding site, and we calculated binding energies as well as

association rate constants using the Ras-Ral complex. When

comparing these results with experiments [43], we find again a

very good correlation between experimental and calculated kon

values (Figure 2B) (R = 0.89), with the slopes of the two

correlations (ionic strength and mutants) been similar. This

indicates that absolute values of association rate constants can be

reliably calculated over a wide range for different ionic strengths

and mutations of Ras-effector complexes.

Figure 1. Electrostatic surface representation of Ras effector
complex interfaces. (A) The Ras-RalGDS complex (pdb entry: 1lfd),
and they single domains of (B) Rgl1 (pdb-entry: 1ef5), (C) Rgl2 (pdb-
entry: 1rlf), (D) Grb7 (pdb-entry: 1wgr), (E) AF6-RA1 (pdb-entry: 1wxa),
and (F) PLCeRA2 (pdb-entry: 2c5l) are shown.
doi:10.1371/journal.pcbi.1000245.g001

Author Summary

Cellular signal transductions processes are based on
protein interactions. Proteins can either associate tran-
siently with each other or form stable complexes, and the
strength of the interaction is described by the affinity (the
affinity is the ratio between the rate of dissociation and
association). Protein complexes with similar affinities can
bind and dissociate with different rates, and these rates
describe the kinetic properties of protein binding. These
kinetic rates are important for signaling; however, to what
extent individual changes in such rate constants are
biologically important or whether the affinity is more
crucial might be different in different signaling processes.
In this study we analyze whether association rates are
conserved during evolution, because evolutionary conser-
vation of protein biochemical properties is usually a
valuable indication of its importance. We analyzed the
binding of Ras proteins to effector domains, which are
central proteins in many signal transduction pathways, in
different organisms. On the basis of homology modeling
and energy calculations we find that association rates are
conserved, although the sequence similarity decreases
compared to the human protein. Our finding should
encourage further analysis of the importance of kinetics for
cellular signal transduction.

Ras-Effector Association Rate Conservation
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Ortholog Prediction of Ras and Selected Effector Proteins
We have selected proteins containing RA, RBD, PI3Krbd, and

B41 domains, similar as in our previous genome-wide Ras-effector

homology interface modeling study [34] (Figure 3A), for which

binding to Ras has been shown experimentally (Table 1). These

include the different isoforms of the Raf kinases, RalGDS, and the

related proteins, Rgl1, and Rgl2. Other Ras binding domains are

the PI3K-p110 gamma subunit, and Krit. In the following we will

often refer to members of the ubiquitin superfamily as UBDs,

without differentiating between RA, RBD, PI3Krbd, or B41.

In order to derive Ras and effector protein ‘‘interactions’’ from

organisms representing the major eukaryotic branches, we have

selected the following species (Figure 3B): Homo sapiens (hs) and Mus

musculus (mm) were chosen for mammals, Gallus gallus (gg) for birds,

Xenopus tropicalis (xt) for amphibians, Fugu rubripes (fr), and Dario rerio

(dr) for fishes, Drosophila melanogaster (dm), Drosophila pseudoobscura (dp),

Anopheles gambiae (ag) and Apis mellifera (am) for arthropods, and

Caenorhabditis elegans (ce) and Caenorhabditis briggsae (cb) for nematodes.

The orthologs were predicted by using the ENSEMBL (http://

www.ensembl.org) [49] and the IMPARANOID databases

(http://inparanoid.cgb.ki.se/) [50,51]. Domains were predicted

using SMART [52,53] and the sequences were aligned automat-

ically and by manual curation taking structural information into

account [35] (Figure S1). Depending on the organism, between

22% and 78% of all human proteins orthologs were identified.

When taking into account that certain proteins in lower organisms

are orthologs of more than one human protein, e.g., RalGDS of C.

elegans is also an ortholog of Rgl1 and Rgl2, the number of

orthologs in different organisms ranges from 33% to 100%. The

alignments of the UBDs of Ras effector proteins show a high

similarity within orthologs and often also between different

proteins of the same domain family. Furthermore, the similarity

within the secondary structures of the RBD is higher than within

the loops, indicating a conservation of the binding mode. The

sequence identity of ortholog proteins (for detailed description see

method) ranges between 100 and ,20% (Table S2). However, in

the majority of the cases the sequence identity decreases to ,30/

40%. The only exceptions are the different PI3kinase p110

isoforms, where a drastic drop in sequence identity is observed for

the corresponding othologs/isoforms in C. elegans/C. briggsae.

The sequences of proteins that have a key role in cells are

usually highly conserved among all organisms. In accordance with

this, the sequences of Ras proteins were found to be nearly

identical, especially in the effector binding region (Figure S2). The

three Ras proteins, H-Ras, N-Ras and K-Ras could only be found

in vertebrates, for arthropods and nematodes there is only one Ras

protein which is most likely to be an ortholog of H-Ras. Due to the

similarity in the effector binding region, only HRas was modeled

(here termed as Ras).

Homology Interface Modeling of Ortholog Ras-Effector
Complexes

The first three secondary structure elements (b1, b2, and a1) of

the ubiquitin-like domain determine the interaction surface

towards Ras and they have the largest impact on binding energy

of the complex [33]. In those cases in which a crystal structure of

Ras in complex with a RBD domain was available we use the

structure to model the ortholog sequences (Ras-Raf, Ras-Ral, Ras-

PI3 Kinase, Ras-Byr). For the rest we used the templates modeled

in our previous study [34] (Table S3) that were validated

experimentally by pull-down experiments (for details see methods).

Only those UB domains that could be reliably modeled were

selected (e.g., no van der waals’ clashes above a fixed threshold of

2 kcal/mol). The species were then grouped into human (hs),

mouse (mm), birds (gg), amphibians (xt), insects (dm, dp, ag, am) and

nematodes (ce, cb). The mean of DG and DGkon within each group

was calculated and taken as value for the complete group. By

grouping the different organisms, the problem of missing

sequences can be solved for many proteins and mean values as

well as standard deviation of DG and DGkon can be calculated (the

results do not change if we consider individual organisms, data not

shown).

Figure 2. Calculation of association rate constants using FoldX and comparison with experimental asoociation rate constants. (A)
Ras-Raf complex at different ionic strength (salt concentrations form 0 to 800 mM NaCl) (Table S1, [48]). The correlation coefficient is 0.987. (B) The
Ras-RalGDS complex. Mutations within the RalGDS domain were introduced, and compared with experimental data (Table S1, [43]). The correlation
coefficient is 0.892.
doi:10.1371/journal.pcbi.1000245.g002

Ras-Effector Association Rate Conservation
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The results for all interaction energies (DGint FoldX) and

contribution of association rate constants (DGkon FoldX) were

plotted against the divergence time (Table S4 and Figure S3).

While the sequence similarity decreases with increasing divergence

time, the interaction energies as well as the association rate

constants are conserved. A selection of representative results is

shown in Figure 4. A comparison of the mean values for all

interaction energies and kon values calculated for a particular Ras-

effector complex in different organisms shows that the standard

deviations are in the majority of the complexes small (Table S5

and Figure 5A). Interestingly, the interaction energies correlate

with the association rate constant contribution (Figure 5B)

Figure 3. Selected effector domains and the phylogeny of used model organisms. (A) Domain architecture of selected effector proteins.
The ubiquitin-like domains mediating binding to Ras (RA, RBD, PI3K_rbd, and B41) are shown in yellow, other domains in grey. The domain prediction
was done using SMART [52,53] using the respective sequence from Homo sapiens. (B) The relationship and divergence time (million of years ago
(Mya)6standard error) of used model organisms are shown. The divergence times for the chordate – arthropod divergence and the one for
divergence of nematodes from the lineage leading to chordates and arthropods were derived from Wang et al 1999 [61]. The others were taken from
Hedges 2002 [62].
doi:10.1371/journal.pcbi.1000245.g003

Ras-Effector Association Rate Conservation
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(R = 0.71). This indicates that also for the so far kinetically

uncharacterized UBD domains, the changes in DG are mainly a

consequence of changing kon. Thus, this could be underlying

binding principle for the complete Ras-effector family.

In order to demonstrate that large changes in association rate

constants would have been possible theoretically, we have selected

the human Ras-RalGDS complex as an example for an in silico

mutagenesis using FoldX. By either introducing positively or

negatively charged residues at all positions at the surface of

RalGDS, the FoldX-kon contribution could be increased from

23.65 kcal/mol to 27,6 kcal/mol or decreased to 20.47 kcal/

mol, respectively (data not shown).

Simulation of a Minimal Ras-Effector Network
In order to analyze whether compensating changes in kon and koff

can influence signal transduction, we used in silico simulations of a

sub-network within the EGF signal transduction pathway. Activation

of proteins following EGF stimulation is one of the most studied

signaling systems, which involves the Ras-CRaf interaction as central

elements, and numerous simulation models exist, which are able to

correctly predict different aspects of EFG signaling found experi-

Table 1. Selected Ras binding domains, structural
information, and template structures used for modeling.

Effector RBD
PDB Single
Domain

PDB Complex
with Ras Protein

Template
Structure Used
for Modeling

AF6 RA1 1wxa 1lfd

AF6 RA2 1lfd

Araf 1wxm 1gua

Craf 1rfa, 1rrb 1gua 1gua

Braf 1gua

Krit1 1lfd

PI3K p110 gamma 1he8 1he8

RalGDS 1lxd, 2rgf 1lfd 1lfd

Rgl1 1ef5 1lfd

Rgl2 1rlf 1lfd

doi:10.1371/journal.pcbi.1000245.t001

Figure 4. Homology interface modeling of ortholog Ras-effector complexes. Representative Results for predicted association rate
constants. Association rate constants are conserved for Ras-effector complexes in different organisms with increasing divergence time, while the
sequence identity is decreasing. Color code: AF6_RA2 (orange), RalGDS (dark blue), BRaf (light blue), CRaf (dark green), and AF6_RA1 (light green).
doi:10.1371/journal.pcbi.1000245.g004

Ras-Effector Association Rate Conservation
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mentally [54–59]. Based on these earlier models we have constructed

a minimal network involving Ras and Raf kinase (Figure 6A and

Table S6). This minimal model involves activation of GEF upon

stimulation (A), which results in activation of Ras (RasT = RasGTP).

Subsequent binding of Raf to RasT activates Raf (Raf_act), which in

turn leads to activation of a downstream target (X). Negative

regulation was introduced by the GAP catalyzed hydrolysis reaction

of RasGTP to RasGDP (RasD). We simulated this network by first

applying a constant stimulus of ‘‘A’’ for 500 seconds using the wild

type kon and koff values for the Ras-Raf interaction. Then we

simulated the network with either 10-fold higher kon and koff rate

constants, or 10 fold lower kon and koff (Figure 6B). Minor changes are

observed when following X over time (activation peak) for the

simulation with 10-fold higher kon and koff compared to the wild type

situation. Only the simulation of 10-fold lower kon and koff resulted in

a slightly smaller activation peak. However, when simulating the

network by applying a pulse of stimulation, of 10 s of ‘‘A’’ (and then

removing the stimulus), large changes in the activation peak are

observed, with a higher maximum for the simulation of 10-fold

higher kon and koff values for the Ras-Raf interaction (Figure 6C).

This shows, that under certain cellular conditions, like short pulse of

activation, large changes in activation are expected for mutants with

similar affinity, but changed and compensating effects on kon and koff.

Thus, kinetic properties can be crucial, and in the case of Ras-effector

interactions, association kinetics will be important to result in

sufficient activation, when the system is activated by applying a pulse.

Discussion

The complex formation of Ras and effector proteins is driven by

high association rate constants and only moderate dissociation rate

constants [45–47]. Further, changes in affinity are mainly the

consequence of changed association rate constants. Association

Figure 5. Mean values and standard deviation for calculated interaction energies (DGint) and association rate constants (DGkon).
(A) Results from UBDs from the same protein or from the same protein family were shown in similar color. The results were taken from Table S5. (B)
Correlation of calculated interaction energies with calculated association rate constants. The results were taken from Table S5, and the correlation
coefficient is 0.71.
doi:10.1371/journal.pcbi.1000245.g005

Ras-Effector Association Rate Conservation

PLoS Computational Biology | www.ploscompbiol.org 6 December 2008 | Volume 4 | Issue 12 | e1000245



rate constants can be influenced by mutating charged residues at

the edge of the interface [32,43]. If electrostatic interactions and

association rate constants are important for the biological function

of the cell, they should be conserved during the course of

evolution. Using homology modeling and energy calculation

covering a wide-range of sequences, and relating the output to

the sequence conservation, we found that interaction energies as

well as the electrostatic contributions and the association rate

constants are conserved as well. While the sequence identity

decreases with divergence time between the selected organisms, no

trend could be found for the interaction energy and energies

related to the electrostatics and kon, although theoretically it

should be possible, when sampling the possible contributions of kon

at different amino acid positions (Figure S4).

Biologically, electrostatic interactions within Ras-effector com-

plex interfaces could be functionally important, because they are

the basis for the observed dynamic behavior, as observed in the

case of Ras binding to the Raf kinase effector protein: The Ras-

RafRBD complex formation is characterized by both high

association and dissociation rate constants (kon and koff), leading

to affinities (Kd = koff/kon) in the range of 1 to 0.05 mM, under

physiological conditions (this relatively low affinity seems to be

functionally sufficient, since Ras is attached to the membrane via a

lipid modification). The high kon values provide the possibility to

have a fast dissociation of the complex, while still having a

reasonable tight binding complex (the lifetime of the complex

between Ras and RalGDS, for example, is 0.1 s-1; see reference

[47]). As Ras signaling depends very crucially on a strict control

through regulating proteins like GAPs (GTPase activating

proteins) and GEFs (guanine nucleotide exchange factors), this

fast dissociation allows regulatory proteins to access and act.

We assume that electrostatics contributions and binding kinetics

could be important in other Ras signaling pathways, since

association rate constants were found to be conserved during

evolution, as demonstrated in this study for 10 effector domains.

Further in vivo analysis will be needed to prove this hypothesis.

These experiments could be performed by designing mutant

variants, which are expected to have similar affinities, but changed

association and dissociation rate constants. These protein variants

could be expressed in cells and the effect on signal transduction

monitored, e.g., after different pulses of stimulation.

It is expected that the effect of changing rate constants depends

also on the network topology (negative feedback, feed forward

inhibition, etc). This knowledge will be important for systems

biology and simulation approaches, in order to know, at which

positions in the network affinities will be sufficient, while for other

accurate rate constants will be crucial for correct prediction.

Further, it could open conceptually new aspects in drug design.

Methods

Selected Species, Orthologs, and Domain Prediction
Proteins from the following species were used in order to get a

good representation of all branches: Homo sapiens and Mus musculus

(mammals), Gallus gallus (birds), Xenopus tropicalis (amphibians), Fugu

rubripes and Danio rerio (fishes), Drosophila melanogaster, Drosophila

pseudoobscura, Anopheles gambiae and Apis mellifera (arthropods), and

Caenorhabditis elegans and Caenorhabditis briggsae (nematodes). Only

Figure 6. SmartCell Simulations of a minimal network within EGF signal transduction. (A) Schematic diagram of the reactions involved.
For details see text and Table S5. Simulation of the network using the WT affinity of the Ras-Raf complex (blue line), 10 fold higher kon and koff rates
(pink line), or 10 fold lower kon and koff values (green line). Either a constant stimulus was applied for 500 seconds (B) or the system was activated for
10 seconds and then the stimulus was removed (C).
doi:10.1371/journal.pcbi.1000245.g006

Ras-Effector Association Rate Conservation
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two RA domain containing were retrieved from Saccharomyces

cerevisiae (sc), because these proteins are involved in a different

pathway. For each protein, the human ENSEMBL protein ID was

retrieved from ENSEMBL (http://www.ensembl.org) [49]. The

orthologs were predicted by using the ENSEMBL database for

Xenopus tropicalis, or the INPARANOID database (http://www.

inparanoid.cgb.ki.se) [50,51]. ENSEMBL [49] classifies the

prediction based on the BLAST results. Only those orthologs

were chosen that were a unique best reciprocal hit in both

directions. As the INPARANOID database [50,51] provides more

information about orthologs of members of protein families, e.g.,

PI3K p110, the prediction was preferentially used. The sequences

retrieved from ENSEMBL or INPARANOID were analyzed

using SMART (http://smart.embl-heidelberg.de) [52,53], in order

to determine the domain architecture of the protein and the

domain sequences.

Homology Modelling and Energy Calculations Using
FoldX

For modeling of Ras-binding domains in complex with Ras

proteins, we have taken the pdb-files of the following Ras effector

complexes: Ras-RalGDS (pdb-entry: 1LFD), Ras-PI3Kinase (pdb-

entry: 1HE8), and Raps-Raf (pdb-entry: 1GUA). Different

template structures have been generated by deleting certain parts

in the complex; the decision was mainly based on the alignment

used to model the different binding domains. The ortholog

sequences for one protein were aligned using standard automatic

alignment tools, since sequence homology is high. However, the

alignment of different effector domains from different families

(RA, RBD, PI3Krbd, B41), was done based on manual curated

structural-based sequence alignments as discussed in detail in a

previous publication [35]. Basically two kinds of template

structures have been generated (Table S3): a short version, where

all secondary structure elements and loops (apart from ß1, ß1, ß2,

a1) were deleted, as this is the part mainly contributing to the

binding energy (similar as done in our previous study [33,34]. In

addition ‘long template’ structures have been generated. We could

not model loop regions in those cases where the loops where not of

the same length. For having a proline at the beginning of ß-strand

1 (position 26 in RalGDS, position 229 in PI3K, position 66 in Raf

and position 81 in spByr2), we prepared special template structures

by moving the backbone slightly, after introducing the proline at

these positions (we checked that the proline was in acceptable

dihedral angles and that the main chain CO group was still H-

bonded to Ras). These template structures were then used to

model the complex structures for AF6_RA2. The homology

modelling was done as described before [33,34]. The homology

modeling was done based on the sequence alignment (Figure S1

and Figure S2), using different template structures using the design

option in a new version of FoldX 2.8 [30,31]. During this design

procedure, FoldX is testing different rotamers and allows neighbor

side chains to move. After reconstruction, all models have been

passed through an additional optimization step by using the repair

function of FoldX (detailed description in [33,34]). Energy

calculations of Ras-effector complexes have been done using

FoldX as described before (http://fold-x.crg.es) [30,31].

Simulations of a Minimal Ras-Effector Network
A model was generated based on previous models of EGF signal

transduction (see Table S6). Simulations were performed using the

SmartCell software (http://www.smartcell-crg.es) [60] using

ordinary differential equations.

Supporting Information

Figure S1 Alignment of UB domains

Found at: doi:10.1371/journal.pcbi.1000245.s001 (0.05 MB PDF)

Figure S2 Alignment of Ras proteins

Found at: doi:10.1371/journal.pcbi.1000245.s002 (0.03 MB PDF)

Figure S3 Diagrams of DGint and DGkon FoldX values plotted

against the divergence time

Found at: doi:10.1371/journal.pcbi.1000245.s003 (0.07 MB PDF)

Figure S4 FoldX mutational scanning of RafRBD and

RalGDS-RA. (A) Ras-RafRBD (pdb-entry 1GUA). (B) Ras-

RalGDS (pdb entry 1LFD). Effect of all residues in Raf-RBD or

RalGDS-RA on the contribution of DG kon as calculated by

FoldX. Either positively charged residues were mutated to alanine

(red) or negatively charged or neutral residues were mutated to

lysine using FoldX and the difference compared to the WT

DGkon was calculated and plotted for every amino acid position.

Found at: doi:10.1371/journal.pcbi.1000245.s004 (0.03 MB PDF)

Table S1 Experimental and calculated association rate constants

Found at: doi:10.1371/journal.pcbi.1000245.s005 (0.03 MB PDF)

Table S2 Divergence times and sequence identities for Ub

domains

Found at: doi:10.1371/journal.pcbi.1000245.s006 (0.02 MB PDF)

Table S3 Template structures used for homology modelling

Found at: doi:10.1371/journal.pcbi.1000245.s007 (0.01 MB PDF)

Table S4 FoldX results for all homology models

Found at: doi:10.1371/journal.pcbi.1000245.s008 (0.01 MB PDF)

Table S5 Mean values and STDEV for homology models for

ortholog complexes

Found at: doi:10.1371/journal.pcbi.1000245.s009 (0.01 MB PDF)

Table S6 Modelling parameters

Found at: doi:10.1371/journal.pcbi.1000245.s010 (0.05 MB PDF)

Author Contributions

Conceived and designed the experiments: LS. Performed the experiments:

CK DA. Analyzed the data: CK DA LS. Wrote the paper: CK LS.

References

1. Block C, Janknecht R, Herrmann C, Nassar N, Wittinghofer A (1996)

Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro

to Raf activation in vivo. Nat Struct Biol 3: 255–251.

2. Pearce KHJ, Cunningham BC, Fuh G, Teeri T, Wells JA (1999) Growth

hormone binding affinity for its receptor surpasses the requirements for cellular

activity. Biochemistry 38: 81–89.

3. Piehler J, Roisman LC, Schreiber G (2000) New structural and functional

aspects of the IFN-receptor interaction revealed by comprehensive mutational

analysis of the binding interface. J Biol Chem 275: 40425–40433.

4. Wang Y, Shen BJ, Sebald W (1997) A mixed-charge pair in human interleukin 4

dominates high-affinity interaction with the receptor a chain. Proc Natl Acad

Sci U S A 94: 1657–1662.

5. Batista FD, Neuberger MS (1998) Affinity dependence of the B cell response to

antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8:

751–759.

6. Foote J, Eisen HN (1995) Kinetic and affinity limits on antibodies produced

during immune response. Proc Natl Acad Sci U S A 92: 1254–1256.

7. Botti SA, Felder CE, Sussmann JL, Silman I (1998) Electrotactins: a class of

adhesion proteins with conserved electrostatic and structural motifs. Protein Eng

1: 415–420.

8. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in

three dimensions. Science 294: 1299–1304.

9. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a

conserved switch for diverse cell functions. Nature 348: 125–132.

Ras-Effector Association Rate Conservation

PLoS Computational Biology | www.ploscompbiol.org 8 December 2008 | Volume 4 | Issue 12 | e1000245



10. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily:

conserved structure and molecular mechanism. Nature 349: 117–127.

11. Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, et al. (1983)
Structure and biological activity of v-raf, a unique oncogene transduced by a

retrovirus. Proc Nat Acad Sci U S A 80: 4218–4222.

12. Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly
with the serine/threonine kinase Raf. Cell 74: 205–214.

13. Rodriguez-Viciana P, Warne PH, Dhand R, Van Haesebroeck B, Gout I, et al.

(1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:
527–532.

14. Hofer F, Fields S, Schneider C, Martin GS (1994) Activated Ras interacts with
the Ral guanine nucleotide dissociation stimulator. Proc Natl Acad Sci U S A 91:

11089–11093.

15. Kikuchi A, Demo SD, Ye Z-H, Chen Y-W, Williams LT (1994) RalGDS family
members interact with the effector loop of ras p21. Mol Cell Biol 14: 7483–7491.

16. Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuku M, et al. (1996)

Identification of AF-6 and Canoe as putative targets for Ras. J Biol Chem 271:
607–610.

17. Emerson SD, Madison VS, Palermo RE, Waugh DS, Scheffler JE, et al. (1995)

Solution structure of the Ras-binding domain of c-Raf-1 and identification of its
Ras interaction surface. Biochemistry 34: 6911–6918.

18. Huang L, Weng X, Hofer F, Martin GS, Kim SH (1997) Three-dimensional

structure of the Ras-interacting domain of RalGDS. Nat Struct Biol 4: 609–615.

19. Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer HR (1997)
Structure of the Ras-binding domain of RalGEF and implications for Ras

binding and signaling. Nat Struct Biol 4: 694–699.

20. Walker EH, Perisic O, Ried C, Stephens L, Williams RL (1999) Structural

insights into phosphoinoside 3-kinase catalysis and signaling. Nature 402:

313–320.

21. Steiner G, Kremer W, Linnemann T, Herrmann C, Geyer M, et al. (2000)

Sequence-specific resonance assignment of the Ras-binding domain of AF6.

J Biomol NMR 18: 73–74.

22. Gronwald W, Huber F, Grünewald P, Spörner M, Wohlgemuth S, et al. (2001)

Solution Structure of the Ras-binding domain of the protein kinase Byr2 from

Schizosaccharomyces pombe. Structure 9: 1029–1041.

23. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, et al. (1995) The 2.2
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28. Scheffzeck K, Grünewald P, Wohlgemuth S, Kabsch W, Tu H, et al. (2001) The

Ras-Byr2RBD complex: structural basis for Ras effector recognition in yeast.
Structure 9: 1043–1050.

29. Bunney TD, Harris R, Gandarillas NL, Josephs MB, Roe SM, et al. (2006)
Structural and mechanistic insights into ras association domains of phospholi-

pase C epsilon. Mol Cell 21: 495–507.

30. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of
proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol

320: 369–387.

31. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, et al. (2005) The FoldX
web server: an online force field. Nucleic Acids Res 33: W382–W388.

32. Selzer T, Albeck S, Schreiber G (2000) Rational design of faster associating and

tighter binding protein complexes. Nat Struct Biol 7: 537–541.

33. Kiel C, Wohlgemuth S, Rousseau F, Schymkowitz J, Ferkinghoff-Borg J, et al.
(2005) Recognizing and defining true Ras binding domains II: in silico

prediction based on homology modelling and energy calculations. J Mol Biol
348: 759–775.

34. Kiel C, Foglierini M, Kuemmerer N, Beltrao N, Serrano L (2007) A genome-

wide Ras-effector interaction network. J Mol Biol 370: 1020–1032.

35. Kiel C, Serrano L (2006) The ubiquitin domain superfold: structure-based

sequence alignments and characterization of binding epitopes. J Mol Biol 355:

821–844.

36. Orengo CA, Jones DT, Thornton JM (1994) Protein superfamilies and domain

superfolds. Nature 372: 631–634.

37. Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular
interactions. Annu Rev Biophys Biophys Chem 14: 131–160.

38. Northrup SH, Erickson HP (1992) Kinetics of protein-protein association

explained by Brownian dynamic computer simulation. Proc Natl Acad Sci U S A
89: 3338–3342.

39. Vijayakumar M, Wong K-Y, Schreiber G, Fersht AR, Szabo A, et al. (1998)

Electrostatic enhancement of diffusion-controlled protein-protein association:
comparison of theory and experiment on barnase and barstar. J Mol Biol 278:

1015–1024.
40. Camacho CJ, Weng Z, Vajda S, DeLisi C (1999) Free energy landscapes of

encounter complexes in protein-protein association. Biophys J 76: 1166–1178.

41. Camacho CJ, Kimura SR, DeLisi C, Vajda S (2000) Kinetics of desolvation-
mediated protein-protein binding. Biophys J 78: 1094–1105.

42. Selzer T, Schreiber G (2001) New insights into the mechanism of protein-protein
association. Proteins 45: 190–198.

43. Kiel C, Selzer T, Shaul Y, Schreiber G, Herrmann C (2004) Electrostatically
optimized Ras-binding Ral guanine dissociation stimulator mutants increase the

rate of association by stabilizing the encounter complex. Proc Natl Acad Sci U S A

101: 9223–9228.
44. Kiel C, Serrano L (2007) Affinity can have many faces: Thermodynamic and

kinetic properties of Ras-Effector Complex formation. Curr Chem Biol 1:
215–225.

45. Sydor JR, Engelhard M, Wittinghofer A, Goody R, Herrmann C (1998)

Transient kinetic studies on the interaction of Ras and the Ras-binding domain
of c-Raf-1 reveal rapid equilibrium of the complex. Biochemistry 37:

14292–14299.
46. Linnemann T, Geyer M, Jaitner BK, Block C, Kalbitzer HR, et al. (1999)

Thermodynamic and kinetic characterization of the interaction between the Ras
binding domain of AF6 and members of the Ras subfamily. J Biol Chem 274:

13556–13562.

47. Linnemann T, Kiel C, Herter P, Herrmann C (2002) The activation of RalGDS
can be achieved independently of its Ras binding domain: implications for an

activation mechanism in Ras effector specificity and signal distribution. J Biol
Chem 10: 7831–7837.

48. Kiel C (2003) Investigation of Ras-effector complexes with changed electrostatic

properties. Ph.D. thesis, Ruhr-Universitaet Bochum, Germany.
49. Hubbard TJ, Aken BL, Beal K, Ballester B, Caccamo M, et al. (2007) Ensembl

2007. Nucleic Acids Res 35: D610–D617.
50. Remm M, Storm CEV, Sonnhammer ELL (2001) Automatic clustering of

orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314:
1041–1052.

51. O’Brien KP, Remm M, Sonnhammer ELL (2005) Inparanoid: a comprehensive

database of eukaryotic orthologs. Nucleic Acids Res 33: D476–D480.
52. Schultz J, Milpetz F, Bork P, Ponting CP (1998) Smart, a simple modular

architecture research tool – identification of signalling domains. Proc Natl Acad
Sci U S A 95: 5857–5864.

53. Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, et al. (2002) Recent

improvements to the SMART domain-based sequence annotation resource.
Nucleic Acid Res 30: 242–244.

54. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of
short term signaling by the epidermal growth factor receptor. J Biol Chem 274:

30169–30181.
55. Schoeberl B, Eichler-Jonsson C, Gilles ED, Mueller G (2002) Computational

modeling of the dynamics of the MAP kinase cascade activated by surface and

internalized EGF receptors. Nat Biotechnol 20: 370–375.
56. Yamada S, Taketomi T, Yoshimura A (2004) Model analysis of difference

between EGF pathway and FGF pathway. Biochem Biophys Res Commun 314:
1113–1120.

57. Sasagawa S, Ozaki Y, Fujita K, Kuroda S (2005) Prediction and validation of

the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7:
365–373.

58. Kiyatkin A, Aksamitiene E, Markevich NI, Borisov N, Hoek JB, et al. (2006)
Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-

induced mitogenic and survival signaling by multiple positive feedback loops.

J Biol Chem 281: 19925–19938.
59. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, et al.

(2007) Ligand-dependent responses of the ErbB signaling network: experimental
and modeling analyses. Mol Syst Biol 3: 144.

60. Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M, et al.
(2004) SmartCell, a framework to simulate cellular processes that combines

stochastic approximation with diffusion and localisation: analysis of simple

networks. Syst Biol 1: 129–138.
61. Wang DYC, Kumar S, Hedges SB (1999) Divergence time estimates for the

early history of animal phyla and the origin of plants, animals and fungi. Proc
Biol Soc 266: 163–171.

62. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet

3: 838–849.

Ras-Effector Association Rate Conservation

PLoS Computational Biology | www.ploscompbiol.org 9 December 2008 | Volume 4 | Issue 12 | e1000245


