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Abstract

Complex phenotypes such as the transformation of a normal population of cells into cancerous tissue result from a series of
molecular triggers gone awry. We describe a method that searches for a genetic network consistent with expression
changes observed under the knock-down of a set of genes that share a common role in the cell, such as a disease
phenotype. The method extends the Nested Effects Model of Markowetz et al. (2005) by using a probabilistic factor graph to
search for a network representing interactions among these silenced genes. The method also expands the network by
attaching new genes at specific downstream points, providing candidates for subsequent perturbations to further
characterize the pathway. We investigated an extension provided by the factor graph approach in which the model
distinguishes between inhibitory and stimulatory interactions. We found that the extension yielded significant
improvements in recovering the structure of simulated and Saccharomyces cerevisae networks. We applied the approach
to discover a signaling network among genes involved in a human colon cancer cell invasiveness pathway. The method
predicts several genes with new roles in the invasiveness process. We knocked down two genes identified by our approach
and found that both knock-downs produce loss of invasive potential in a colon cancer cell line. Nested effects models may
be a powerful tool for inferring regulatory connections and genes that operate in normal and disease-related processes.
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Introduction

Carcinogenesis involves a host of cell-cell communication

breakdowns that include the loss of contact inhibition, an

increased potential to proliferate, and the ability to invade and

spread into foreign tissue [1]. The molecular events involved in

this transformation are still poorly understood. New systematic

methods are needed to infer the key events responsible for these

disease processes. The ability to measure gene expression changes

for the entire genome in the presence of molecular perturbations,

such as specific gene knock-downs, provides a new opportunity to

infer gene networks in a data-driven manner.

Our goal is to identify the genetic mechanisms underlying a

phenotype, such as cancer cell deregulation. We take a network-

based approach to the problem, starting with a set of signaling

genes or S-genes, known to act in a common pathway. The input

to the method is a matrix in which gene expression has been

measured under the knock-down of each of the S-genes. Genes

exhibiting differential expression across the knock-downs, here

referred to as effect genes or E-genes, are used to predict a set of

interactions among the S-genes, and expand the pathway by

identifying newly implicated frontier genes based on their

expression changes. We hypothesize that using a structured

model of the interactions among the S-genes will improve the

identification of frontier genes for inclusion in the network for

subsequent rounds of investigation.

Previous approaches for pathway expansion have used

methods based on expression correlations to a phenotype of

interest. These methods search for genes with expression profiles

that are highly correlated with a particular phenotype or disease

state and have led to promising results [2–5]. Methods using

Analysis of Variance [6], false-discovery [7], and non-parametric

methods [8] also have been proposed. For example, one method

is to measure the correlation of gene expression levels with an

idealized vector representing the phenotype (e.g. indicator

variables with zeroes for disease and ones for lack of disease)

[9]. One disadvantage of these methods is that they make no

explicit use of the known members of a pathway or how these

members interact with each other.

More recently, several approaches have demonstrated learning

a structured model from perturbation experiments [10–13].

Approaches based on Bayesian Networks have also been proposed

[11,12]. However, these approaches attempt to identify networks

over the E-genes rather than the S-genes and therefore require

many replicated microarray experiments to distinguish signal from

noise. Instead, perturbing genes of interest and constructing

networks from observations of downstream changes allows

powerful interventional reasoning, as well as reconstruction of
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interactions not directly reflected in expression levels, such as

phosphorylation. In one approach, Carter et al. (2007) [14]

decompose the matrix of expression changes under single- and

double-gene deletions to infer a transcriptional regulation network

from which phenotypes and gene expression responses following

knock-downs can be predicted. An alternative approach is the

Nested Effects Model (NEM) of Markowetz et al. (2005, 2007)

[10,15], which has been used to predict interactions, including

non-transcriptional interactions. Rather than searching for genetic

networks that explain observational data, as several Bayesian

Network approaches have done [11,16], NEMs are useful in

situations in which perturbations have been carried out on a

focused set of genes. In this case, NEMs assume the interest is in a

finer description of the interactions among the silenced genes

rather than identifying a network of unrestricted connections

between potentially additional genes. The NEM approach takes as

input a matrix of expression changes, X. A column of X

corresponds to a single gene knock-down (or knock-out) of one

S-gene; a row corresponds to the response of an E-gene to all of

the knock-downs. The method searches for approximate subset

relations among the expression changes of the E-genes to organize

the S-genes into a network. To do this it assumes, for example,

that S-gene A is above S-gene B if the set of E-genes that change

under gene A’s knock-down are an approximate superset of the

effected genes under B’s knock-down.

The current NEM approach uses binary set membership

relations to identify a network and thus the exact nature of

interaction between S-genes (e.g. activation or inhibition) is not

determined. However, an appreciable extent of inhibition occurs

in real genetic networks. To estimate the amount of inhibition

present in living cells, we estimated the proportion of genes up-

regulated in deletion mutants relative to wild-type from a yeast

knock-out compendium [17]. Over half of the genes had

increasing expression changes across the deletion strains, consis-

tent with a high degree of inhibitory interactions in the yeast

genetic network (see Figure S1). Thus, the inability to distinguish

between stimulatory and inhibitory interactions may be a critical

shortcoming of current NEM approaches.

To address this limitation, we developed a generalization of the

NEM approach using a probabilistic graphical model called a

factor graph that allows a broader set of S-gene interactions to be

recovered from the secondary effects of E-gene expression. This

paper offers three methodological contributions. First, we present

a factor graph formulation called FG-NEM that allows for an

efficient search over all possible NEM structures for a high-scoring

model. Second, we show how FG-NEMs extend the NEM

approach for expanding the network beyond the current set of S-

genes. Third, we show that FG-NEMs can model a more general

class of S-gene interactions than NEMs, which increases the

accuracy of network identification over an approach that considers

a more restricted set of interactions.

We demonstrate the usefulness of FG-NEMs on both simulated

and biologically relevant signaling networks that contain both

inhibition and activation. We apply FG-NEMs to identify novel

genes not previously implicated in colon cancer cell invasiveness.

Finally, we experimentally test FG-NEM predictions and report

that knock-downs of the top-scoring genes lead to a loss-of-

invasion phenotype, validating the approach. Source code is

available as an R library from our website: http://sysbio.soe.ucsc.

edu/projects/fgnem.

Methods

We first describe the Nested Effects Model, derive a maximum a

posteriori objective function to identify highly probable networks,

and then describe how to recode the search for a network as

inference on a factor graph. We then discuss how we expand the

frontier of the network by identifying new genes that have high

attachment probability using modified NEM attachment scoring.

Finally, we describe our method for validating the involvement of

these frontier genes using directed knock-down and phenotypic

assays.

The Nested Effects Model
Our goal is to automatically identify genetic interactions among

a set of signaling genes from gene expression changes observed under

their knock-down. The signaling genes represent a set of genes that

prior experimental evidence suggests participate in a common

pathway. To infer a network, we use an extension of the Nested

Effect Model (NEM) introduced by Markowetz et al. (2005) [10].

The set of silenced genes are denoted as the set S (or S-genes). An

NEM is a probabilistic formulation that measures how well a

directed graph of the S-genes is consistent with expression changes

collected under the separate silencing of each S-gene (i.e. only

single knock-downs are considered in NEM). While the method

can make use of either complete deletion mutants or genes that

may be partially silenced, here we use the term knock-down to

refer to either case. We denote the knock-down of S-gene A as DA.

We also refer to a set of effect genes as the set E (or E-genes), for

which gene expression data is available. The expression of an E-

gene e is assumed to be influenced by at most one S-gene. The key

assumption of NEMs is the expression changes observed under DA

are an approximate superset of the changes observed under DB if

gene A acts upstream of gene B in a pathway. We use the

shorthand A.B to represent this generic directed interaction.

In addition to identifying A.B, the E-gene expression changes

on the microarray can be used to infer the ‘‘sign’’ of the

interaction, either activating or inhibiting. In our framework, we

extend the interactions so that an upstream gene can have either

an inhibitory or stimulatory effect on downstream genes. Figure 1A

presents an example, similar to Fröhlich et al. (2008) [18] that

motivates the use of signed interactions. E-genes E1 through E13

Author Summary

Biological processes are the result of the actions and
interactions of many genes and the proteins that they
encode. Our knowledge of interactions for many biological
processes is limited, especially for cancer where genomic
alterations may create entirely novel pathways not present
in normal tissue. Perturbing gene expression (for example,
by deleting a gene) has long been used as a tool in
molecular biology to elucidate interactions but is very
expensive and labor intensive. The search for new genes
that may participate can be a daunting ‘‘fishing expedi-
tion.’’ We have devised a tool that automatically infers
interactions using high-throughput gene expression data.
When a gene is silenced, it causes other genes to be
switched on or off, which provide clues about the
pathway(s) in which the gene acts. Our method uses the
genomewide on/off states as a fingerprint to detect
interactions among a set of silenced genes. We were able
to elucidate a network of interactions for several genes
implicated in metastatic colon cancer. Genes newly
connected to the network were found to operate in
cancer cell invasion in human cells, validating the
approach. Thus, the method enables an efficient discovery
of the networks that underlie biological processes such as
carcinogenesis.

Factor Graph Nested Effects Model
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are listed from top to bottom according to where they are attached

to the network. Depending on the connections of the S-genes to

one another and to the E-genes, a disruption in an S-gene will

cause E-genes to either increase or decrease in expression relative

to wild-type. For example, E-gene E7 decreases under DB relative

to wild-type because the wild-type activation by B is absent in the

deletion. On the other hand, the expression of E10 also decreases

under DB relative to wild-type but as a result of a different

mechanism. In wild-type, E10 is expressed at a baseline level

because its repressor, the product of gene D, is inhibited by B’s

product. However, in the B deletion, D is derepressed, leading to

inhibition of E10. This toy example illustrates that the disambig-

uation of inhibition and activation, both for S-gene interactions

and E-gene attachments, make it possible to account for an

expanded set of mechanisms leading to the observed expression

changes.

The E-gene expression changes are available in a data matrix X

where each column gives the difference in expression of each E-

gene under the deletion of a single S-gene relative to wild-type. X

may also contain replicates in the form of repeated S-gene knock-

downs. The entry XeAr represents e’s expression change under the

rth replicate of DA. Furthermore, we assume that an unknown

expression ‘‘state’’ for each E-gene under each knock-down,

determines its set of expression changes observed across the {XeAr}

replicates in the microarray data. The matrix, Y, records a hidden

state for each E-gene under each knock-down, where entry YeA is

the state of E-gene e under DA. We allow the states to be ternary-

valued {+1, 21, 0} representing whether e is up-regulated, down-

Figure 1. Predicting Pair-wise Interaction Using Quantitative Nested Effects. (A) Hypothetical example with four S-genes, A, B, C, and D. The
graph contains one inhibitory link, BxD (left). A heatmap of E-gene expression under knockdown of each S-gene shows both inhibitory and
stimulatory effects (middle). Scatter plots of the C, A, B, and D knock-outs show that expression fits in the shaded preferred regions of each interaction
(right). The inhibitory link explains some of the ‘‘observed’’ data: expression changes under DD (bright red or bright green entries in the heatmap)
occur in a subset of the E-genes for which the opposite changes occur in DB. (B) Data from a known inhibitory interaction. Expression levels of effect
genes under the DIG1/DIG2 knock-out (y-axis) plotted against their levels under the STE2 knock-out (x-axis) as detected in [17]. Expression changes
significant at a = 0.05 indicated in gray lines. DIG1/DIG2 is known to inhibit STE12. (C) Interaction modes. Observed E-gene expression changes are
compared to five possible types of interactions between two S-genes, A and B (i–v). The top row illustrates the expected nested effects relationship
for each type of interaction mode: circles represent sets of E-genes with expression changes consistent with either activation (blue circles) or
inhibition (yellow circles). Scatter-plots for each interaction mode show the hypothetical expression changes under DA (x-axis) and DB (y-axis) for all E-
genes (circles). E-gene levels are either consistent (filled) or inconsistent (open) with the mode. Shaded regions demark expression levels consistent
with each interaction model. The example shows expression changes that most closely match the inhibition mode (indicated by the greatest number
of closed circles).
doi:10.1371/journal.pcbi.1000274.g001
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regulated, or unchanged under DA relative to wild-type respec-

tively.

Nested effects models include two sets of parameters. The

parameter set W records all pair-wise interactions among the S-

genes and the parameter set H describes how each E-gene is

attached to the network of S-genes. In the original NEM

formulations [10,15,18] W is a binary matrix with entry wAB set

to one if S-gene A acts above S-gene B and zero otherwise. If

wAB = wBA = 1 then the S-genes are assumed to operate at an

equivalent position in the pathway. Note that indirect interactions

are also represented in W so that if wAB = 1 and wBC = 1 it implies

wAC = 1. A parsimonious network among the S-genes is solved for

by computing the transitive reduction of W.

To allow for both stimulatory and inhibitory interactions in

our formulation, wAB can assume six possible values for each

unique unordered S-gene pair {A, B}. We refer to these values as

interaction modes. The possible values are: (i) A activates B, ARB;

(ii) A inhibits B, AxB; (iii) A is equivalent to B, A = B; (iv) A does

not interact with B, A?B; (v) B activates A, BRA; and (vi) B

inhibits A, BxA.

Plotting the response of E-genes under DA and DB yields a

scatter-plot that may provide a signature for the type of interaction

between A and B. For example, Figure 1B shows a scatter-plot of

gene expression changes from the Hughes et al. (2000) yeast

knock-out compendium [17] for a pair of knock-outs of the well-

known pheromone-response genes: DSTE12 and the DDIG1/

DIG2 double knock-out. Comparing the scatter-plot for these

pheromone-response genes to the patterns in Figure 1C, it can be

seen to match the inhibitory interaction mode more closely than

the other modes, which is consistent with DIG1/DIG2’s known

inhibition of STE12. Figure 1C shows an example of the first four

modes. Shaded regions denote consistent E-gene responses for

each mode. An interaction mode determines a constraint on the

observed E-gene expression changes. For example, plotting the

expression changes of E-genes that act downstream of either A or

B for the generic A.B interaction mode produces points in one of

the seven shaded regions shown in Figure 1Cv. Figure 1Cii shows

an example where the inhibitory interaction mode is the best

match to the data because a higher number of E-gene changes fall

within consistent regions (filled circles in the figure). In this

manner, genomewide expression changes detected on the micro-

arrays can be used as quantitative phenotypes to identify a variety

of interactions between pairs of S-genes.

Note that two genes are equivalent if their knock-downs lead to

significantly similar expression changes, which may predict, for

example, that they form a complex. Figure 1C also illustrates the

generic interaction mode A.B used in an unsigned version of our

method. We compare FG-NEM results to two unsigned variants to

estimate the change in predictive power as a function of the

introduction of sign. In effect, both variants consider four

interaction modes: (i) A.B; (ii) B.A; (iii) A?B; and A = B. For

comparison purposes, a predicted unsigned interaction was treated

as activation. In the FG-NEM AVT variant, FG-NEM is run on

the absolute value of the data. In the uFG-NEM method, we

remove the component of FG-NEM which models induced

expression, resulting in interaction modes where the top and right

five regions are disallowed in all interaction modes.

Probabilistic Formulation of NEMs
Our goal is to find a structure among the S-genes that provides

a compact description of X. To find a network that best ‘‘fits’’ the

data, we take a maximum a posteriori approach as in [15,18] jointly

identify W and H that maximize the posterior:

J Xð Þ~maxW,H P W,HjXð Þf g ð1Þ

~maxW,H

X
Y

P W,H,Y jXð Þ
( )

ð2Þ

where we introduce the hidden E-gene states by summing over all

possible configurations of the Y matrix. Applying Bayes’ Rule and

dropping P(X), which is constant with respect to the maximization,

we obtain:

J Xð Þ~maxW,H P Wð ÞP HjWð Þ
X

Y

P Y jW,Hð ÞP X jYð Þ
( )

ð3Þ

&maxW,H P Wð Þ
X

Y

P Y jW,Hð ÞP X jYð Þ
( )

ð4Þ

The approximation in the last step uses the assumption that any E-

gene attachments are equally likely given a network structure; i.e.

P(H|W) is assumed to be uniformly distributed and is ignored in

our approach. P(W) represents a prior over S-gene networks.

As in previous NEM formulations, we assume that each E-gene

is attached to a single S-gene and that each E-gene observation

vector across the knock-downs is independent of other E-gene

observations. The maximization function can then be written:

J Xð Þ~maxW,H P Wð Þ
X

Y

P
e[E

P YejW,heð ÞP XejYeð Þ
( )

ð5Þ

~maxW,H P Wð Þ P
e[E

X
Y

P YejW,heð ÞP XejYeð Þ
( )

ð6Þ

~maxW,H P Wð Þ P
e[E

Le

� �
ð7Þ

where Xe and Ye are the row vectors of data and hidden states for

E-gene e respectively, and he records the attachment point

information for E-gene e. After rearranging the products and

sums, we introduce the shorthand Le to represent the likelihood of

the data restricted only to E-gene e.

Previous approaches decompose Le over the knock-downs,

which assume the S-gene observations are independent given the

network and attachments (see [18] for an example of such a

derivation). To facilitate scoring the expanded set of interaction

modes mentioned earlier, we replace Le with a function

proportional to Le, Le9. Le9 is defined as a product of pair-wise S-

gene terms:

L’e~
X

A,B[S

P
YeA,

YeB

P YeA,YeBjwAB,heABð ÞP XeAjYeAð ÞP XeBjYeBð Þ ð8Þ

where heAB represents the attachment of E-gene e relative to the

pair of S-genes A and B. Note that both heAB and wAB are indexed

by the unordered pair, {A, B}, so that wAB and wBA are references

for the same variable. We refer to heAB as e’s local attachment which

Factor Graph Nested Effects Model
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can take on five possible values from the set {A, 2A, B, 2B, 0}

representing that e is either up- or down-regulated by A, attached

and either up- or down-regulated by B, or not affected by either S-

gene. wAB defines the mode of interaction between S-genes A and

B. Assuming the replicates are independent given the E-gene

states, P(XeA | YeA) can be written as a product over replicate

terms: P
r[RA

P XeArjYeAð Þ, where P(XeAr | YeA) is modeled with a

Gaussian distribution having mean m:YeA and standard deviation

s estimated from the data (see Text S1).

Substituting Le9 for Le into Eq. (7) and distributing the

maximization over attachment points, we obtain the maximizing

function used in our approach:

J Xð Þ~maxW P Wð Þ P
e[E,
A,B[S

max
heAB

8<
:

X
YeA ,YeB

P YeA,YeBjwAB,heABð ÞP XeAjYeAð ÞP XeAjYeAð Þ
) ð9Þ

The interaction factors P(YeA, YeB | wAB, heAB) have a value of one if

the E-gene e is attached to either A or B and e’s state is consistent

with the interaction mode between A and B. If e’s state is

inconsistent with the interaction and attachment, then the factor

has value zero. While we used hard constraints to model consistent

and inconsistent expression changes (corresponding to the rigid

boundaries of the regions drawn in Figure 1C), such constraints

could be softened to use factors with belief potentials between zero

and one. Note that, to simplify the example, the interaction modes

in Figure 1C show defined regions. However, P(XeA | YeA) is

modeled as a Gaussian distribution and therefore assigns non-zero

probabilities over all possible expression values rather than

classifying some as allowed and others disallowed (i.e. probability

zero).

An Interaction Transitivity Prior
The prior over interactions, P(W), can represent preferences

over specific interactions in the S-gene graph, allowing the

incorporation of biologically-motivated constraints to guide

network search. For example, the interaction priors for genes in

a common pathway or genes whose products have been detected

to interact in protein-protein interaction screens could be set

higher than the priors for arbitrary pairs of S-genes. In this study,

we chose to test the approach both with and without external

biological information. Without external biological information,

the prior encodes a basic property of the S-gene graph: that it

should exhibit transitivity to force pair-wise interaction modes to

be consistent among all triples. Using transitivity, all paths between

any two genes, A and B, are guaranteed to have the same overall

effect; i.e. the product of the signs of individual links along different

paths between A and B are equal.

In order to preserve the transitivity of identified interaction

modes, the prior is decomposed over interaction configurations

into transitivity constraints on all triples of S-genes; i.e.:

P Wð Þ! P
A,B,C[S

tABC wAB,wBC ,wACð Þ
� �

P
A,B[S

rAB wABð Þ
� �

ð10Þ

where t is zero if the triple of interactions are intransitive, and one

if the interactions are transitive (see Text S1 for full definition).

Using transitivity constraints forces the search to find consistent

models that best explain the observed changes. The transitivity

constraint includes both the direction of interactions and the sign

of interactions. As S-gene interactions are signed, the transitivity

constraint forces the sign of the product of two edges to equal the

sign of the third; e.g. if AxB and BxC, then ARC. A result of

modeling transitivity is that a directed cycle of stimulatory

interactions will also imply activation between any pair of S-genes

in the cycle, in both directions. Therefore, the method clusters

such S-genes into equivalence interactions. The product over r
factors in Eq. (10) encode evidence from high-throughput assays,

such as protein-protein binding and protein-DNA binding

interactions (see ‘‘Physical Structure Priors’’ in Text S1).

While network structures are constrained to reflect more

intuitive models, the decomposition introduces interdependencies

among the interactions, adding complexity to the search for high-

scoring networks. Importantly, max-sum message passing in a

factor graph [19] provides an efficient means for estimating highly

probable S-gene configurations. We next describe how the

problem is recoded into message-passing on a factor graph.

Inference on Factor Graphs to Search for Candidate S-
Gene Networks

The formulation above provides a definition of the objective

function to be maximized but says nothing about how to search for

a good network. The search space of networks is very large making

exhaustive search [10] intractable for networks larger than five S-

genes. To apply the method to larger networks, we require a fast,

heuristic approach. Markowetz et al. (2007) introduced a bottom-

up technique to infer an S-gene graph. They identify sub-graphs of

S-genes (pairs and triples) and then merge the sub-graphs together

into a final parsimonious graph. Fröhlich et al. (2008) [18] use

hierarchical clustering to first identify modules, subsets of S-genes

with correlated expression changes. Networks among the modules

are exhaustively searched and a final network is identified by

greedily introducing interactions across modules that increase the

likelihood.

Here, we introduce the use of a graphical model called a factor

graph to represent all possible NEM structures simultaneously.

The parameters that determine the S-gene interactions, W, are

explicitly represented as variables in the factor graph. Identifying a

high-scoring S-gene network is therefore converted to the task of

identifying likely assignments of the W variables in the factor

graph. A factor graph is a probabilistic graphical model whose

likelihood function can be factorized into smaller terms (factors)

representing local constraints or valuations on a set of random

variables. Other graphical models, such as Bayesian networks and

Markov random fields, have straightforward factor graph analogs.

A factor graph can be represented as an undirected, bi-partite

graph with two types of nodes: variables and factors. A variable is

adjacent to a factor if the variable appears as an argument of the

factor. Factor graphs generalize probability mass functions as the

joint likelihood function requires no normalization and the factors

need not be conditional probabilities. Each factor encodes a local

constraint pertaining to a few variables.

The Factor Graph for Nested Effects
Figure 2 shows the factor graph representing the NEM for the

example S-gene network from Figure 1A. Each random variable is

represented by a circle and each conditional probability term in

Eqs. (9–10) is represented by a square. The factor graph contains

three types of variables. First, every unique unordered pair of S-

genes {A,B} has a corresponding variable, wAB, that takes on values

equal to one of the previously mentioned interaction modes

(Figure 2, ‘‘S-Gene Interactions’’ level). Second, every E-gene-S-

gene pair is associated with a variable, YeA for the hidden

Factor Graph Nested Effects Model
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expression state of effect gene e under knock-down A, (Figure 2,

‘‘E-gene Expression State’’ level). Third, every observed expres-

sion value is associated with a continuous variable, XeAr, where r

indexes over replications of DA (Figure 2, ‘‘E-gene Expression

Observation’’ level). Figure 2 also shows the expression factors,

interaction factors, and transitivity factors of Eqs. (9–10).

Inference with message passing. The W that maximizes

the posterior is found using max-sum message passing using all

terms from Eqs. (9–10) in log space. For acyclic graphs, the

marginal, max-marginal and conditional probabilities of single or

multiple variables can be exactly calculated by the max-sum

algorithms [19]. Message-passing algorithms demonstrate

excellent empirical results in various practical problems even on

graphs containing cycles such as feed-forward and feed-back loops

[20–23].

Here, the message passing schedule performs inference in two

steps. In the first step, messages from observations nodes XeAr are

passed through the expression factors and hidden E-gene state

variables, to calculate all messages m(YARwAB) in a single upward

pass. In the second step, messages are passed between only the

interaction variables and transitivity factors until convergence (see

Text S1). In the example shown in Figure 2, running inference

results in assignments of activation for wAB and wBC (shaded red),

inhibition for wBD and wAD (shaded green), and non-interaction for

wAB and wBC (unshaded), which match the NEM structure from

Figure 1A. For display of inferred S-gene networks, we compute

the transitive reduction of W by removing all links for which there

is a longer redundant path [24].

Pathway expansion with FG-NEMs. Once a signaling

network is identified using the message passing inference

procedure above, the network can be used to search for new

genes that may be part of the pathway. The NEM and FG-NEM

framework predict new members that act in the pathway by

‘‘attaching’’ E-genes to S-genes in the network, or leaving them

detached if their expression data does not fit the model. Attaching

E-gene, e, to S-gene, s, asserts that the expression changes of e over

all knock-downs are best explained by a network in which e is

directly downstream of s. The E-genes attached to the network are

collectively referred to as the frontier. Frontier genes may be good

candidates for further characterization (e.g. knock-down and

expression profiling) in subsequent experiments.

To gain a global picture for where e is connected, we use a

modified NEM scoring from Markowetz et al. (2005). The pair-

wise attachments for a single E-gene connection variable heAB,

provide local ‘‘best guesses’’ for e’s attachment. Rather than

aggregate e’s collection of local attachments, we use NEM scoring,

modified to incorporate both stimulatory and inhibitory attach-

ments, to estimate the attachment point using the full network

learned in the previous step (see Text S1).

We calculate a log-likelihood ratio that measures the degree to

which e’s expression data is explained by the network if it is

attached to one of the S-genes compared to being disconnected

from the network, i.e. its likelihood was generated entirely by the

background Gaussian distribution. For E-gene e, we compute the

log-likelihood of attachment ratio (LAR):

LAR eð Þ~log

max
i=0

P XejW,he~ið Þ

P XejW,he~0ð Þ

0
@

1
A,

where he here represents Markowetz et. al’s attachment parameter

expanded to include inhibitory and stimulatory attachments. We

rank all of the E-genes according to their LAR scores. Top-scoring

genes have data that is more likely to have arisen from the model

than a null background. Any E-gene that has a positive LAR score

is included as a frontier gene.

Experimental Validation Procedure for Newly Predicted
Cancer Invasion Genes

To validate the involvement of predicted invasiveness frontier

genes, HT29 colon cancer cells were resuspended in DMEM

medium containing 0.1% FBS and seeded into the top wells

(26105 per well) containing individual Matrigel inserts (BD

Biosciences, San Jose, CA) according to manufacturer’s protocol.

The lower wells were filled with 800 ml medium with 10% fetal

bovine serum as chemoattractant. Six to ten hours following

seeding, the cells in the upper wells were transfected with the

appropriate shRNA-expressing pSuper constructs [25] using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Final concentra-

tion of pSuper constructs was 1.6 mg/ml. The transfected cells

were incubated at 37uC for 48 hours before assaying for invasion.

Media was aspirated from the top wells and non-invading cells

were scraped from the upper side of the inserts with a cotton swab

and invading cells on the lower side were fixed and stained using

DiffQuick (IMEB, Inc. San Marcos, CA). Total number of

invading cells was counted for each insert using a light microscope.

Invasion was assessed in quadruplicate and independently

repeated at least five times. The shRNA-expressing portion of

the construct was designed using the siRNA Selection Program of

the Whitehead Institute for Biomedical Research (http://jura.wi.

mit.edu/bioc/siRNAext/), synthesized by Invitrogen and sub-

cloned into the XhoI and BamHI sites of pSuper plasmid.

Sequences for shRNA constructs are available in the Text S1.

shRNA construct MYO1G targets the myosin 1G mRNA

(GenBank accession number NM _033054). shRNA construct

Figure 2. Structure of the factor graph for network inference.
The factor graph consists of three classes of variables (circles) and three
classes of factors (squares). XeAr is a continuous observation of E-gene
e’s expression under DA and replicate r. YeA is the hidden state of E-
gene e under DA, and is a discrete variable with domain {up, , down}. wAB

is the interaction between two S-genes A and B. Expression Factors
model expression as a mixture of Gaussian distributions. Interaction
Factors constrain E-gene states to the allowed regions shown in
Figure 1C. Transitivity Factors constrain pair-wise interactions to form
consistent triangles. The arrows labeled m and m9 are messages
encoding local belief potentials on wAB and are propagated during
factor graph inference.
doi:10.1371/journal.pcbi.1000274.g002
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BMPR1A targets the bone morphogenetic protein receptor, type

IA mRNA (NM_004329). shRNA construct COLEC12 targets the

collectin sub-family member 12 mRNA (NM_130386). shRNA

construct AA099748 targets an expressed sequence tag mRNA

(AA099748). shRNA construct CAPN12 targets the calpain 12

mRNA (NM_144691). shRNA construct scrambled serves as a

nonsense sequence negative control.

Results

Results on Artificial Networks
Data. We evaluated FG-NEMs ability to recover artificial

networks from simulated data. Data was generated by propagating

signals in networks containing simulated knock-downs and then

sampling expression data from activated, inhibited, or unaffected

expression change distributions (see Text S1 and Figure S3). We

focused on how the FG-NEM approach increased recovery of

networks that contain both activation and inhibition. Because FG-

NEMs explicitly incorporate inhibition, we hypothesized that they

would recover networks containing an appreciable amount of

inhibition more accurately than an approach lacking separate

modes for inhibition and activation. We implemented a version of

FG-NEM in which inhibition encoded in the FG-NEM model was

removed (see Methods). We refer to this version as the ‘‘unsigned’’

FG-NEM (uFG-NEM). We compared uFG-NEM to the original

NEM approach and found that the results were comparable on

small synthetic networks of four S-genes and their associated data

(see Figure S2). We therefore used uFG-NEMs as a surrogate for

NEMs for the tests on larger networks on which NEM was not

efficient enough to run.

To make the comparison of FG-NEM to uFG-NEM fair, we

measured network recovery in two ways. 1) We calculated a

measure of structure recovery: a predicted interaction was called

correct if it matched an interaction (of either sign) in the simulated

network. In this case, whether the interaction was inhibitory or

stimulatory was ignored. 2) We measured sign recovery: a predicted

interaction was recorded as correct if it matched an interaction in

the simulated network and had the matching sign.

Influence of inhibition extent on network recovery. We

tested the ability of FG-NEMs and uFG-NEMs to recover the

structure of networks simulated with varying fractions of

inhibition, 0#l#0.75, for both the amount of inhibitory

connections between S-genes and inhibitory attachments of E-

genes. We simulated and predicted 500 networks, calculated the

area under the precision-recall curve (AUC) for each predicted

network (see Text S1), and recorded the mean and standard

deviation of these AUCs. As expected, when no inhibition was

present, FG-NEM and uFG-NEM were equivalent in terms of

AUC when run on non-transformed data (Figure 3A).

Surprisingly, FG-NEM run on the AVT data performs much

worse than FG-NEM even with no inhibition. This may be due to

its interpretation of unaffected E-gene changes as affected changes

which adds noise to its estimates of hierarchical nesting. As

increasing amounts of inhibition is added into simulated networks,

the performance of uFG-NEM degrades precipitously for structure

recovery, underperforming FG-NEM by a margin of more than

0.20 units of AUC at the highest levels of simulated inhibition

(Figure 3A). Even at moderate levels of inhibition, for example at

the 15% inhibition level, FG-NEM’s AUC is already significantly

higher than uFG-NEM’s AUC. We also calculated the AUC for

recovering the correct sign of the interactions for the unsigned

models. In this case, unsigned interactions were interpreted to be

activating interactions. As expected, the AUC decreases

quadratically since both the precision and recall decrease

linearly with increasing fraction of inhibition. Given these

results, we expect FG-NEMs to have significantly better

performance on real genetic networks where appreciable

amounts of inhibition exist (see Figure S1). We also varied other

Figure 3. Accuracy of artificial network recovery and expansion. (A) Influence of inhibition on network recovery. AUC (y-axis) plotted as a
function of the percent of inhibitory links (x-axis). Four replicate hybridizations were used in all simulations. Points and error bars represent means
and standard deviations computed across 500 synthetically generated networks respectively. Lines in each plot represent the performance of FG-
NEM (red) and uFG-NEM run on the original data (green) or on AVT data (blue) for both structure recovery (solid lines) and sign recovery (dotted
lines). (B) Accuracy of FG-NEM network expansion compared to Template Matching. The percentile of an S-gene obtained from Template Matching
was subtracted from the percentile of the LAR score (see Methods) assigned by FG-NEM and uFG-NEM obtained from the leave-one-out expansion
test. A smoothed histogram for FG-NEM (red), uFG-NEM run on the original data (green) and the AVT data (blue) was plotted and shows the
proportion of S-genes (y-axis) with a particular difference in method percentile (x-axis). The underlying simulated network had 32 S-genes, eight S-
genes were used for network recovery, and twenty E-genes were attached to each S-gene.
doi:10.1371/journal.pcbi.1000274.g003
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simulation parameters and found that including sign in the model

enables FG-NEMs to retain its high level of accuracy in network

recovery using fewer microarray replicates and lower proportions

of genes from the true network as S-genes (see Text S1 and Figure

S4B).

We repeated the experiment of varying inhibition to match our

expectations for application to the cancer invasion network

discussed subsequently. In the invasion network the known S-

genes were recovered in such a way that only activating S-gene

connections were identified. To simulate this situation, we created

networks containing only activating S-gene interactions but varied

the proportion of inhibiting E-gene attachments. Even in this

situation where all of the known S-genes have activating

interactions, FG-NEM’s performance begins to significantly

surpass uFG-NEM’s performance when 40–60% of the E-genes

are connected with inhibitory attachments (see Figure S4C). Thus,

according to our simulations, even in cases where activation

predominates the S-gene interactions, incorporating sign in the

model for E-gene changes can lead to higher network recovery

accuracies. We expect the signed FG-NEM to also perform well

for the invasion network where 40–60% of the expression changes

are consistent with inhibited E-gene attachments.

Expansion of artificial networks compared to Template

Matching. Because our goal is to elucidate the network of genes

involved in the colon cancer invasiveness pathway, we measured

the ability of our method to expand the network to new genes

involved in the pathway compared to a correlation-based method

we refer to as Template Matching (TM) used by Irby et al. (2005)

[26]. Briefly, Template Matching [9] ranks genes based on the

correlation of their expression profiles to an idealized profile/

template that reflects a phenotype of interest. TM has been used in

several studies to identify genes with expression patterns that

follow a series of phenotypes [27,28]. We found that FG-NEMs

significantly outperform TM when used to expand artificial

networks (Figure 3B). We compared TM with FG-NEM using a

leave-one-out test in which knock-down data from one S-gene was

removed from the dataset (see Text S1). We found that both FG-

NEM and uFG-NEM rank a held-out signaling gene higher than

TM on average. This is evident in Figure 3B in which all three

distributions of LAR percentile differences are shifted to the right

of zero. On average, FG-NEM predicts a held-out S-gene 25.3 (+/

215) percentile units higher than TM.

Network Expansion on a Yeast Knock-Out Expression
Compendium

We hypothesized that an estimate of genetic pathway structure

based on modeling observed expression changes could facilitate

the identification of new pathway members. To test this, we

evaluated the ability of FG-NEMs, uFG-NEMs, and TM to

identify genes involved in a diverse set of pathways in S. cerevisae

using the well-studied gene expression dataset from the Hughes et

al. (2000) knock-out compendium elucidated by Rosetta [17]. This

compendium contains whole-genome expression profiles of 276

yeast gene-deletion mutants and P values for differential gene

expression.

Data. In each deletion strain, gene expression changes with a

p-value smaller than 0.05 were selected, and then labeled as

activated or inhibited according to the sign of their expression log-

ratio. p-values were converted to continuous expression values

using the method of Yeang et al. (2004) [13]. The method replaces

a p-value with a value obtained by inverting a Chi-square

distribution. The value can be interpreted as a log-likelihood ratio

reflecting the probability that an E-gene is expressed in the

affected distribution compared to a background distribution. Gene

sets, representing proxies for pathways, were taken from Gene

Ontology (GO) [29], KEGG [30] and Reactome [31] information.

25 non-redundant pathways were selected that had at least 5 genes

included as knock-outs in the knock-out compendium. The largest

pathway, chromosome organization and biogenesis, contained 45

S-genes. On a 2.83 GHz processor, factor graph inference using

5046 E-genes took a total of 1828 seconds. A pathway with 12

genes, such as nitrogen compound metabolism, took 38 seconds

for network inference.

The factor graph approach allows prior information to be

incorporated. We tested a supervised variant of FG-NEMs (sFG-

NEM) in which additional factors were incorporated to reward

models that included known interactions. Three classes of physical

data were downloaded for use as interaction priors: protein-DNA

interactions, phosphorylation target data, and protein-protein

interactions (PPI). Protein-DNA interactions with a p-value less

than 0.001 were selected from the study of Lee et al. (2002) [32].

Data describing kinase targets was taken from the study of Ptacek

et al. (2005) [33]. PPI data was downloaded from the BioGRID

database [34] on July 30, 2008. For each GO category under

study, we selected any interaction between S-genes in that

category, resulting in 27 Protein-DNA interactions, 4 phosphor-

ylation interactions, and 64 PPIs for the GO sets discussed in this

paper. For each unique physical interaction, we added an

additional factor to the corresponding interaction variable to

increase the likelihood of consistent interaction modes and

decrease the likelihood of inconsistent modes (see Text S1).

Pathway expansion performance. The accuracy of FG-

NEMs for expanding each pathway to include new genes was

measured. The likelihood of attachment ratio (LAR) score for each

gene in the genome was calculated and the area under the

precision-recall curve (AUC) was computed (see Methods). For

each pathway, an AUC ratio was then calculated by dividing each

method’s AUC by the AUC calculated from randomly guessing E-

genes for attachment to the network. Pathways sharing 25% or

more of their genes with another pathway of higher AUC were

ignored. Five non-redundant pathways were found that had AUCs

significantly better than random guessing for at least one of the

methods. While the precision of FG-NEM over uFG-NEM was

not significant at any specific recall range, its overall higher

precision across a broad range of recalls reflects a systematic

improvement. Figure 4A shows the precision-recall curves

averaged across these five pathways. The AUC ratios for the

selected pathways are shown in Figure 4B and are sorted by the

AUC achieved under the best-performing method.

Except for ribosome biogenesis, FG-NEMs performed compa-

rably or better than uFG-NEMs and TM (Figure 4B and Table

S1). For sexual reproduction, ion homeostasis, and cell wall, FG-

NEM outperformed the other methods by the largest margins,

outperforming TM by a ratio of 4.17, 3.98, and 2.64 respectively.

The signaling networks of both sexual reproduction and ion

homeostasis consist of several inhibitory interactions [35,36],

consistent with FG-NEM’s ability to capture negative as well as

positive regulatory interactions. TM may perform the best on

ribosome biogenesis because the proteins involved in ribosome

assembly are all tightly coregulated and their knock-outs lead to

severe (and uninformative) effects. The signatures of expression

changes for the ribosome biogenesis genes are not distinct from

arbitrary genes because knocking out any of the ribosome

biogenesis genes leads to drastic fitness defects in yeast and a

concomitant alteration in gene expression to many genes in the

genome.

Incorporating physical interaction priors showed little effect on

network expansion performance. For most of the pathways, the

Factor Graph Nested Effects Model
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Figure 4. Yeast knock-out compendium predictions. (A) Precision/recall comparison. Each method’s ability to expand a pathway was
compared. Thick lines indicate mean precision and shaded regions represent standard error of mean calculated over the networks with the five
highest AUCS from any of the tested methods. (B) Network expansion comparison. Networks were predicted for a non-redundant set of GO
categories containing four or more S-genes in the Hughes et al. (2000) compendium and used to predict held-out genes from the same category (see
Methods). The area under the curve (AUC) for each pathway was calculated for each method. AUC ratios (y-axis) were calculated for each method
relative to the lowest AUC. (C) Compatibility of physical evidence and predicted S-gene interactions. Each point is the margin of compatibility (MOC,
see Methods) of a predicted genetic interaction to high-throughput physical interaction data when physical interaction evidence was used (y-axis)
and when it was not used (x-axis). Coloring indicates two-dimensional density estimation of points. Inset shows detail of the highest density region.
Prediction methods that are significantly better than the lowest performing method, excluding random, at the 0.05 level (*) and 0.01 level (**) were
determined by a proportions test on the top 30 predictions from each method. (D) Predicted S-gene networks for the ion homeostasis pathway.
Shown are predicted networks from the FG-NEM method (Signed) and the uFG-NEM method (Unsigned). Arrows indicate activating interactions and
tees indicate inhibiting interactions. The absence of a link between a pair of S-genes indicates the most likely mode for the pair was the non-
interaction mode. Equivalence interactions are indicated with double lines and S-genes connected by equivalence are grouped into dashed ovals.
doi:10.1371/journal.pcbi.1000274.g004
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performance of sFG-NEMs was indistinguishable from its

unsupervised counterpart. A slight improvement was seen for the

nitrogen metabolism pathway. Incorporation of structural priors

adds activation from GLN3 to YEA4, and from ARG80 to

ARG5,6, and slightly boosts the predictive power of the network.

Thus, FG-NEM can usually identify new pathway genes in the

unsupervised setting as well as when known interactions are

provided.

Interestingly, the largest change in performance resulting from

the use of prior information was a small drop observed for

predicting genes involved in the sexual reproduction pathway. We

investigated this decrease and found that using protein-DNA

priors forced the placement of a transcription factor STE12 to the

top of the pathway, whereas placement toward the bottom seemed

to better fit the expression changes. Consequently, FG-NEM ranks

the sexual reproduction E-genes higher than sFG-NEM.

On average, physical interaction priors increase the compati-

bility of FG-NEM predictions with high-throughput physical data.

A leave-one-out analysis was used to test the ability of physical

interaction data to improve pair-wise interaction predictions. To

compare improvement in network structure prediction, we

calculated the margin of compatibility (MOC) to reflect how well

predicted interactions match held-out physical evidence (see

Methods). Negative MOCs are assigned to predicted interactions

that are incompatible with the physical evidence, while positive

MOCs assigned to compatible predictions. For each held-out

physical interaction, a network was computed using all other

physical interaction data. Figure 4C shows the MOC of using

priors plotted against the MOC without priors.

Of the 163 physical interactions, 104 (63%) have higher while

43 (26%) have lower MOC in sFG-NEM than FG-NEM. Of these

43, 33 have positive MOCs for both approaches (i.e. both agree

with the physical evidence). Notably, of the 93 that achieved

higher compatibilities in sFG-NEM, 38 (23%) became compatible

only when the physical evidence was included. One example is the

interaction between CDC42 and FAR1 in the sexual reproduction

pathway. FAR1 acts downstream of CDC42 in the pheromone

response signal cascade. The FAR1 gene deletion shows little

expression change and is not placed downstream of CDC42 even

though CDC42 is placed at the top of the signaling cascade by FG-

NEM. With the inclusion of other structural priors, FAR1 is

correctly placed downstream of CDC42. Thus, incorporating

known interactions, even from possibly noisy high-throughput

sources, can increase the likelihood of finding other interactions.

However, the caveat is that such information may force a poorer

fit to the observed expression data which could decrease the

accuracy of frontier expansion.

Predicted inhibition in ion homeostasis pathway. FG-

NEMs achieved significant improvement over the unsigned

variant on the ion homeostasis pathway. To gain insights into

the structural predictions underlying the difference in performance

of the methods, we compared the predicted S-gene networks of the

FG-NEM and uFG-NEM methods for this pathway (Figure 4D).

In budding yeast, calcineurin regulates gene expression and ion

transport in response to calcium signals by dephosphorylating the

transcription factor Crz1p, thus allowing Crz1p to rapidly

translocate from the cytosol to the nucleus [37]. Conversely, the

casein kinase homolog Hrr25p binds to and phosphorylates Crz1p

to functionally antagonize calcineurin signaling in yeast [38]. FG-

NEMs predicted an ion homeostasis gene network that is

comprised of a number of biologically relevant links where

CNA1 stimulates CNB1, the casein kinase 2 subunit genes CKA2

and CKB2 are equivalent and repress CNB1, and the vacuolar

proton pump subunits CUP5 and VMA8 are likewise equivalent

and repress CNB1 (Figure 4D).

Both the FG-NEM and uFG-NEM correctly predicted the

equivalence of CKA2 and CKB2 which together form a complex.

Of the top fifteen frontier genes predicted by FG-NEM, eight are

annotated by GO as involved in ion homeostasis (Table S2), FRE2

is involved in ion transport, YGL039W is an oxidoreductase, and

ARO9 is involved in amino acid catabolism. In contrast, only one

of the top uFG-NEM frontier genes, GRX4, is annotated by GO

as involved in ion homeostasis. Examining the top 20 true positives

predicted to be attached by FG-NEM, 19 were found to be

predicted to be repressed by their S-gene. These true positives

were not predicted to be attached to the network by uFG-NEM.

Thus, the inability to make use of the explicit depression of E-

genes may contribute to the poorer performance of the unsigned

method.

Application to Colon Cancer Invasiveness
We applied the FG-NEM approach to a human colon cancer

invasiveness network elucidated by Irby et al. (2005) [26]. In this

work, the authors identified several ‘‘tiers’’ of genes implicated in

the invasion process under the control of SRC kinase. Genes were

included in a tier if their knock-downs were found to produce a

significant drop in the invasive potential of HT29 colon cancer

cells as defined by invasion through Matrigel. To identify

additional genes involved in the invasion process, the authors

measured gene expression under an RNA interference knock-

down of each gene in the tier. Genes whose expression was lower

in the knock-downs producing loss-of-invasiveness, and higher in

knock-downs that did not produce loss-of-invasiveness, were

considered candidates for inclusion in the next tier. In this

fashion, each tier was formed by knocking-down each candidate

gene and assaying for loss-of-invasion in Matrigel.

Data. We applied FG-NEMs to the five S-genes from the

second tier of Irby et al. (2005). These five human genes are

cytokeratin 20 (KRT20), transcription factor Dp-1 (TFDP1),

DEAH (Asp-Glu-Ala-His) box polypeptide 32 (DHX32),

ribosomal protein L32 (RPL32), and glutaminase (GLS). Knock-

down of each second-tier S-gene has been demonstrated to

significantly reduce the invasion phenotype of HT29 colon cancer

cells (Irby et al., 2005). KRT20 has historically served as a

diagnostic marker for colorectal carcinoma [39], whereas high

expression of ribosomal protein L32, glutaminase, and DEAD/H

box polypeptides has been associated with various cancers and

metastatic lesions [40,41]. For this study, S-genes from the first tier

were excluded as the expression profiles from the knock-down

experiments were collected on a different microarray platform and

therefore cross-platform normalization issues could potentially

impact the results. The Expression Factor parameters were

estimated from genes found to be up- or down-regulated by

running the Statistical Analysis of Microarrays algorithm (SAM)

[5], with a False Discovery Rate of 1%, on gene expression data

collected on a panel of knock-downs. Using the differentially

expressed genes yielded an estimate of 1.75 for the mean log2 ratio

of the inhibited E-gene distribution (21.75 for the activated E-

gene distribution), and a standard deviation of 0.5 for the Gaussian

mixture model (see Methods). Several of these knock-downs led to

loss-of-invasiveness while others produced invasive growth in the

Matrigel assay as reported by Irby et al. (2005). The hybridization

data and associated normalization information can be accessed

from the Gene Expression Omnibus (GEO) database [42] under

the series accession number GSE11848 and associated platform

accession number GPL6978. A subset of this data containing the

SAM-selected E-genes can be obtained from Dataset S1.

Factor Graph Nested Effects Model

PLoS Computational Biology | www.ploscompbiol.org 10 January 2009 | Volume 5 | Issue 1 | e1000274



Cancer invasion network identification. We applied FG-

NEMs to recover a network for the second-tier genes. We included

E-genes that demonstrate a robust and significant effect under at

least two of the knock-downs included in the Irby et al. (2005)

study. We selected genes whose log2 ratios differ by less than 0.5 in

replicate arrays and had an absolute log2 expression change at

least equal to the mean absolute level of the activated distribution

(1.75) in at least two arrays. Using these criteria, we identified 185

E-genes to use for model inference. Figure 5A shows the

expression data of these E-genes plotted in order of their

predicted attachment points as identified by FG-NEMs. For the

most part, E-gene expression changes moved in the same direction

following knock-down across the panel of five S-genes, indicating

the presence of mostly stimulatory links among the S-genes

(Figure 5A). This is in contrast to Figure 1A, where expression

changes of a single E-gene move in the opposite direction

following knock-down of S-genes connected by an inhibitory link.

The absence of inhibitory links among S-genes is expected since,

according to the selection criteria, all of the S-genes were found

previously to act in the same direction (invasion promotion). The

method does find many inhibitory links to E-genes, which

dramatically increases the fit of the model on the data points.

These predicted attachment signs provide information about how

an E-gene’s involvement in the invasion process can be tested in

follow-up experiments. The model predicts that invasion can be

suppressed by knocking down genes connected by stimulatory

attachments or by over-expressing genes connected by inhibitory

attachments.

FG-NEM recovered the network shown in Figure 5B. KRT20

and RPL32 are predicted to be equivalent. Also, the model

predicts TFDP1 and DHX32 are downstream of KRT20 and

RPL32. The equivalent interaction of KRT20 and RPL32

received significantly high likelihoods (P,0.001) as well as a

strong excitatory downstream connection to TFDP1 (P,0.001).

Figure 5. Invasive colon cancer network predictions. (A) Expression changes of selected E-genes following targeted S-gene knock-downs in
HT29 colon cancer cells. Gene expression was measured in HT29 cells treated with a shRNA specifically targeting an S-gene (column of the matrix)
relative to cells treated with a scrambled control shRNA (Irby et al., 2005). Colors indicate putatively inhibited E-genes (rows of the matrix) with up-
regulated levels relative to control (red), activated E-genes with down-regulated levels relative to control (green), and unaffected E-genes with
expression levels not significantly different from control (black). Biological replicates were available for KRT20, TFDP1, and GLS knock-downs. Genes
were sorted by their attachment point and then by their LAR scores. (B) Cancer invasion network predicted by FG-NEM. For each pair of S-genes, the
most likely interaction mode is shown. The same conventions used for illustrating interactions predicted for the yeast networks were used here. Some
interactions were found to be significant at the 0.05 level (*) or 0.01 level (**) using a permutation test (see Methods). KRT20 and RPL32 were
predicted to be equivalent and are therefore grouped together in a dashed oval. (C) Matrigel invasion assay in HT29 colon cancer cells. Genes
predicted to be significantly attached to the network, CAPN12 and expressed sequence tag AA099748, resulted in a loss of the invasiveness
phenotype when knocked-down by RNA interference. Genes not significantly attached to the network, MYO1G, BMPR1A, and COLEC12, did not result
in significant loss of the invasive phenotype. A scrambled non-sense sequence also served as a negative control and did not result in a loss of HT29
cell invasiveness. Gene knock-downs in HT29 cells were validated by quantitative real time RT-PCR where mRNA levels of targeted genes were
decreased by 70–80% compared to scrambled control shRNA-treated cells (data not shown). Data shown are the mean6S.E. of five independent
experiments performed in quadruplicate. *Significantly different from scrambled control shRNA-treated cells (P,0.05) by ANOVA and post hoc Tukey
test.
doi:10.1371/journal.pcbi.1000274.g005
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There is a significant excitatory connection between KRT20/

RPL32 and DHX32 based on one series of knock-down

experiments specifically targeting KRT20 (P = 0.006), although a

second knock-down experiment (using a silencing RNA differing

from the first series that targets a different region of the KRT20

mRNA) resulted in a weaker connection (P = 0.534). Consequent-

ly, one could designate this link as deserving of follow-up

functional studies (e.g. promoter analysis or chromatin immuno-

precipitation). Though GLS is connected to the network, the

likelihood of interaction was not strong enough to be significant

(Figure 5B). Hence, the GLS connection may require future

knock-downs of additional S-genes coupled with gene expression

profiling in order to resolve its tentative connection.

The FG-NEM model predicts that TFDP1 is at the bottom of

the signaling cascade, which may reflect its role as part of the E2F

transcriptional complex in targeting the expression of downstream

genes that promote cell proliferation and invasion [43,44]. The

ribosomal subunit, RPL32 is curiously placed upstream of the DP1

transcription factor and at an equivalent level with the structural

molecule KRT20. Aberrant expression of ribosomal proteins has

been noted in a variety of cancers, although the molecular

consequence of these expression changes is unknown [45]. It has

been postulated that ribosomal proteins may play an important

extraribosomal role (i.e. beyond translation) in the oncogenic

transformation process [45].

Because the number of S-genes in the second tier is small, we

compared the heuristic pair-wise search employed by FG-NEM to

an exhaustive model search. If the heuristic approach is

reasonable, it should identify network models that are among

the highest scoring models identified by brute-force enumeration.

To perform a brute-force search, we generated 1000 random

networks among the five second-tier genes. For each network, we

calculated the data likelihood using message passing. Out of the

1000 randomly enumerated networks, the recovered network for

the second-tier genes had a likelihood higher than 997 of the

random networks. Interestingly, all three of the random networks

with higher scores had identical structures to the network

recovered by FG-NEM except that all three networks differed in

their attachment of DHX32 and GLS. This result demonstrates

that the pair-wise heuristic search employed by FG-NEM

successfully identifies high-scoring networks in the space of all

networks. While we need to test the trend for increasing network

sizes, these results are promising for scaling up to larger networks

in which exhaustive search will not be feasible.

Cancer invasion frontier expansion. We used the highest-

scoring model recovered by the FG-NEM to search for additional

genes involved in colon cancer invasiveness by sorting each gene

by its LAR score (see Methods). We found 19 positive and 31

negative attachments with significant probabilities (Table 1 and

Table S3). Significance of the attachments was assessed by

permuting each E-gene’s observations, relearning a FG-NEM

network, and computing its LAR score to construct an empirical

null distribution of LARs. The E-genes with the highest

attachment probabilities and positive LAR scores found to be

significant via permutation testing are shown in Table 1.

Many of the genes in Table 1 have roles consistent with cancer

cell invasion. For example, three E-genes encode proteases,

including the metalloproteases ADAM9 and ADAM19. The

metalloproteases represent a class of transmembrane proteins that

are known facilitators of cell migration and invasion by proteolytic

Table 1. Top frontier genes for colon cancer invasiveness ranked by LAR score (see Methods) and filtered for significance as
determined by data permutation test (see Methods).

LARa E-Gene S-Gene E-Gene Description

18.79 CHORDC1b GLS Cysteine and histidine-rich domain-containing 1

11.35 RNF32 GLS Ring finger protein 32

10.93 TSP50 TFDP1 Testes-specific protease 50

10.02 HS3ST1d KRT20 Heparan sulfate (glucosamine) 3-O-Sulfotransferase 1

6.85 CHMP4Cc TFDP1 Chromatin modifying protein 4C

6.76 ADAM19b KRT20 ADAM metallopeptidase domain 19 (meltrin beta)

6.34 CYP3A43 KRT20 Cytochrome P450, family 3, subfamily A, Polypeptide 43

5.97 SPTLC3b TFDP1 Serine palmitoyltransferase, long chain base subunit 3

5.25 PLEKHM3b KRT20 Pleckstrin domain containing

4.92 KRT13 TFDP1 Keratin 13

4.28 CAPN12 KRT20 Calpain 12

3.87 C1orf34b KRT20 Hypothetical

3.54 ZNF350 KRT20 Zinc finger protein 350

3.53 ADAM9 TFDP1 ADAM metallopeptidase domain 9

2.75 SLC2A1b KRT20 Solute carrier family 2

2.38 TCTEX1D1 TFDP1 Tctex1 domain containing 1

2.23 STK24 KRT20 Serine/threonine kinase 24

2.05 DDX58 KRT20 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58

2.01 GFAP KRT20 Glial fibrillary acidic protein

aNatural logarithm of likelihood of attachment score (see Methods).
bEST is inside an intron of this gene.
cEST is on the 39 end of this gene.
dEST is on the 59 end of this gene.
doi:10.1371/journal.pcbi.1000274.t001
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cleavage of extracellular matrix components [46]. Interestingly,

ADAM21 is included among the first tier genes of Irby et al.

(2005). This demonstrates that FG-NEM is able to identify two

additional family members of this first tier gene even though it was

not included in the S-gene set used in network learning. Glial

fibrillary acid protein (GFAP) and Testes-specific protease 50

(TSP50) are also included in Table 1. GFAP is known to interact

with the oncogenic tyrosine kinase SRC [47] and involved in

astrocyte tumor invasiveness [48], while TSP50 has been shown to

be differentially regulated in both breast and testicular cancer

[49,50]. Thus, FG-NEMs predict that an expanded set of

proteases may play a role in the colon cancer invasion process.

Also included among the set of genes in our expanded invasion

network is a second keratin family member, keratin 13 (KRT13),

which is consistent with the previous identification of KRT20 in

the second tier and may reflect a structural underpinning needed

for invasion. Several of the genes in Table 1 represent novel

connections of genes to the colon cancer invasiveness pathway. For

example STK24, is a highly conserved protein whose homolog in

S. cerevisiae, STE20, is involved in signal transduction of pseudo-

hyphal growth [51]. It is intriguing to consider the possibility that

part of the invasiveness pathway could be due in part to the

aberrant regulation of an ancient cell migration process that dates

back to single-cellular organisms.

The E-genes with positive LAR scores constitute the network

‘‘frontier’’ of the cancer invasiveness pathway in that they are

predicted to directly interact with the second-tier genes. From

among the 38 genes with positive and significant LAR scores, two

were arbitrary selected to test for a loss-of-invasiveness phenotype

in HT29 cells as defined by invasion in Matrigel. We selected

CAPN12 and expressed sequence tag AA099748 from Table 1 for

gene knock-down experiments. CAPN12 is a member of the

calpain gene family, which has been shown to have fibrillin

activity. Genbank EST accession AA099748 aligns to the genome

39 to the gene CHMP4C, along with the EST AW440175, both

from cancer tissues. Additionally, the amino acid translations of

these ESTs align to the N-terminus of CHMP4C with 48%

identity. The C-terminal tail of CHMP4C was recently shown [52]

to be bound by the apoptosis inhibitor PDCD6IP, suggesting that

the cancer-specific splice form of CHMP4C may have altered

binding behavior with PDC6IP. PDC6IP also has been implicated

in a broad array of membrane associated processes, including cell

adhesion [53]. Serving as negative controls, we performed knock-

down experiments for three E-genes that had low attachment

probabilities, namely MYO1G, BMPRIA and COLEC12. As

correctly predicted by FG-NEM, both E-genes with high LAR

scores produced significant loss of invasion while all three E-genes

with low LAR scores did not lead to loss-of-invasion in the

Matrigel assay (Figure 5C).

Discussion

The factor graph nested effects model (FG-NEM) provides a general

methodology for inferring networks from knock-down phenotypes.

Our results extend the nested effects models in three significant ways: 1)

we provide a means for efficiently searching for large S-gene networks

using inference on a factor graph that can also incorporate prior

information; 2) our method distinguishes activating from inhibiting

interactions; and 3) we show that NEM attachment can be used

successfully to expand the network to new pathway members. Our

results on simulated and yeast networks suggest explicitly modeling

inhibition and activation, rather than treating as generic interactions or

effects, leads to higher accuracies for recovering known interaction

networks and identifying members of the a pathway.

Applying FG-NEM predictions to a series of follow-up

experiments in an HT29 colon cancer cell line model has

identified new gene members of the tumor invasiveness pathway.

Specifically, shRNA-mediated knock-down of two genes predicted

to be connected to the original rudimentary network of Irby et al.

[22] led to a significant loss of invasiveness whereas three genes

predicted not to be connected did not result in a loss of invasive

phenotype following knock-down. Our results suggest FG-NEM

improves upon the iterative strategy followed by Irby et al. [26].

The iterative procedure of Irby et al. produces a graph in which

genes in a tier are connected only to genes in the next tier. The

graph does not necessarily reflect the signaling events underlying

invasion. Rather, it encodes the chronological order by which the

genes were elucidated. In contrast, FG-NEM seeks a structured

model that relates the genes within and across tiers, which may

provide a better understanding of the signaling and regulatory

events leading to cancer cell invasion. In addition, rather than

using differential expression as a criterion to expand the network,

FG-NEMs search for genes that have expression changes coherent

with the dependencies encoded in the learned structure. FG-

NEMs were able to identify two confident relationships among the

genes in the second tier that the previous iterative strategy of Irby

et al. (2005) could not identify. The equivalence of RPL32 and

KRT20 as well as the downstream relation of TFDP1 and

DHX32 to these two genes is a first step toward refining the

architecture of the colon cancer invasiveness network. Moreover,

these findings suggest that RPL32 may play an important

extraribosomal function by regulating TFDP1 mRNA expression.

We envision applying the FG-NEM approach within an

iterative computational-experimental framework. As a network is

expanded, the frontier genes of one round of investigation can be

included as S-genes in subsequent rounds. Iteration will therefore

provide larger sets of S-genes on which to infer networks. While

the primary data used for such network expansion is based on gene

expression data, it will be intriguing to investigate whether a

variety of transcriptional and non-transcriptional interactions can

be recovered with this approach. There are many examples of

coupling between transcription and non-transcriptional interac-

tions in biological systems. An E-gene e attached to S-gene A does

not necessarily imply the signaling between A and e is

transcriptional in nature. Consider a metabolic cascade in which

A’s product produces substrate s1, which is converted to s2 by e,

which is a substrate of an enzyme encoded by a second S-gene B:

ARs1ReRs2RB. Furthermore, assume that the cell has a

mechanism to ‘‘sense’’ the amount of s1 and that this mechanism

controls the transcription of e. Deletion of A in this scenario will

lead to a decrease in s1 which will cause e’s expression to decrease.

Thus, promotion of e to the network in this case could reveal a new

gene involved in ‘‘signaling’’ via metabolic transformation. The lac

operon in bacteria uses a similar coupling between the expression

of the enzymes in the pathway to sense cellular concentrations of

lactose [54]. As another example, consider the metazoan

phosphorylation cascade in which signaling between S-genes is

coupled to their own mRNA production. Phosphorylation of the

transcription factor heterodimer Jun and Atf2 by Jnk then

promotes transcription of the JUN gene [55]. More Jun protein

is made, leading to dimerization with another protein, Fos, which

activates transcription of other downstream genes. Knock-down of

JNK results in transcriptional down-regulation of JUN. Thus,

promotion of JUN from an E-gene to the network would reveal a

member of the pathway involved in post-translational signaling

even though it was detected through transcriptional perturbation.

Several aspects of the method could be improved upon in the

future. The method could be extended to use over-expression of

Factor Graph Nested Effects Model
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S-genes in addition to knock-downs. Over-expression of an S-gene

would be expected to have an opposite effect on downstream E-

genes compared to the E-gene effects observed under the S-gene’s

knock-down. Thus, the E-gene responses could be compared to an

expanded list of interaction modes, derived by flipping the scatter-

plots in Figure 1 by either the x-axis, y-axis, or both axes

depending on if S-genes A, B, or both are over-expressed.

In this study of the colon cancer invasiveness pathway, S-gene

interaction configurations were forced to reflect transitive

connections but did not incorporate any external biological

information. Additional knowledge, such as gene coexpression

groups, or protein-protein interaction potentials, could be

incorporated into the prior for making inferences about the

cancer invasiveness pathway. For example, several gene expression

experiments on invasive colon cancer cell lines are available in

GEO [42]. It would be interesting to extract sets of genes that are

up- or down-regulated in invasive versus non-invasive cancer cells

consistently across multiple studies. Any S-genes present in such

recurrent sets could be associated with higher pair-wise interaction

priors than arbitrary S-gene pairs. However, since we observed a

decrease in performance for pathway expansion on the yeast

networks, we chose not to attempt this at this time.

We modeled transitivity using deterministic factors. While this

provides an intuitive interpretation of such constraints and

increases the speed of convergence of message passing, relaxing

these constraints to general belief potentials could allow a broader

exploration of the search space. Imposing transitivity in the

current framework disallows cycles of inhibitory links. However, it

is possible to extend our method to incorporate such cycles, in

which new interaction modes are introduced. For example, the

cycle ARBxCRA would imply BxA, which could be modeled

using a new type of interaction mode capturing A’s activation on B

and B’s inhibition on A.

The methods could be extended to incorporate richer

information such as degrading signals and higher-order knock-

downs (single, double, triple, etc) as in Carter et al. (2007) [14].

Our formulation assumes that the effects of a knock-down do not

degrade along a pathway and also neglects combinatorial

interactions of multiple genes. FG-NEMs allow higher-order

knock-down combinations to be incorporated into a search for

high-scoring networks. Using only single knock-downs, it may be

impossible to identify certain relationships such as the synthetic

effects of two parallel pathways converging to one gene. In

principle, FG-NEM can handle higher-order relations by

extending the pair-wise likelihood term to contain three or more

genes. However, the large numbers of possible combinatorial

relations and combinations of knock-down experiments required

to elucidate the relations, as well as the propagation of complexity

along the pathways, would make the problem more difficult.

In our network expansion approach, we assumed genes whose

expression levels are well-explained by the model are of more

interest for subsequent rounds of experimentation, although there

are other ways to approach this question from an experimental

design perspective. For example, it would be conceivable to test

whether selecting genes based on reducing a measure of

uncertainty across models leads to better gene selection as in

[13]. An ‘‘active learning’’ approach prioritizes knock-down

experiments based on the reduction of expected entropy of high-

scoring models. The ‘‘informative’’ experiments would effectively

disambiguate the models which explain the existing data. Fewer

experiments might then be needed to narrow down a unique

model of the underlying system [56,57].

Finally, the approach could be applied to the unsupervised

discovery of regulatory interactions among E-genes rather than

S-genes. In recent work, Sahoo et al. (2008) [58] applied a pair-wise

scoring approach for detecting Boolean implications based on gene

expression changes observed across hundreds of microarray studies.

Similarly, FG-NEMs could use the expression changes measured

across a diverse array of conditions to score gene pairs against

interaction mode templates (Figure 1C) to determine if a specific

regulatory interaction is more probable than non-interaction.

Conclusions
We applied FG-NEMs to discover a human signaling network

among genes involved in colon cancer cell invasiveness. The method

formalizes and extends analysis of genetic interactions using high-

dimensional quantitative phenotype data in the form of gene

expression changes observed under specific perturbations. It makes

explicit use of the knock-downs of known members of a pathway to

identify how the members interact with one another and for

identifying new members. The method predicts several genes with

new roles in the cancer invasiveness process, two of which were

verified to act in the pathway based on an ex vivo invasion assay. Thus,

the FG-NEM approach may be a powerful tool for inferring

regulatory connections and for identifying new partners of genes

known to operate in a process of interest. The application of

structured causal models for pathway identification and expansion

promises to greatly accelerate the discovery of genetic pathways from

genetic knock-downs and other intervention-based experiments.
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