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Abstract

With a genome size of ,580 kb and approximately 480 protein coding regions, Mycoplasma genitalium is one of the
smallest known self-replicating organisms and, additionally, has extremely fastidious nutrient requirements. The reduced
genomic content of M. genitalium has led researchers to suggest that the molecular assembly contained in this organism
may be a close approximation to the minimal set of genes required for bacterial growth. Here, we introduce a systematic
approach for the construction and curation of a genome-scale in silico metabolic model for M. genitalium. Key challenges
included estimation of biomass composition, handling of enzymes with broad specificities, and the lack of a defined
medium. Computational tools were subsequently employed to identify and resolve connectivity gaps in the model as well
as growth prediction inconsistencies with gene essentiality experimental data. The curated model, M. genitalium iPS189 (262
reactions, 274 metabolites), is 87% accurate in recapitulating in vivo gene essentiality results for M. genitalium. Approaches
and tools described herein provide a roadmap for the automated construction of in silico metabolic models of other
organisms.
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Introduction

Genome-scale metabolic reconstructions are already in place or

under development for a growing number of organisms including

eukaryotic, prokaryotic and archaeal species [1]. Metabolic

pathway reconstructions are increasingly being queried by systems

engineering approaches to refine the quality of the resulting

metabolic models [2]. Curated metabolic models are indispensable

for computationally driving engineering interventions in microbial

strains for targeted overproductions [3–6], elucidating the

organizing principles of metabolism [7–10] and even pinpointing

drug targets [11,12]. Currently, over 700 genomes have been fully

sequenced [13] whereas only about 20 organism-specific genome-

scale metabolic models have been constructed [1,14,15]. Figure 1

pictorially demonstrates, in logarithmic space, the widening gap

between organism-specific metabolic models and fully sequenced

genomes over the past twelve years. It appears that metabolic

model generation can only keep pace with about 1% of the fully

sequenced genomes.

In response to this flood of present and future genomic

information, automated tools such as Pathway Tools [16] and

SimPheny (Genomatica) have been developed that, using

homology comparisons, allow for the automated generation of

draft organism-specific metabolic reconstructions that can subse-

quently be upgraded into metabolic models. All of these models

remain to some extent incomplete as manifested by the presence of

unreachable metabolites [17] and some growth inconsistencies

between model predictions and observed in vivo behavior [2]. In

particular, optimization-based techniques for automatically iden-

tifying metabolites disconnected from the rest of metabolism (i.e.,

GapFind) and hypotheses generators (i.e., GapFill) for reconnect-

ing them have recently been introduced [17]. In order to resolve

substrate utilization prediction inconsistencies, Reed et al. [2]

introduced a novel approach for identifying what reactions to add

to the genome-scale metabolic models of E. coli to correct some of

the in silico growth predictions. In our group, we have taken the

next step for gene deletion data by attempting to correct all such

growth inconsistencies by allowing not just additions but also

eliminations of functionalities in the model (i.e., GrowMatch)

(Satish Kumar and Maranas, submitted). As outlined in Figure 2,

in this work, we describe the application of these automated

methodologies during the Mycoplasma genitalium model construction

process (as opposed to an a posteriori mode of deployment).

M. genitalium has received considerable attention as it is the

smallest organism that can be grown in pure culture, having a

genome size of ,580 kb and approximately 480 protein coding

regions [18,19]. An examination of its genome content revealed

limited metabolic capabilities [20], leading researchers to suggest it

may be a close approximation to the minimal set of genes required

for bacterial growth [19,21]. Several researchers have carried out

genomic and proteomic analysis of M. genitalium to quantify this

minimal set. For example, Mushegian and Koonin have carried

out a detailed comparison of M. genitalium and H. influenzae proteins

to derive a set of 256 genes that they suggested are necessary for

viability [22]. Further, genomic analyses of these species revealed

that Mycoplasma genes encode for several catabolic and
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metabolite transport proteins but for only a limited number of

anabolic proteins suggesting that Mycoplasma species need to

scavenge for the required nutrients from the surrounding

environment [20]. More recently, Glass and co-workers performed

global transposon mutagenesis and established that 382 of the 482

protein coding sequences are essential genes for this minimal

bacterium [19]. These gene sets and essential gene analyses,

however, have not been put into context of a complete functional

metabolic model.

Mycoplasma genitalium is not only the closest known approxima-

tion of a minimal cell but also an important sexually transmitted

human pathogen. It is a cause of nongonococcal urethritis in men

and is associated with genital tract inflammatory diseases in

women, including endometritis, cervicitis, pelvic inflammatory

disease, and tubal factor infertility (for a recent review see [23]).

Additionally, evidence suggests that M. genitalium infection

increases the risk of contracting HIV-1 [24–26]. Mycoplasmas,

the generic name for the bacteria that comprise the Mollicutes

taxon, evolved from the low G+C Gram positive bacteria through

a process of massive genome reduction [27]. Their salient

characteristics in addition to small genomes are a lack of a cell

wall, and an almost complete inability to synthesize the building

blocks of DNA, RNA, proteins, and cell membranes.

The above underlines the importance of investigating the

molecular biology of mycoplasma and M. genitalium in particular.

However, a major hindrance to M. genitalium research and

laboratory diagnosis of infection has been their cultivation in vitro.

While defined media are present for some mycoplasmas [28–30],

researchers have often had to resort to complex media to cultivate

most mycoplasmas, including M. genitalium. M. genitalium, and

many other mycoplasmas are cultured in vitro in SP-4 medium.

This extremely rich medium contains several undefined additives

including peptones, yeast hydrolysate, yeast extract and 17% fetal

bovine serum [31]. The use of complex undefined growth media

has interfered with the molecular definition of mycoplasma

metabolic pathways, genetic analyses, estimation of growth

requirements, characterization of auxotrophic mutants and

examining the nutritional control of bacterial pathogenecity.

In this paper, we highlight the development of an in silico model

of metabolism of M. genitalium. It was subjected to network

connectivity gap detection and reconnection as well as restoration

of consistency with in vivo gene essentiality experiments [19]. We

subsequently used the model to pinpoint components in the

growth medium that are needed for the production of all

components of biomass in an effort to eventually eliminate the

need for non-defined components such as serum in the growth

medium.

Results

The metabolic model reconstruction process is subdivided into

four steps. These four steps are summarized in Figure 2 and

include (1) identification of biotransformations using homology

searches, (2) assembly of reaction sets into a genome-scale

metabolic model, (3) network connectivity analysis and restoration,

and (4) evaluation and improvement of model performance when

compared to in vivo gene essentiality data. Model construction is

followed by minimal defined medium component elucidation.

Reconstruction Content
The metabolic reconstruction of M. genitalium was carried out in

a series of successive refinements (see Figure 2 and Materials and

Methods). Of the 482 predicted open reading frames (ORFs), 113

(23%) only have annotations of (conserved) putative or hypothet-

ical proteins. Of the remainder, 369 ORFs have well-defined

annotations, with functions either shown biochemically or

predicted for 272 of them (42%) [18,19]. From these well-

annotated genes, 82 (17%) are not involved in specific metabolic

transformations, but rather encode proteins whose roles include

DNA/RNA polymerization, DNA repair, protein folding and

adhesion. The model construction process started with the

application of an automated procedure for creating a draft

metabolic reconstruction from the genome sequence of M.

genitalium (see Materials and Methods) [32,33]. This auto-

generated model contained 150 genes and 249 unique metabolites

associated with 167 reactions (see Table 1). The 150 genes

Author Summary

There is growing interest in elucidating the minimal
number of genes needed for life. This challenge is
important not just for fundamental but also practical
considerations arising from the need to design microor-
ganisms exquisitely tuned for particular applications. The
genome of the pathogen Mycoplasma genitalium is
believed to be a close approximation to the minimal set
of genes required for bacterial growth. In this paper, we
constructed a genome-scale metabolic model of M.
genitalium that mathematically describes a unified charac-
terization of its biochemical capabilities. The model
accounts for 189 of the 482 genes listed in the latest
genome annotation. We used computational tools during
the process to bridge network gaps in the model and
restore consistency with experimental data that deter-
mined which gene deletions led to cell death (i.e., are
essential). We achieved 87% correct model predictions for
essential genes and 89% for non-essential genes. We
subsequently used the metabolic model to determine
components that must be part of the growth medium. The
approaches and tools described here provide a roadmap
for the automated metabolic reconstruction of other
organisms. This task is becoming increasingly critical as
genome sequencing for new organisms is proceeding at
an ever-accelerating pace.

Figure 1. Gap between sequenced genomes and generated
models. The numbers of both metabolic models and completed
genome sequences have been growing exponentially. Despite the
increase in the number of metabolic models, their total remains smaller
than 1% of that of sequenced genomes.
doi:10.1371/journal.pcbi.1000285.g001

In Silico M. genitalium Metabolic Reconstruction
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comprise 31% of the ORFs present in the genome and provided a

solid starting point with very little manual effort.

Additional homology searches of genes not included in the auto-

model against the NCBI database increased the number of model

components to 187 genes and 263 distinct metabolites associated

with 179 reactions (Table 1). These genes comprise 39% of the

ORFs present in the genome. These reactions enable, for example,

the uptake of glycerol into the cell, thymidine kinase, and

ribonucleotide diphosphate reductase (Table 2), as well as the

remaining annotated ribosomal proteins that were not previously

incorporated. As indicated in Table 2, the bidirectional protein-

protein BLAST (i.e., BLASTp) expectation values exhibited by

these genes when compared to the biochemically-characterized

counterpart in other organisms provided strong support for their

inclusion in the model. In addition, we also included nine

nucleoside di- and tri-phosphate kinase associated reactions based

on the observation that the kinase pool of M. genitalium has relaxed

substrate specificity [34]. As part of the initial model generation,

Figure 2. Steps used in the (semi)-automated reconstruction process. The four steps used in the present work are 1) identification of
biotransformations using automated homology searches 2) assembly of reaction sets into a genome-scale metabolic model 3) automated network
connectivity analysis and restoration, and 4) automated evaluation and improvement of model performance when compared to in vivo gene
essentiality data.
doi:10.1371/journal.pcbi.1000285.g002

Table 1. Composition of the model after each step.

Automodelc Initiale After GapFill After GrowMatch (iPS189)

Included genes 150 (31%)d 187 (39%) 193 (40%) 189 (39%)

Proteins 110 101 105 104

Protein complexesa 3 18 19 18

Isozymes 25 2 2 0

Reactions 167 179 265 262

Metabolic reactions 127 138 181 178

Transport reactions 40 41 84 84

Gene-protein-reaction associations

Gene associated (metabolic/transport) 167 163 170 168

Spontaneous 0 6 6 6

No gene associated (metabolic/transport) 0 10 89 88

Exchange reactions 40 42 89 87

Metabolitesb 249 263 275 274

Cytoplasmic 234 250 262 261

Extracellular 40 42 85 85

aAll ribosome-associated proteins are counted as a single complex. The number for protein complexes and isozymes is not on a reaction basis but rather a protein basis.
bDistinct species ignoring the compartment of the metabolites.
cIncludes minor adjustments to compartment assignment.
dBased on 482 protein-encoding ORFs.
eAfter additional BLASTP matches, specificity adjustments and conversion to computations-ready form.
doi:10.1371/journal.pcbi.1000285.t001

In Silico M. genitalium Metabolic Reconstruction
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we also checked the BLASTp scores, gene annotations, and the

cluster of orthologous groups (COGs) ontology [35] of all genes in

the automodel, to guard against the erroneous inclusion of

functions in the model (see Materials and Methods).

Generation of Computations-Ready Model
A metabolic reconstruction has been described as a 2-D

annotation of a genome [32]. The generation of a computations-

ready model requires the complete assignment of metabolites to

reactions, inclusion of exchange reactions, resolution of gene-

enzyme associations, and derivation of biomass equations. Here,

we largely follow the steps put forth by [33] in the latest E. coli

metabolic reconstruction.

(i) Assignment of ORFs, reactions & metabolites and their classification.

Under this step we first include in the model all reactions

associated with enzymes as identified above (ensuring, when

necessary, that the metabolites have the appropriate

protonation state corresponding to pH 7.2 and are elemen-

tally balanced). We then extend the list to include non-gene

associated reactions (e.g., account for the substrates and

products for the kinase pool). Subsequently, we append

spontaneous reactions for chemical transformations that are

not enzyme catalyzed and for the transport of molecules that

can freely diffuse across the cell membrane and are likely to

be present in the natural or laboratory-adopted environment

of M. genitalium. A distribution of the ORFs, metabolites, and

reactions included in the final model iPS189 are provided

(see Tables S1, S2, S3 and Text S1). A breakdown of the

ORFs into functional clusters is shown in Figure 3. Here,

each ORF is assigned to a cluster of orthologous groups

(COGs) ontology [35] along with the percent of the total

ORFs for the entire M. genitalium genome that is included in

iPS189 for each classification.

(ii) System boundary identification. The system boundary includes

the entire reaction network. Exchange reactions were

created that allowed metabolites to enter or leave the

extracellular space. Constraints on these exchange reactions

were established to account for the simulated growth

conditions by restricting the uptake (substrate) metabolites

of the system.

(iii) Conversion of model into computations-ready form. The stoichio-

metric matrix for iPS189 after step 1 involves 179 rows (i.e.,

reactions and exchange reactions) and 292 columns (i.e.,

total metabolites, taking the compartment designations into

account). We also established gene-protein-reaction (GPR)

associations to link reactions to genes. Only 48 reactions

contained more than a single GPR association. Of these,

none contained single-protein isozymes, and 47 were

catalyzed by just one of the various enzyme complexes

(among which was the ribosome and its associated proteins).

Only one contained both isozymes and protein complexes.

(iv) Biomass equation derivation. The derived biomass equation

drains all metabolites present in cellular biomass in their

appropriate molar biological ratios (see Table 3 for a list of

components). Because the dry cell content of M. genitalium

has not been experimentally measured, the biomass

composition was estimated from the protein composition of

closely related mycoplasmas, comparisons with a metabolic

model for the related Bacillus subtilis, and a reduction of the

biomass equation from the Escherichia coli model iAF1260.

These biomass compositions were adjusted to account for

Table 2. Additional genes and associated reactions added to the model through bi-directional BLASTp homology searches.

Reaction Name
Reaction
Abb.

M. genitalium
Locus Organism Locus

Forward E
Value

Reverse
E Value Ref.

Added during initial BLASTP searches

glycerol transport GLYCt MG033 B. subtilis BSU09280 1E-23 2E-32 [74]

thymidine kinase TMDK1 MG034 B. subtilis BSU37060 3E-49 1E-46 [75]

inorganic diphosphatase PPA MG351 H. pylori HP_0620 3E-29 8E-31 [76]

UTP-glucose-1-phosphate uridylyltransferase GALU MG453 B. subtilis BSU35670 2E-69 2E-70 [77,78]

arginyl-tRNA synthetase ARGTRS MG378 E. coli b1876 2E-09 5E-11 [79]

methionyl-tRNA formyltransferase FMETTRS MG365 B. subtilis BSU15730 2E-34 1E-40 [80]

phosphotransferase systemsa various MG041 E. coli b2415 1E-07 2E-12

Added by GapFill procedure (biomass)

glutamyl-tRNA(Gln) amidotransferase GLXAT MG098 M. gallisepticum MGA_0414 1E-60 1E-66

GLXAT MG099 B. subtilis BSU06680 3E-50 1E-57

GLXAT MG100 B. subtilis BSU06690 2E-75 3E-76

NAD kinase NADK MG128 B. subtilis BSU11610 9E-16 2E-16

nicotinic acid mononucleotide
pyrophosphorylase

NAMNPP MG037 B. subtilis BSU31750 5E-05 8E-06

Added by GapFill procedure (general)

1-deoxy-D-xylulose 5-phosphate synthase DXPS MG066 B. subtilis BSU24270 2E-09 2E-10

Phosphoglucomutase PGMT MG053 B. cereus BCE_5058 2E-67 2E-67

glutamine-N5 methyltransferase GLNMT MG259 E. coli b1212 1E-10 6E-11

aEncodes the phosphocarrier protein. The phosphoenolpyruvate-protein phosphotransferase component (MG429) was already included in the model.
b Forward referes to using the M. genitalium locus as the input sequence to be searched against other genomes.
c Reverse referes to using the locus of the other organism as the input sequence to be searched against the genome of M. genitalium.
doi:10.1371/journal.pcbi.1000285.t002

In Silico M. genitalium Metabolic Reconstruction
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components known to be absent in M. genitalium such as the

cell wall. The biomass equation explicitly includes charged

and uncharged tRNA molecules, rather than only the amino

acids themselves. It also contains a non-growth-associated

ATP maintenance reaction. The genome and RNA content

was adjusted to reflect the low G+C content of M. genitalium.

While determining the precise biomass composition has been

a challenge for many other models [36], previous work has

shown that the calculated biomass production is relatively

insensitive to the exact ratios used [37].

The computations-ready model along with the biomass

description allows for the use of optimization-based techniques

for testing and correcting for the presence of connectivity gaps

(step 3) and growth prediction inconsistencies (step 4).

Analysis and Restoration of Network Connectivity
The initial model was constructed almost exclusively based on

homology searches within model libraries. This procedure led to

the presence of many network gaps [17] preventing 177 reactions

(99% of total) from carrying flux under all uptake conditions (i.e.,

they were blocked). As a consequence, these blocked reactions

precluded the formation of some of the biomass components.

Using GapFind [17] we found that a total of 175 (70%)

cytoplasmic metabolites could not be produced inside or

Figure 3. Classification of the ORFs included in iPS189 grouped into COG functional categories. The percent assigned to each class refers
to the coverage of the total number in the genome accounted for in the model. Some of the ORFs in Mycoplasma genitalium do not currently have a
COG functional category assignment (here represented as N/A). Note that although each ORF is only counted once within each COG functional
category, some ORFs have multiple COG category assignments.
doi:10.1371/journal.pcbi.1000285.g003

Table 3. Biomass components used in iPS189.

Proteina RNA Inorganic Ions Cofactors and Other

L-alanine L-lysine ATP ammonium FAD

L-arginine L-methionine GTP calcium NAD

L-asparagine L-phenylalanine CTP chlorine NADP

L-aspartate L-proline UTP cobalt coenzyme A

L-cysteine L-serine copper 10-formyltetrahydrofolate

L-glutamine L-threonine DNA iron 5,10-methylenetetrahydrofolate

L-glutamate L-tryptophan dATP magnesium 5,6,7,8-tetrahydrofolate

Glycine L-tyrosine dGTP manganese pyridoxal 59-phosphate

L-histidine L-valine dCTP molybdate S-adenosyl-L-methionine

L-isoleucine N-formylmethionine dTTP nickel Spermidine

L-leucine phosphorous riboflavin

potassium putrescine

sulfate menaquinol 7

zinc mycolic acid

minor teichoic acidb

teichuronic acidb

triglucosyl-1,2 diacylglycerolb

aAmino acids were incorporated as charged and unchanged tRNA molecules in the equation as reactants and products, respectively. The charged gln-tRNA becomes an
uncharged glu-tRNA and the charged fmet-tRNA becomes an uncharged met-tRNA through the biomass equation.

bAdded during GrowMatch procedure.
doi:10.1371/journal.pcbi.1000285.t003

In Silico M. genitalium Metabolic Reconstruction
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transported into the intracellular space. These metabolites

included a number of biomass precursor metabolites (e.g., some

amino acids, cofactors and metal ions) that had not been assigned

uptake reactions. Of all the blocked metabolites, thirteen were

involved in nucleotide metabolism and eight were metal ions

without an identified transporter. We also note that 40 of these

metabolites are charged/uncharged tRNA molecules, which are

active in closed reaction cycles used in forming the protein

component of biomass.

Through the use of GapFill [17] we subsequently sought to

bridge these network gaps through the addition of reactions,

transport pathways and relaxation of irreversibilities of reactions

already in the model. Reactions known not to be present in M.

genitalium (e.g., an incomplete TCA cycle) were excluded as gap

filling candidates. We first applied GapFill to unblock constituents

of biomass guided by the known components in the growth

medium. We unblocked biomass production by adding 65

reactions, for which most (i.e., 43) were involved in metabolite

transport, such as for the uptake of amino acids (14), folate,

riboflavin, metal ions (8), and cofactors such as CoA. Among the

remaining reactions were those responsible for the hydrolysis of

dipeptides (15) and eight reactions involving other biotransforma-

tions. We performed an additional round of BLASTp comparisons

of genes annotated with these reactions against the M. genitalium

genome to determine if we could associate any of these reactions

with specific genes in M. genitalium. We found five proteins

catalyzing these reactions that had BLASTp scores smaller than

1025 (see Table 2). For example, GapFill suggested the addition of

reaction glutamyl-tRNA(Gln) amidotransferase in the model to

allow the formation of the gln-tRNA molecule. BLASTp searches

allowed us to link this activity with the genes encoding for the three

subunits (MG098, MG099 and MG100). Note that these three

genes (and others added during this step) were not added earlier

(steps 1 and 2) on account of their ambiguous functional

characterization. By bringing to bear both homology (though

BLASTp) and connectivity restoration (through GapFill), here we

rely on multiple pieces of evidence when appending a new

functionality and corresponding genes to the model.

Even after unblocking biomass formation, 43 metabolites

remained blocked and were subsequently analyzed by GapFill.

The results from GapFill are summarized in Figure 4. We were

able to reconnect three metabolites by treating three reactions as

reversible. We also found that the originally assigned (based on the

auto-model) directionality of 1-acyl-sn-glycerol-3-phosphate acyl-

transferase was incorrect. It was subsequently reversed and found

to be in accordance with both KEGG and MetaCyc entries. An

additional 21 metabolites were reconnected by adding 18 reactions

from the KEGG and MetaCyc databases (see Materials and

Methods). The addition of these 18 reactions also introduced an

additional nine metabolites (three of which were involved in

glycerolipid metabolism) to the model. Finally the incorporation of

uptake/transport reactions reconnected an additional four metab-

olites. We performed an additional round of BLASTp compar-

isons and we were able to associate three out of 22 reactions with

specific genes (see Table 2). We found that the associated gene (i.e.

MG066) for 1-deoxy-D-xylulose 5-phosphate synthase was already

included in the model but with a different functionality (i.e.,

transketolase). The secondary synthase functionality, revealed by

GapFill/BLASTp, was subsequently associated with gene MG066

in the model. A similar situation occurred with MG053, which was

already associated with phosphomannomutase in the model. In

addition, gene MG259 (annotated as ‘‘modification methylase,

HemK family’’ in the Comprehensive Microbial Resource,

http://cmr.jcvi.org) was added to the model to carry out the

glutamine-N5 methyltransferase activity elucidated by GapFill/

BLASTp. The model statistics after correcting for network gaps

are summarized in Table 1.

Model Correction Using In Vivo Gene Essentiality Data
Based on in vivo gene essentiality data [19] we deduced that

there are 174 essential genes and 19 non-essential genes among the

193 genes provisionally present in the model (after steps 1, 2, and

3). We note that the in vivo gene essentiality experiments were

performed using non-defined medium containing serum and yeast

hydrolysate among other rich components. During the in silico

model predictions/comparisons, we allowed the uptake of all

extracellular metabolites with transport reactions, except for

sugars other than glucose, in order to computationally approxi-

mate this medium.

Using a recently proposed diagnostic of the percentage of

correctly-identified essential genes [38,39], we found that the

model correctly identified 137 out of a total of 174 essential genes

(i.e., specificity of 79%) and 16 out of a total of 19 non-essential

genes (i.e., sensitivity of 84%). This implies that the model (after

steps 1, 2, and 3) was 79% correct in its overall accuracy in growth

predictions (i.e., 153 of 193). Most of the mismatches (92%) were

over-predictions of the metabolic capabilities (i.e., predicting

growth when none is observed in vivo) instead of under-predictions

(i.e., predicting no growth when growth is observed in vivo). We

subsequently deployed the GrowMatch method (Satish Kumar

and Maranas, submitted) to rectify as many as possible of the

erroneous essentiality predictions by the model. GrowMatch

functions by identifying the minimal number of model modifica-

tions required to restore consistency between growth predictions

and gene essentiality experiments (see Materials and Methods).

Model under-predictions include mutants (MG410 and

MG411), which encode the subunits for the phosphate transporter,

preventing in both cases the uptake of phosphate. This implies that

M. genitalium must have an additional uptake route of phosphates.

Even though GrowMatch suggested a number of phosphate

uptake alternatives to resolve this conflict and Glass and coworkers

[19] had posited the activity of a putative phosphonate transporter

(MG289, MG290, and MG291), we decided not to add them to

the model as no direct evidence exists to ascertain their presence.

For instance, the putative phosphonate transporter might be

nonspecific thus also enabling uptake of phosphate. Alternatively,

the unidentified phosphonate substrate might be catabolized to

Figure 4. Summary of the GapFind and GapFill procedures
after biomass unblocking. During biomass formation unblocking,
most metabolites that could not be produced (disconnected metab-
olites) were reconnected through the addition of transport reactions.
Metabolites not directly connected to biomass were mostly reconnect-
ed through the addition of reactions from KEGG and Metacyc.
doi:10.1371/journal.pcbi.1000285.g004

In Silico M. genitalium Metabolic Reconstruction
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yield phosphate through a number of reactions. The other

incorrect under-prediction involved MG138 (homologous to

elongation factor 4 in E. coli), which had been associated with

macromolecule formation during the automodel construction. We

observed that deletion mutants of the homolog in E. coli (lepA) are

viable [40]. Based on this information, we removed this gene and

its erroneous association as an essential component of the biomass

equation from the model.

Interestingly, three of the 37 erroneous over-predictions were

corrected by adding three membrane components to the biomass

equation (see Table 3). These components were not added during

the initial model construction because it was not clear which (if

any) of this class of metabolites were essential. An additional three

erroneous predictions of non-essentiality were corrected by

suppressing two reactions. One of these reactions, inosine kinase,

was added during GapFill but not linked to an associated gene.

Suppression of this reaction corrected two over-predictions but did

not invalidate any correct model predictions, suggesting that the

reaction activity is unlikely to be present in vivo, at least under the

experimental conditions, and perhaps is not an activity encoded by

M. genitalium. An additional six over-predictions involved two metal

ion ABC transporters. GrowMatch identified each transporter to

be essential when the other one was suppressed. We rejected co-

regulation of the two transporters as a model restoration

mechanism. Instead, we restored consistency for three of the six

genes by assigning the cobalt uptake to the complex with a better

homology to characterized cobalt transporters (MG179, MG180,

MG181). The remaining three genes were removed from the

model. An alternative interpretation of the GrowMatch results is

that some other ion uptake reaction(s) are uniquely associated with

these transporters and are thus responsible for the in vivo

phenotype.

Overall, the application of GrowMatch to the metabolic model

led to the generation of a number of testable hypotheses regarding

the presence or absence of specific functionalities and emphasized

the importance of determining the substrate specificity of the

transporters. We also identified reactions that had to be

inactivated only for certain knock-outs suggesting their depen-

dence on the genetic background in addition to the specific

environmental conditions. For example, MG112 (ribulose-phos-

phate 3-epimerase) had to be suppressed in conjunction with two

single gene deletions (i.e., conditional suppressions) to restore

consistency with the in vivo data, suggesting possible regulation

events. Figure 5 summarizes the complete GrowMatch results.

Considering only those changes that could be repaired with global

model adjustments conservatively raised the overall percent

accuracy of the model (versioned as iPS189) from 79 to 87%. By

recalculating the diagnostics of the percentage of correctly-

identified essential genes [38,39] we found that the model is now

87% (i.e., 149 of 171) correct in its essentiality predictions

(specificity) and 89% (i.e., 16 of 18) correct in its non-essentiality

predictions (sensitivity).

M. genitalium iPS189 Model Characteristics
The iPS189 model predicts that M. genitalium uptakes fructose

via a PTS system. The fructose is converted to fructose 1,6-

bisphosphate (fdp) and finally enters the glycolytic pathways to

produce lactate via lactate dehydrogenase. Neither fructose nor

glycerol uptake was found to be essential as glucose could be

efficiently taken up and converted. Specifically, glucose is

transformed to glucose 6-phosphate and finally to fdp via

phosphofructokinase. As expected, the model also indicates that

co-enzyme A (CoA) is taken up, since M. genitalium has no coA

biosynthesis genes. Additionally, accetal-CoA (accCoA) is not

formed via pyruvate formate lyase but rather by pyruvate

dehydrogenase. Interestingly, we find that should acetate be taken

up, it is converted to acetyl phosphate (actp) and finally to accoa by

phosphotransacetylase. Sources for acyl-CoA (aCoA) and CDP-

glucose are also required for lipid production. The metabolites

Figure 5. Summary of the GrowMatch reconciliations. The ORFs
included in the comparisons are ordered within each COG functional
category (see Figure 3 for abbreviations). If an ORF belongs to more
than one category only the first one is used. The dark shading indicates
an ORF that was essential, and the light shading indicates a non-
essential ORF. Before the application of GrowMatch, 79% of the model
predictions on gene essentiality agreed with in vivo experiments. Nearly
all incorrect predictions occurred when the model predicted growth,
but no growth was observed in the in vivo experiment (termed GNG
mismatches). GrowMatch was able to rectify eighteen of these
mismatches. This increased the percent agreement to 87%. The
rightmost heat-map and the number of resolved mismatches also
include the removal of one gene to correct a GNG experiment and three
genes to resolve NGG mismatches.
doi:10.1371/journal.pcbi.1000285.g005
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riboflavin and nicotinic acid (niacin) are taken up for synthesis of

the cofactors FAD and NAD, respectively.

In addition, both spermidine and putrescene are directly

imported as biomass components. Similarly, we also found that

D-ribose (rib-D) is needed to fuel the truncated pentose phosphate

pathway. Examination of fluxes indicated that the uptake of rib-D

results in production of 5-phospho-a-D-ribose 1-diphosphate,

which enables the conversion of adenine to amp. We also deduced

that only adenine and cytidine are precursors to nucleotides and

nucleosides (CTP, dCTP, UTP, dUTP, dTTP). Interestingly, the

model required the direct uptake of GTP and could not be

produced through the uptake of guanine. Model modifications

that eliminate this requirement using GrowMatch resulted in a

number of incorrect gene essentiality predictions. The need for the

direct uptake of GTP is consistent with the fact that in M. mycoides

the guanine nucleotide pathways depend on transport of

preformed guanine derivatives [34], and that a number of other

Mycoplasmas are not able to grow on medium that only contains

guanine as a nucleobase [41]. In addition, all amino acids are

imported directly from the environment as either monomers or

dipeptides. Unlike many other mycoplasmas, M. genitalium is an

arginine nonfermenting species, and not surprisingly arginine

deiminase activity was not present in the model. Furthermore, in

iPS189, the only participation of the amino acid arginine is its

direct incorporation into biomass. Finally, flux predictions

revealed that lactate is the main product of M. genitalium

fermentation.

Identifying Necessary Components of a Defined Medium
A key targeted application of the iPS189 metabolic model is to

drive the development of a defined growth medium. As noted

above, gene essentiality experiments were performed using a non-

defined medium, SP-4, which contains beef heart infusion,

peptone supplemented with yeast extract and fetal bovine serum.

The use of an undefined medium can confound the characteriza-

tion of gene essentiality, as the exact environmental conditions are

not fully specified. Furthermore, the lack of a defined growth

medium complicates the understanding of nutritional control and

regulation of pathologies, evaluation of drug susceptibility,

characterization of auxotrophic mutants and performing genetic

analysis.

Using trial-and-error researchers have already attempted to

formulate defined media by systematically deleting components

from an undefined or complex media [28]. For example, defined

media have been constructed for the growth of Mycoplasma

capricolum [42], Acholeplasma laidlawii [43], Spiroplasmas [44], and a

semi-defined medium was recently formulated for two Mycoplasma

mycoides subspecies [45]. However such approaches do not take

into account the balance and availability of chemical species in

cellular metabolic pathways to systematically guide medium

design. Genome-scale models of metabolism provide maps for

tracing missing components needed for biomass formation, redox

potential and ATP maintenance [46–48]. These models have

already been successfully employed to establish minimal reaction

sets needed for growth under several uptake environments [49],

elucidate substrate uptake requirements for several microbial

organisms such as Helicobacter pylori [50] and Haemophilus influenzae

[50] and more recently design complete growth media [51–53].

Motivated by these medium-associated shortcomings, we used

the iPS189 metabolic model as a roadmap of the available

transporters, metabolites and internal interconversions to seek out

the minimum number of growth medium components necessary

for biomass production. We used as a starting point the

components of the C5 medium (Rodwell, 1983), which is used

as a component of SP-4, with the addition of folate and biotin and

the replacement of thiamine by the four individual deoxynucleo-

sides (see Table S4). By minimizing the total number of additional

components that are needed for growth (see Materials and

Methods), a number of additional components were identified as

required (see Table 4). The purported reduced bio-availability of

the amino acids in their monomeric form might be, in part, the

reason for M. genitalium’s requirement of yeast extract. The listed

dipeptides were found to be needed components consistent with

the presence of dipeptide transporters that were found to be

essential genes both in vivo and in iPS189. In addition to

components identified based on the metabolic model, we identified

that some of the enzymes present in the model required cofactors

not included present in the model. In addition, a number of

additional carbon source supplements could be investigated.

We note that these medium predictions generate a necessary but

not a sufficient list of components needed in the medium. For

instance, a number of components of biomass such the lipids are

not fully specified in the model. Furthermore, additional signaling

molecules might be necessary signals for allowing growth of M.

genitalium in a defined medium. We anticipate that the iterative

process of testing and refining a defined medium followed by

updates to the model will successively help pinpoint the precise

metabolic capabilities and requirements of M. genitalium.

Discussion

In this paper, our focus was two-fold: (a) to construct the

metabolic model for the minimal organism and pathogen M.

genitalium, and (b) to introduce and bring to bear automated

procedures that streamline the construction of metabolic models.

Table 4. Metabolites computationally predicted as necessary
supplements to the modified C5 medium in order to support
growth of M. genitalium.

Essential cofactors and components without a synthesis pathway

5-amino-4-oxopentanoate menaquinone pyridoxal

Arbutin 2-oxoglutarate salicin

Cytidine 6-phospho-D-gluconate thiamin

D-glucosamine putrescine thymidine

GTP

Metal ions

Ca Fe Cu

Zn Co Mn

Mo Ni

Dipeptides

ala-L-asp-L gly-glu-L gly-met-L

met-L-ala-L gly-asp-L gly-pro-L

cys-gly ala-L-gln-L ala-L-glu-L

ala-L-gly ala-L-his-L ala-L-leu-L

ala-L-thr-L gly-asn-L gly-gln-L

Supplemental carbon source

fructosea

Component ‘replaced’ in modified C5 but present in C5

thyminea

aThis component was not predicted as essential for growth, but its inclusion
improved biomass yield.

doi:10.1371/journal.pcbi.1000285.t004
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The procedure does not require a fully annotated genome and can

serve to complement existing annotations [2] by generating

testable hypotheses of functionality. We made use of BLASTp to

associate functionality to ORFs in the multiple stages, but alternate

methods of determining enzymatic function, such as profile-based

approaches [54,55] could provide additional or alternative

assignments. Hypothesizing novel pathways [56] will also likely

become increasingly important as metabolic reconstructions for

more diverse organisms are carried out.

Many genome annotation errors are caused [57] by the use of

non-specific reaction compound associations or partially qualified

Enzyme Commission numbers [58]. For instance, a comparative

study identified an 8% difference in ORFs across three different

functional annotations of M. genitalium [59]. Therefore, the direct

use of genome-annotation derived reconstructions (e.g., KEGG

and Pathway Tools generated models) can lead to inaccurate

descriptions of metabolic behavior [60]. Specifically, a recent study

has shown that a permissive inclusion of pathways from these

reconstructions can lead to models that overpredict the metabolic

capabilities of Lactococcus lactis [61]. To safeguard against this issue,

we have used manually curated metabolic models as libraries of

biotransformations. We note that this procedure allows for the

straightforward incorporation of reactions that are charge and

elementally balanced, which is not the case with many reactions in

KEGG [62]. Earlier efforts have examined the general metabolism

of Mycoplasmas [63] or targeted some specific subsections such as

purine and pyrimidine metabolism [41,64]. Although there is an

overlap between the reaction set in our reconstruction and those

available in previous studies, developing a M. genitalium specific

model with growth requirement as a constraint revealed novel

uptake and non-gene associated reactions that previous studies

were unable to identify.

The identification of which metabolites are produced internally

or transported directly from the extracellular environment was

complicated by the lack of a defined medium for M. genitalium and its

fastidious growth-requirements. Notably, no other metabolic model

reconstruction efforts to date were complicated by the lack of both a

well-defined biomass composition and a defined growth medium.

Here, we allowed the uptake of all metabolites known to be present

in the current medium. We also included metabolites either with

identified transporters or those necessary for reconnecting blocked

metabolites/reactions. Even though missing metabolites and

pathways still exist in iPS189, we were able to achieve a high

degree of agreement between the model predictions and in vivo gene

essentiality data (87%). We note that the most recent iteration of the

metabolic model for E. coli, an organism which has both a well-

defined biomass composition as well as chemically defined growth

media, has an overall agreement with in vivo gene essentiality data of

91% under aerobic glucose conditions [33]. Becker and Palsson [38]

have recently reported that most in silico models correctly predict less

than 45% of essential genes (called specificity in [39]); for the most-

recent E. coli model this diagnostic was 66%. iPS189 has similar

performance on both the overall accuracy in growth predictions and

specificity (both 87%) because of, in part, the much higher

percentage of essential genes in M. genitalium but also its careful

construction. Additional in vivo gene essentiality studies using a fully

defined medium could usher a more accurate elucidation of the true

metabolic capabilities of M. genitalium, as well as suggest improve-

ments to the reconstruction.

The metabolic model iPS189 is smaller than the 256 genes

suggested as a minimal gene set based on comparison of M.

genitalium and H. influenzae proteins [22]. In large part, this seeming

discrepancy results from the intentional exclusion from the model

of many genes that are essential (e.g., those encoding DNA and

RNA polymerases) though not directly related to metabolic

processes. If such genes were included, the model size would

increase by (at least) 59 genes to 248. In addition, 68 genes that are

essential in vivo have unknown function, and thus cannot (yet) be

incorporated into the model. It is possible that they could, in part,

carry out some of the non-gene associated reactions that were

proposed during the GapFill procedure. Determining their

metabolic function through biochemical and molecular biology

techniques, as well as determining the substrate specificity for non-

characterized transporters, would improve subsequent metabolic

models.

Looking to the future, we note that it was recently shown that it

is feasible to transplant the genome from one mycoplasma species

to another [65], thus opening the door to the transplantation of a

perhaps completely synthetic genome. Furthermore, the recent

announcement of the de novo synthesis and assembly of the

complete M. genitalium genome [66] brings closer to reality the ab

initio design of microbes from scratch that are exquisitely tuned for

specific biotechnological applications. The constructed metabolic

model iPS189 could serve as a core of metabolic functions to add

upon so as to bring about the desired biological functionalities

and/or production capabilities.

Materials and Methods

The general principles of the metabolic reconstruction process

have been previously outlined [1,51]. In the following section, the

specific methods used in the reconstruction of M. genitalium are

detailed.

Initial Reconstruction Content
The first step in our reconstruction of the genome-scale model

of metabolism of M. genitalium involved analyzing the annotated M.

genitalium G-37 genome sequence with the SimPheny automated

model generation platform developed by Genomatica (San Diego,

CA). This automated procedure leveraged the content contained

in Genomatica’s manually curated models to expedite the initial

reconstruction of M. genitalium metabolism. For the M. genitalium

model, reconstructions for E. coli, Haemophilus influenzae, Geobacter

sulfurreducens, B. subtilis, and Saccharomyces cerevisiae were used in the

comparisons. Subsequently genes-protein-reaction (GPR) associa-

tions were established based on the evidence provided by

homology identity provided by sequence analysis and annotation

information. Specifically, forward and reverse protein-protein

BLAST (BLASTp) comparisons were carried out to identify genes

in the library of manually curated models that most closely

resemble those in M. genitalium. In the forward BLASTp step, each

M. genitalium ORF was compared against each gene in the

manually curated models. Then, in the reverse BLASTp step, the

best hit from manually curated models was compared against the

M. genitalium genome ORFs. The top hits for each of the searches

were stored, and a third list was compiled consisting of the cases in

which the top hits are identical in both the forward and reverse

BLASTp searches. For only these pairs, the GPR association(s)

from the manually curated model was used as a template to assign

those in the M. genitalium model. This two-way BLASTp search

procedure improves the likelihood that M. genitalium orthologs, not

paralogs, to genes in the manually curated models are identified

and assigned by the automodel process.

Although the automated genome-model comparisons enabled a

fast generation of a draft model, the auto-generated reconstruction

was extended by searches for relevant reactions not included in the

library of curated models. First, all high-quality annotated ‘‘non-

metabolic’’ genes, such as those encoding transcription factors and
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proteins involved in replication and repair, were excluded from

subsequent searches. We then extracted the remaining sequences

of all the ORFs not yet included in the M. genitalium model and

performed BLASTp analysis to identify additional proteins with

biochemically characterized functionalities in other organisms. The

target database was the nr (non-redundant) database at NCBI

(http://www.ncbi.nlm.nih.gov/blast). Next, all target proteins that

the BLASTp search reported Expect (E) values less than 1025

were further investigated for biochemical characterization. Next,

we carried out a reverse BLASTp analysis of each of these

characterized proteins against sequences in the M. genitalium

genome. If the initial M. genitalium gene was ranked with the best

score and had an acceptable E value (less than 1025) at the end of

this step, that gene and its associated reactions were included in

the model as with the library of curated models.

During the construction of the initial model, all of the reactions

added during the auto-generated reconstruction were also

subsequently examined for internal consistency. For example,

reactions involving compartments (which are not present in the

bacterium M. genitalium) were updated to occur in the cytosol,

three reactions for ATP synthase were merged, and two

macromolecule synthesis reactions were combined and their

GPR associations were manually updated. We also added GPR

associations for missed characterized members of complexes (e.g.,

a component of an ABC transporter system) when the automodel

associated the other members, as well as corrected those GPR

associations for proteins that were misidentified as isozymes

instead of complexes. Furthermore, we investigated the cluster of

orthologous groups (COGs) ontology [35] of all genes in the

automodel, as well as examined all ORFs using the NCBI nr

database as an added guard against the erroneous transfer of a

functionality into the M. genitalium model. Those having classifi-

cation within non-metabolic classifications, such as transcription

(K); replication, recombination and repair (L); general function

prediction only (R); function unknown (S); or none assigned (N/A)

were inspected further. Although most of the ORFs within (R) and

(N/A) were retained, we removed all those within (K), (L), and (S)

from the model (see Table S3). All reactions, including those

added from the BLASTp searches and subsequent additions, were

checked and corrected whenever necessary for charge balance

(protonation state) and elemental balance.

Generation of the Biomass Equation
The biomass equation was generated by accounting for as many

as possible of the constituents that form the cellular biomass of M.

genitalium. Unfortunately, no complete compilation is available in

the open literature for M. genitalium, however some information on

the soluble protein composition of it [67] and data on closely

related mycoplasmas is available. Therefore, we started with the

biomass equation from the Gram positive B. subtilis model [68]

and the core biomass equation from the E. coli iAF1260 metabolic

model [33] and subsequently modified them accordingly. First, all

components related to the cell wall were removed as M. genitalium

lacks one. Next, the amount of precursor molecules involved in

DNA production were adjusted by altering their ratios in

accordance with the lower G+C content in M. genitalium (31.7%)

as compared to E. coli (49.8%) and B. subtilis (40.9%) and its

smaller genome size. The amino acid relative percentages were

likewise adjusted based on utilization patterns and codon biases.

Amino acid utilization was incorporated as charged and

uncharged tRNA molecules in the biomass equation as reactants

and products, respectively. Note that the charged gln-tRNA

becomes an uncharged glu-tRNA and the charged fmet-tRNA

becomes an uncharged met-tRNA through the biomass equation.

Metal ions known to be present in the active sites of catalytic

enzymes were also included in the biomass equation. Various

membrane and lipid components were subsequently added in

accordance with the GrowMatch predictions.

Generation of Computations-Ready Model
Testing the metabolic model using optimization-based ap-

proaches requires the definition of a number of sets and

parameters.

Sets:

I~ if g~set of metabolites

J~ jf g~set of reactions

JR(J~set of reversible reactions

IE(I~metabolites that can cross cell boundaries

either directionð Þ

IF(I~metabolites present in growth medium

Parameters:

Sij~stoichiometic matrix

LBj~lower bound of flux of reaction j

UBj~upper bound of flux of reaction j

Variables:

nj~flux of reaction j

Upper and lower bounds, UBj and LBj, were chosen as not to

exclude any physiologically relevant metabolic flux values. The upper

bound for all reactions was set to 1,000. The lower bound was set

equal to zero for irreversible reactions and to 21,000 for reversible

reactions. The non-growth associated ATP maintenance limit was set

to LBj = 8.4 gDW21 h21. The maximum transport rate into the cell

was 5 mmol gDW21 h21 for any external carbon containing

metabolite (i.e., LBj = 25). The lower bound for the remaining source

exchange reactions was 220 mmol gDW21 h21 [33].

Using the principle of stoichiometric analysis along with the

application of a pseudo-steady-state hypothesis to the intracellular

metabolites [69], an overall flux balance can be written as follows:

X
j

Sij
:nj~0, V i[I ð1Þ

When constructing the model, we also generated the gene-

protein-reaction (GPR) associations that link the ORFs to the

reactions that are catalyzed by their gene products using standard

conventions [70].

Analysis and Restoration of Network Connectivity
Once a mathematical representation of the metabolic model

was generated, we first determined using GapFind [17] which

metabolites could not be produced (i.e., cannot carry any net
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influx), given the availability of all substrates supported by the

model. We next applied GapFill to modify the existing genome-

scale model in order to reconnect these metabolites to the model.

The reaction source databases used by GapFill in this work were

the KEGG [71] and MetaCyc [72] databases. These reactions

were provisionally added to the model, after evaluating charge and

elemental balancing. We also performed additional homology

searches to try to identify any additional GPR associations. Care

was taken when applying GapFill so as not to introduce

functionalities known to be absent in M. genitalium (e.g., incomplete

TCA cycle and disconnected pentose-phosphate pathway).

Model Correction Using In Vivo Gene Essentiality Data
The introduction of the GPR associations introduces additional

complexity in that an additional layer of detail is needed to fully

characterize the network when a single gene is deleted. We made

the following definitions to this end:

Sets:

K~ kf g~set of genes

Parameters:

Gjk~
1, if gene k is necessary for reaction j to be active

0, otherwise
,

(

V j[J, k[K

Variables:

wj~
1, if reaction j is active

0, otherwise
, V j[J

�

Set K contains all ORFs (genes) that are included in the

metabolic reconstruction. We used a fictitious gene s0001, as in

[33], to map and track spontaneous reactions that are known to be

non-enzymatic (e.g., diffusion of CO2 across the cell boundaries),

but this fictitious gene was not included when enumerating the

total genes included in the model, nor could it be knocked out.

Note that a gene k may have more than one GPR association

when it is involved with more than one reaction. Likewise, a

reaction j may be involved in more than one GPR association, as is

the case with isozymes or multi-protein complexes. We restricted

reaction fluxes, vj, using the binary variable wj as follows:

LBj
:wjƒnjƒUBj

:wj , V j[J ð2Þ

Equation (2) ensures that the flux in reaction j can take a non-zero

value only if the reaction is active (i.e., wj = 1).

Parameter Gjk describes the impact of the deletion of gene k on

reaction j. For instance, if only a single gene k1 is associated with

reaction j, then we assign Gjk1~1. On the other hand, if two genes

k1 and k2 encode isozymes that catalyze reaction j, then we assign

Gjk1~Gjk2~0. However, if two genes k1 and k2 are required for

the formation of a multi-protein complex that catalyzes reaction j,

we set both Gjk1 and Gjk2 equal to one. More complex associations

were handled in a similar manner.

We tested the in silico growth predictions of the M. genitalium

metabolism network by examining the flux of the biomass

equation. Given the deletion of a single gene k, we solved the

following formulation:

Maximize vbiomass ð3Þ

subject to

X
j

Sij
:nj~0, V i[I ð1Þ

LBj
:wjƒnjƒUBj

:wj , V j[J ð2Þ

wj~0, V j[J with Gjk~1 ð4Þ

Equation (4) ensures that the flux in reaction j is zero when the

gene k that is necessary for its activity is deleted. Note that this

equation takes advantage of the fact that in this work we only

examined single gene deletions and thus needed not write more

complicated GPR-related constraints. This formulation was solved

for each gene j in the model using CPLEX version 11 accessed

within the GAMS modeling environment. The predictions were

compared against in vivo gene essentiality data [19]. Because the

experiments were performed in a non-defined rich medium [19],

all metabolites that had identified transporters or were known to

be able to cross the membrane into the cell in a non-mediated way

were allowed to have exchange reactions to enter the system.

Exceptions were the metabolites known not to be present in the

growth medium: sugars other than glucose, as well as acetate and

lactate. In this study, we used the growth cutoff was that proposed

in the recent study [73] which is defined as one–third of the average

growth exhibited by all the single gene deletions under

consideration. However, we found that the in silico growth

predictions for iPS189 were insensitive to this value.

We next applied the GrowMatch method to reconcile

inconsistencies between in silico and in vivo growth predictions

across single gene deletion mutants (Satish Kumar and Maranas,

in preparation). To this end, we first classified growth prediction

inconsistencies into two categories: (a) a mutant is termed a

‘‘Grow/NoGrow’’ (GNG) mutant if the in silico model predicts

growth whereas there is no observed growth in vivo and (b) a

mutant is termed a ‘‘No Grow/Grow’’ (NGG) mutant if the in silico

model predicts no growth in contrast with observed in vivo growth.

In GNG mutants, the model overpredicts the metabolic

capabilities of the organism. GrowMatch automatically restores

consistency in these mutants by suppressing reaction activities to

prevent in silico growth (i.e., by identifying erroneously added

reactions or missing regulation). Conversely, in NGG mutants, the

model underpredicts the metabolic capabilities of the organism.

GrowMatch restores consistency in these mutants by adding

functionalities that ensure in silico growth consistent with in vivo

data. As when GapFill was applied, the additional reactions were

carefully monitored. In all cases, GrowMatch operates so as not to

perturb any correct growth predictions.

Model-Guided Identification of Necessary Medium
Components

We pose the problem of identifying the minimum number of

added components to the growth medium so as to allow for the

formation of all biomass constituents as an optimization problem.
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To this end, we introduce the following additional sets and

variables:

Sets:

SUB(J~set of exchange reactions allowing

the importation of substrate

Variables:

uj~

1, if exchange reaction j is activated to allow

the uptake of the corresponding metabolite

0, otherwise

8>><
>>: ,

Vj[SUB

We minimized the total number of activated substrate exchange

reactions that enable the uptake of growth medium components

through the use of the following optimization formulation:

Minimize
X

j[SUB

uj ð5Þ

subject to

X
j

Sij
:nj~0, V i[I ð1Þ

LBjƒnjƒUBj, V j[J\SUB ð6Þ

LBj
:yjƒnjƒUBj , V j[SUB ð7Þ

vbiomass§v
cutoff
biomass ð8Þ

Equation (6) ensures that the fluxes for all reactions that are not

associated with the uptake of a substrate are within the bounds

defined earlier. When an exchange reaction j is active (uj = 1),

Equation (7) permits its flux to assume non-zero negative values,

thus allowing the uptake of the corresponding substrate.

Conversely, when an exchange reaction j is inactive (uj = 0),

Equation (7) ensures that the exchange reaction can only remove

the corresponding product from the extracellular environment

(i.e., its flux can only assume positive values). Constraint (8) ensures

a minimum amount of biomass formation, with the cutoff set to be

the same as that used for the gene essentiality predictions above

(i.e., one–third of the average maximum biomass flux exhibited by

all the single gene deletions). This MILP problem was also solved

using CPLEX version 11 accessed within the GAMS modeling

environment.
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