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Abstract

How can the central nervous system make accurate decisions about external stimuli at short times on the basis of the noisy
responses of nerve cell populations? It has been suggested that spike time latency is the source of fast decisions. Here, we
propose a simple and fast readout mechanism, the temporal Winner-Take-All (tWTA), and undertake a study of its accuracy.
The tWTA is studied in the framework of a statistical model for the dynamic response of a nerve cell population to an external
stimulus. Each cell is characterized by a preferred stimulus, a unique value of the external stimulus for which it responds fastest.
The tWTA estimate for the stimulus is the preferred stimulus of the cell that fired the first spike in the entire population. We
then pose the questions: How accurate is the tWTA readout? What are the parameters that govern this accuracy? What are the
effects of noise correlations and baseline firing? We find that tWTA sensitivity to the stimulus grows algebraically fast with the
number of cells in the population, N, in contrast to the logarithmic slow scaling of the conventional rate-WTA sensitivity with N.
Noise correlations in first-spike times of different cells can limit the accuracy of the tWTA readout, even in the limit of large N,
similar to the effect that has been observed in population coding theory. We show that baseline firing also has a detrimental
effect on tWTA accuracy. We suggest a generalization of the tWTA, the n-tWTA, which estimates the stimulus by the identity of
the group of cells firing the first n spikes and show how this simple generalization can overcome the detrimental effect of
baseline firing. Thus, the tWTA can provide fast and accurate responses discriminating between a small number of alternatives.
High accuracy in estimation of a continuous stimulus can be obtained using the n-tWTA.
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Introduction

In recent years, there has been growing interest in coding

information about external stimuli by the fine temporal structure of

the neural dynamic response [1–18]. Several studies have shown that

response latency is modulated by external stimuli [1–4]. Many cells in

the middle temporal (MT) cortex code for the direction of motion of

visual stimuli, and can be characterized by a preferred direction of the

stimulus, to which they respond maximally, see e.g., [19,20]. Osborne

et al. [1] reported that the MT cells respond with the shortest delay

when the stimulus is in their preferred direction and that the response

delay increases as the stimulus direction diverges from the preferred

direction of the cell. In the auditory system of the ferret, Nelken et al.

[2] showed response-latency tuning in primary auditory cortex cells to

the direction of a virtual sound source. In a recent work Gollisch and

Meister [18] showed that relative first-spike times of retinal ganglion

cells carry considerable information about the external stimulus, but

they did not suggest a concrete readout mechanism.

Here we study the accuracy of a simple readout mechanism, the

temporal-Winner-Take-All (tWTA), which extracts information

from response latency. The tWTA estimates the stimulus by the

identity of the cell that fired the first spike in a population of cells,

in contrast to the conventional rate-Winner-Take-All (WTA),

which estimates the stimulus by the identity of the cell that fired

the most spikes. For example, the tWTA estimate for the direction

of motion of a visual stimulus from the responses of a population of

MT cells would be the preferred direction of the cell that fired the

first spike in the entire population.

Considerable theoretical effort has been devoted to the study of

the accuracy of population code readout mechanisms, such as the

population-vector, optimal-linear and ideal observer readouts. Of

particular interest in the investigation of these readouts was the

dependence of the readout accuracy on the population size and

the effects of noise correlations in the neuronal responses. In this

work, we quantify tWTA accuracy. To this end, we address three

specific questions. One, what are the essential features of the

neuronal dynamic response to the stimulus to which the tWTA is

sensitive? Two, how does the tWTA accuracy depend on the

population size? Three, what are the effects of noise correlations

and baseline firing on tWTA accuracy?

These questions are addressed in the framework of a statistical

model for the dynamic response of MT cells to a moving visual

stimulus. In the first part of the results section we investigate

tWTA accuracy in a two-column competition model, and in the

second part we study tWTA accuracy in the framework of a

hypercolumn model. Both parts start by defining the statistical

model of the neuronal dynamic response and then follow with an

investigation of tWTA accuracy in the absence of noise

correlations and baseline firing. In the final stage of each part,

correlations and baseline firing are introduced and their effect on

tWTA accuracy is investigated.

Results

tWTA Readout Accuracy in a Two Competing Columns
Model

The model. We study tWTA accuracy in a model of two

competing MT columns coding for the direction of motion of

visual stimuli. Each column is comprised of N homogeneous cells.

We denote the preferred direction of the cells in column 1 by w1
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and the preferred direction of the cells in column 2 by w2. Without

loss of generality, we take w1~0, which is equivalent to measuring

all angles with respect to w1. We denote the probability density of a

single cell k (k~1, . . . N) in column i with preferred direction wi to

fire its first spike at time t
ið Þ

k given that stimulus h was presented at

time to~0 by f t
ið Þ

k h{wij
� �

. Assuming that first-spike times are

statistically independent, the probability density of the first spike in

the entire column i at time t is given by the product of three terms:

the probability density of a specific cell to fire its first at time t,
f t h{wijð Þ, the probability that that the first spike times of the rest

N{1ð Þ cells in the population occurred after time t,

1{
Ð t

0
dt’f t’ h{wijð Þ

� �N{1
, and the N different possibilities of

choosing the cell that fired the first spike:

P min
k

t
ið Þ

k

n o
~t

� �
~Nf t h{wijð Þe N{1½ �W t h{wijð Þ ð1Þ

W t h{wijð Þ~log 1{

ðt

0

dt’f t’ h{wijð Þ
� �

ð2Þ

The function W is the logarithm of the probability of a single cell

firing its first spike after time t, and it has the following properties:

W 0ð Þ~0, W t??ð Þ~{? and
dW tð Þ

dt
v0. Equation (1) can also be

obtained by taking the derivative of the probability that the first

spike in the column occurred after time t:

P mink t
ið Þ

k

n o
wt

� �
~eNW t h{wijð Þ, with respect to first spike time, t.

Throughout this section, we will quantify tWTA accuracy by

using the two alternative forced choice (2AFC) paradigm. In a

2AFC discrimination task, the system is given a stimulus, either h1

or h2, randomly with equal probabilities. Presentation of the

stimulus generates a population response in the two columns, t 1ð Þ

and t 2ð Þ, which are distributed as defined above. The task of the

readout is to infer, on the basis of these spike times, whether the

stimulus was h1 or h2. We will use the probability of correct

discrimination, PC , and the error rate, Pe~1{PC , as measures of

the tWTA performance. We will use the term sensitivity to designate

the inverse of the stimulus difference, Dh, at which PC crosses a

certain threshold, Pth. This latter measure is related to the ‘just

noticeable difference’ used in psychophysics.

tWTA accuracy in the absence of correlations. Assuming

that column 1 responds faster to a stimulus in direction h1 than

column 2 and vice versa for stimulus h2, we define the tWTA

readout in the 2AFC task as follows:

decide first stimulus was
h1 min t

1ð Þ
k

n o
vmin t

2ð Þ
k

n o
h2 min t

2ð Þ
k

n o
vmin t

1ð Þ
k

n o
8><
>: ð3Þ

For the sake of convenience, we take h1~w1~0 and h2~w2~dh.

This choice equalizes the probability of correct response given

stimulus h1 and given stimulus h2. The probability of correct

response, PC , is given by the probability that population 1 fired the

first spike, given stimulus h. Thus, PC can be written as the

integration over all possible first-spike times, t, of the probability

density that population 1 fired its first spike at time t multiplied by

the probability that the first spike time of population 2 is large than t:

PC~N

ð?
0

dtf t 0jð Þe N{1½ �W t 0jð ÞzNW t dhjð Þ ð4Þ

In the limit of large populations, N??, the integral in the right-

hand-side of equation (4) will be dominated by the region in which

the exponent obtains its maximum. Since W is a monotonically

decreasing function of t, this region is the region of small t. For small

t, we approximate f by:

f t hjð Þ&r hð Þa hð Þ
t{t hð Þ½ �a hð Þ{1

z ð5Þ

where r is the scale parameter, a is the shape parameter, t is the

delay parameter and x½ �z~x for xw0 and 0 otherwise.

Relation to the peri stimulus time histogram (PSTH) in an

inhomogeneous Poisson process (IHPP). The IHPP is

widely used to model the stochastic nature of the neural

temporal response [21,22] and is fully defined by the PSTH. In

the context of first spike-time distribution, the choice of an IHPP

model does not limit the generality of the model, since every

PSTH, r tð Þ, of an IHPP could be mapped to first spike time

distribution, f tð Þ, and vice versa. For a given IHPP with PSTH,

r tð Þ, the first spike time distribution is given by (see e.g., [21,22])

f tð Þ~r tð Þe{
Ð t

0
r t’ð Þdt’ ð6Þ

In the other direction, we want to obtain the PSTH, r tð Þ, that will

yield a specific first spike time distribution, f tð Þ, in an IHPP

model. The probability density that the first spike has occurred in

time tzdt in an IHPP model, can be written as the product of the

probability density of spiking at that time, r tð Þ, multiplied by the

probability that there were no prior spikes, 1{
Ð t

0
f t’ð Þdt’; hence,

f tzdtð Þ~ 1{
Ð tzdt

0
f t’ð Þdt’

� �
r tzdtð Þ. Thus we obtain the

reciprocal relation

r tð Þ~ f tð Þ
1{

Ð t

0
f t’ð Þdt’

ð7Þ

which could be verified by substituting equation (7) into equation

(6). For small t: f tð Þ&r tð Þ. Thus, the scale parameter corresponds

to the scale of the PSTH, the shape parameter governs the initial

Author Summary

Considerable experimental as well as theoretical effort has
been devoted to the investigation of the neural code. The
traditional approach has been to study the information
content of the total neural spike count during a long
period of time. However, in many cases, the central
nervous system is required to estimate the external
stimulus at much shorter times. What readout mechanism
could account for such fast decisions? We suggest a
readout mechanism that estimates the external stimulus
by the first spike in the population, the tWTA. We show
that the tWTA can account for accurate discriminations
between a small number of choices. We find that the
accuracy of the tWTA is limited by the neuronal baseline
firing. We further find that, due to baseline firing, the
single first spike does not encode sufficient information for
estimating a continuous variable, such as the direction of
motion of a visual stimulus, with fine resolution. In such
cases, fast and accurate decisions can be obtained by a
generalization of the tWTA to a readout that estimates the
stimulus by the first n spikes fire by the population, where
n is larger than the mean number of baseline spikes in the
population.
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acceleration of the PSTH, and the delay parameter measures the

temporal shift of the PSTH. Figure 1 illustrates how the different

parameters that characterize the initial neural response: scale,

shape and delay, affect the first spike probability density and the

corresponding PSTH. Note that whereas f tð Þ and r tð Þ are very

similar for small t, for large t, f tð Þ decays to zero while r tð Þ may

continue to increase. Below we study the different effects of the

tuning of these parameters on the accuracy of the tWTA.

Effect of scale parameter tuning. We first consider a

simple model in which the scale is the only parameter that is tuned

to the stimulus. In this case, we can write f near t~0 as the

product of a function of the stimulus and a function of time:

f t hjð Þ~r hð Þa t½ �a{1
z ð8Þ

where a is independent of h. Expanding W in small t,

W t hjð Þ&{r hð Þta=a and substituting in equation (4), we obtain

to a leading order in 1=N

PC~
1

1z
r dhð Þ
r 0ð Þ

� �a ð9Þ

Hence, in this case, the probability of correct response is at chance

level, Pchance
C ~1=2, when the neural response has the same scale

for the two alternatives, r 0ð Þ~r dhð Þ, and increases monotonically

in the ratio
r 0ð Þ
r dhð Þ. The accuracy of the tWTA is not improved by

increasing N: The same accuracy will be obtained with N~1 and

N~1000 cells, but, somewhat faster for the N~1000 case.

Figure 2a shows the probability of correct discrimination as a

function of N for different values of
r dhð Þ
r 0ð Þ ~0,0:2 . . . 1 from top to

bottom. The open circles are estimates of the tWTA accuracy

obtained by averaging the tWTA accuracy over 106 realizations of

Figure 1. Three examples showing the effects of the scale parameter (a,b), the shape parameter (c,d), and the delay parameter (e,f)
on the first spike time probability density, f tð Þ, (left column) and the PSTH rate, r tð Þ, of a corresponding inhomogeneous Poisson
process (right column). The PSTHs were taken to be of the form of r tð Þ~ra t{t½ �a{1

z (compare with equation 5), and f tð Þ is obtained via the
relation of equation (6). The parameters used to generate the plots are as follows. For a and b: t~0 ms, a~2, and r as appears on the figure. For (c,d):
t~0 ms, r~20 Hz, and a as appears on the figure. For (e,f): a~, r~40 Hz, and t as appears on the figure.
doi:10.1371/journal.pcbi.1000286.g001
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the neural stochastic response. The dashed line shows the

analytical prediction of equation 9 with a~1.

Effect of shape parameter tuning. In the case where only

the shape parameter, a, is tuned to the stimulus, we write:

f t hjð Þ~ra hð Þ t½ �a hð Þ{1
z ð10Þ

where r is independent of h. We assume that population 1, with

preferred direction w1~0, fires faster than population 2, with

preferred direction w2~dh, given stimulus h~0, in the sense that

for short times the probability of firing of cell in population 2 is

larger than that in population 1; hence, a 0ð Þva dhð Þ. To compute

PC in the limit of large populations, equation (4), it is convenient to

make a change of variables to u tð Þ~{ W t 0jð ÞzW t dhjð Þ½ �, yielding:

PC~N

ð?
0

du
1

1z
_WW t uð Þ dhjð Þ
_WW t uð Þ 0jð Þ

e{Nu ð11Þ

where _WW is the time derivative of W,
_WW t hjð Þ: d

dt
W t hjð Þ~{f0 tð Þe{W t hjð Þ. To leading order in small t

for a 0ð Þva dhð Þ, t uð Þ& a 0ð Þuð Þ1=a 0ð Þ

r
. Applying Watson’s Lemma [23]

we obtain the asymptotic approximation for the error rate:

Pe!N
{

a dhð Þ
a 0ð Þ{1

h i
ð12Þ

Figure 2. tWTA performance in a 2AFC discrimination task between stimulus 0u and dh in a two-column model as function of the
number of cells in the population. Open symbols show numerical estimation of the tWTA performance as obtained by averaging the probability
of correct discrimination over 106 realizations of the stochastic neural responses. Probability distribution of first spike times followed an IHPP with the
following PSTHs. (a) Scale parameter tuning: r t h{wijð Þ~r h{wið ÞH tð Þ with r 0ð Þ~50 Hz and dr~

r dhð Þ
r 0ð Þ ~0,0:2 . . . 1 from top to bottom. The dashed

lines show the analytical prediction of equation (9). (b) Shape parameter tuning: r t h{wijð Þ~rH tð Þta h{wið Þ with r 0ð Þ~50 Hz, a 0ð Þ~1 and
da~

a dhð Þ
a 0ð Þ ~1:5,1:75,2 from top to bottom. The tWTA performance is shown in terms of P

{1=g
e where g~

a dhð Þ
a 0ð Þ {1. The dashed lines show linear

regression lines in keeping with the prediction of equation (12). (c) Delay parameter tuning: r t h{wijð Þ~rH t{t h{wið Þð Þ with r 0ð Þ~50 Hz, t 0ð Þ~0
and t dhð Þ~2 ms. The tWTA performance is shown in terms of minus the log of the error rate. The solid line shows the analytical prediction of
equation (15).
doi:10.1371/journal.pcbi.1000286.g002
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Hence, in this case, the probability of error decays algebraically with

N to zero. This scaling of the readout accuracy with population size

is similar to the scaling of the conventional rate-WTA accuracy with

population size [24]. For small dh, a dhð Þ&a 0ð Þzdha’ 0ð Þ, we

obtain:

Dh{1&
a 0ð Þlog Nð Þ

a’ 0ð Þ log 1{Pthð Þj j ð13Þ

Thus, although in this case tWTA sensitivity improves by utilizing

larger populations, this logarithmic improvement is extremely slow.

Figure 2b shows the discrimination error rate to the power of

{1=c~{
a dhð Þ
a 0ð Þ {1
� �{1

as a function of N for different values of

a dhð Þ
a 0ð Þ ~1:5,1:75,2 from top to bottom. The open squares are

estimates of the tWTA accuracy obtained by averaging tWTA

accuracy over 106 realizations of the neural stochastic response. The

dashed lines show linear regression fits to the curves, in keeping with

the asymptotic relation of equation (12).

Effect of delay parameter tuning. In the case where the

delay parameter, t, is the only the parameter that is tuned to the

stimulus, we write:

f t hjð Þ~fo t{t hð Þð ÞH t{t hð Þð Þ ð14Þ

where H xð Þ is the Heavyside function: H xð Þ~1 for xw0 and 0

otherwise. In this case. we find (see Methods) that the probability

of error decays exponentially fast with the population size, N:

Pe:1{PC~A að ÞN{B að Þe{N W t 0jð Þj j ð15Þ

B að Þ~
0 0vaƒ1

a{1 1va

�
ð16Þ

where A að Þ is defined in Methods. Hence, in this case, the tWTA

error rate decays to zero exponentially with N , in contrast to the

slow algebraic scaling of the conventional rate-WTA accuracy

with the population size [24]. For small dh, we can expand the

delay parameter, t, in dh and approximate t dhð Þ&t’dh; for small

dh, we thus find that tWTA sensitivity grows algebraically with N:

Dh{1~
log 1{Pthð Þ

_WW t 0jð Þ
N ð17Þ

in contrast to the logarithmic scaling of the conventional rate-

WTA sensitivity with population size [24]. Figure 2c shows minus

the logarithm of the discrimination error rate in the case of delay

parameter tuning to the stimulus. The open squares are estimates

of the tWTA accuracy obtained by averaging tWTA accuracy over

106 realizations of the neural stochastic response. The solid line

shows the analytical prediction of equation (15).

The different effects exerted by scale, shape and delay

parameters on the scaling of the tWTA accuracy with the

population size highlights the sensitivity of the tWTA to fine details

of the first-spike-time distribution. Nevertheless, in the general

case, all parameters will be tuned to the stimulus. The dominant

contribution to the tWTA accuracy will result from the tuning of

the delay parameter. Hence, the tWTA error rate will decay

exponentially fast to zero with N, and the sensitivity will scale

algebraically with N . We will therefore focus hereafter on models

in which the delay parameter is tuned to the stimulus and ignore

the tuning of other parameters to the stimulus.

Two important factors may have a considerable effect on the

tWTA accuracy are addressed below. The first is noise correlations

in the fluctuations of first spike times of different cells. It has been

shown that noise correlations have a considerable effect on

population code readout accuracy [25–29]. The second factors is

nonzero baseline firing rate.

Effect of correlations on the tWTA accuracy. How should

the covariance between first spike times of different cells be

modeled? One possible mechanism that can cause correlated firing

is having a shared input. Two cells that receive a common input that

fluctuates above its mean will integrate it over time and reach

spiking threshold sooner than their average first spike time. If the

common input fluctuates below its average value, spike time of both

cells will be delayed. It is reasonable to assume that cells that are

functionally close, i.e., have similar preferred directions, will have

more common input. Hence, their first spike times are expected to

be more positively correlated. motivated by this intuition, we model

correlations by adding a uniform random shift, t ið Þc, to the spike

times of the cells in column i~1,2, which represents the effect of

fluctuations in shared inputs to cells in every column. Thus, we write

the first spike time t
ið Þ

k of neuron k in population i as the sum of a

correlated term and an independent term:

t
ið Þ

k ~t ið Þczt
ið Þu

k ð18Þ

where t
ið Þu

k

n o
are statistically independent, given the stimulus, with

probability distribution f u
i t hjð Þ. We assume that, given stimulus h,

f u
2 t hjð Þ is delayed relative to f u

1 t hjð Þ by t, i.e., f u
2 t hjð Þ~0 for tvt

whereas f u
1 t hjð Þw0 for tw0. The correlated components, t 1ð Þc and

t 1ð Þc, are independent, with probability distribution f c tð Þ. In the

limit of large N, the probability of correct discrimination is given by

(see Methods):

lim
N??

PC~

ð?
0

dtf c tð Þ
ð?

tzt

dt’f c t’ð Þ ð19Þ

Hence, for large populations, the uncorrelated fluctuations can be

ignored, and the probability of correct discrimination saturates to a

size-independent limit. Figure 3 shows the performance of the

tWTA, in terms of percent correct discrimination, as a function of

the number of cells in each column, N , for increasing values of

tc~0,1,2,3 ms from top to bottom. In the simulations, we used a

model in which only the delay parameter is tuned to the stimulus.

Specifically we took: f u
i t hjð Þ~re{r t{t h{wið Þð H t{t h{wið Þð Þ with

t 0ð Þ~0 and t dhð Þ:t~2 ms. For the correlated, part we used

f c tð Þ~e{t=tc
�

tc. In this case we obtain (see Methods):

PC~1{
1

2

1

1{ N
Neff

� �{2
e{Neffrt z

1

1{ N
Neff

� �2
e{Nrt

0
B@

1
CA ð20Þ

Neff~
1

rtc

ð21Þ

In the absence of correlations, tc?0[Neff??, equation (20)

converges to equation (15) with a~0 and W t 0jð Þ~{rt. The error

rate, Perr~1{PC , decays to zero exponentially with the number of

cells, N . In the presence of correlations, tcw0, for small

populations, N%Neff , the tWTA error rate decays exponentially

with N, as in the uncorrelated case, equation (15). When N*Neff ,

The Temporal-Winner-Take-All
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tWTA performance reaches the saturation regime, and tWTA

accuracy converges to a finite limit for N??:

lim
N??

PC~1{
1

2
e{Neff rt~1{

1

2
e{ t

tc , tcw0ð Þ ð22Þ

Hence, in the presence of correlations for large N , the tWTA error

rate is an increasing function of tc, which saturates to chance level

(chance level: Pchance
C ~1{Pchance

e ~
1

2
) in the limit of tc??.

Effect of baseline firing on tWTA accuracy. In the above

analysis we assumed zero baseline firing for all cells. However,

nonzero baseline firing may have a significant effect on the tWTA

accuracy. To incorporate baseline firing into our model, it is most

convenient to use the framework of the IHPP, which is defined by

the PSTH. The PSTHs of the two populations are modeled by:

ri t hjð Þ~roz r{roð ÞH t{T{ti h{wið Þð Þ ð23Þ

where, ro is the baseline firing rate (rovr) and T is the duration in

which both columns fire at baseline prior to responding selectively

to the stimulus. The function t hð Þ is the tuning of the delay

parameter. As above we take t 0ð Þ~0 and t dhð Þ:t. In this case,

we find:

PC~
1

2
za e{b1N{e{b2N
� �

ð24Þ

a~
1

1z
ro

r

{
1

2
ð25Þ

b1~2Tro ð26Þ

b2~2Trozt rozrð Þ ð27Þ

Figure 4 shows the probability of correct discrimination as a

function of N for different values of T~0,1,5,10 ms from top to

bottom. For any positive T , the probability of correct discrimi-

nation, PC , decays to chance level, Pchance
C ~0:5, exponentially fast

with N for large N . This decay results from the fact that the

probability of not spiking in the time interval before time T decays

to zero exponentially with N. For T~0, the probability of correct

response will saturate exponentially to Pmax
C ~

1

1z ro

r

(compare

with equation (9)) which can be high for low baseline firing rate,

ro=r%1. For small N, there exists a region,

NvNmax~
log 1z t

T
1z r

ro

h i� �
t rzroð Þ , in which PC increases with N .

The temporal n Winners-Take-All (n-tWTA). To

overcome the detrimental effect of baseline firing we generalize

the tWTA to a family of readouts, n-tWTA, that are determined

by the subgroup of cells that fired the first n spikes. In a 2AFC

competition between two homogeneous columns, the n-tWTA
estimates the stimulus by the preferred direction of the column

that fired the first n spikes. In the model of delayed step function

response PSTH, equation (23), spikes that are fired in the absolute

delay period, from time 0 to time T , are independent of the

stimulus and hence carry no information. The informative time of

spiking is that from time T to time Tzt, where firing rates of the

cells depend on the stimulus. For a given population size, N , the

mean number of spikes fired during the absolute delay time is

NroT . During the informative period, an average of Nrt spikes is

being fired by the informative group. Taking Nrtwn&NroT
diminishes the detrimental effect of baseline firing and conserves

the essential information embedded in the temporal order of the

Figure 3. Effect of correlations on the tWTA readout accuracy.
The probability of tWTA correct response, PC , in the presence of noise
correlations is shown as a function of the population size, N . Open
squares show numerical estimation of the probability of correct
response by averaging over 105 trials of simulating the network
stochastic response. The model was defined as in section ‘effect of
correlations on the tWTA accuracy’. We write the first spike time t

ið Þ
k of

neuron k in population i as the sum of a correlated term and an

independent term: t
ið Þ

k ~t ið Þczt
ið Þu

k (see equation 18), where t
ið Þu

k

n o
are

statistically independent, given the stimulus, with probability distribution
f u
i t hjð Þ. Specifically, here we took: f u

i t hjð Þ~re{r t{t h{wið Þð H t{t h{wið Þð Þ
with t 0ð Þ~0 and t dhð Þ:t~2 ms. The probability density of the
correlated part, t ið Þc , is given by f c tð Þ~e{t=tc

�
tc . The parameters that

were used for the simulations are: r~50 Hz, t~2 ms and tc~0,1,2,3 ms
from top to bottom. The solid lines show the analytical result of
equation (20).
doi:10.1371/journal.pcbi.1000286.g003

Figure 4. Effect of baseline firing on tWTA readout accuracy.
The probability of tWTA correct response, PC , in the case of nonzero
baseline firing is shown as a function of the population size, N ,
equation (24), for T~0,1,5,10 ms from top to bottom. Parameters used
for this graph are: t~5 ms, r~50 Hz and ro~1 Hz.
doi:10.1371/journal.pcbi.1000286.g004
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neural responses. Figure 5 shows the percent correct

discrimination of the n-tWTA, as a function of n. In this case,

the average number of baseline spikes fired during the absolute

delay time is NroT~1, and PC does indeed increase as n is

increased from n~1 and to almost perfect discrimination at about

n~5. During the informative period of spiking, an average of

Nrt~25 spikes are fired by the ‘correct’ group. As expected, the

probability of correct discrimination deteriorates for nwNrt~25.

In this example, the performance of the n-tWTA will decay to

chance level in the limit of large n, since we did not incorporate

any scale differences in the firings of the two populations. Thus, a

reasonable choice of n can eliminate the effect of baseline firing

and greatly improve the performance of the tWTA.

Note that the optimal region for n, depends on the population

size. For any fixed n, increasing the population size increases the

number of baseline spikes fired during the absolute delay period,

NroT . Hence, for Nwn=roT the n-tWTA performance will decay

to chance level. An alternative n-tWTA generalization is to

estimate the stimulus by the preferred direction of the first single

cell that fired n spikes, see [2]. Results for this later generalization

are qualitatively similar to those of the former in this model.

tWTA Estimation Accuracy in a Hypercolumn Model
The model. We study the tWTA estimation accuracy in a

hypercolumn model of N cells coding for an angular variable, h,

such as the coding for the direction of motion of a visual stimulus

by MT cells. Each cell k[ 1, . . . Nf g is characterized by its

preferred direction wk~
2pk
N

to which it responds fastest. Spike time

distributions of different cells are modeled by independent IHPPs

with PSTH rk t hjð Þ~r t h{wkjð Þ, for cell k, k~1, . . . N.

The tWTA estimate of the stimulus is given by the preferred

direction, wk, of the cell k that fired the first spike

ĥh~arg min
wk

t wkð Þf g ð28Þ

where t wkð Þ denotes the time of the first spike of cell k, following

presentation of the stimulus. Throughout this section, we quantify

tWTA sensitivity by the inverse of the root-mean-square

estimation error, Dh{1:1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S h{ĥh
� �2

T

r
, where SXT denotes

averaging of X over the distribution of spike times for a given

external stimulus h.

tWTA accuracy in the absence of correlations. The

probability of the tWTA estimator to be ĥh[ wkf gN
k~1, is given by

the probability that the first spike in the population was fired by

the cell with preferred direction ĥh:

P ĥh hj
� �

~

ð?
0

dtr t h{ĥh



� �

e
{
PN

k~1

Ð t

0
dt’r t’ h{wkjð Þ ð29Þ

Empirical examples of first spike time tuning to an angular

external stimulus is shown for example in [1,2]. Since tuning of the

delay parameter makes the dominant contribution to the tWTA

accuracy (see above), we now analyze the case of a delayed step

function PSTH model with stimulus-independent scale and shape

parameters. Specifically, we take the instantaneous firing rate of

cell k with preferred direction wk, given that stimulus h was

presented at time to~0, to be:

rk tð Þ~rH t{t wk{hð Þð Þ ð30Þ

This simple choice of PSTH does not limit the generality of our

results but rather clarifies the analysis such that our conclusions

are not obscured by non-relevant parameters. Figure 6 shows

typical population response to stimulus h~0. The dots on row w
show the spike times of a single cell with preferred direction w. The

dashed line shows the delay tuning function, t wk{hð Þ~
5 1{cos wk{hð Þ½ � ms, which yields the minimum possible spike

time for each preferred direction.

The delay tuning function, t wð Þ, is assumed to be a periodic

function of w. We further assume that the delay function, t wð Þ, is a

continuous, even function of its argument with a single minimum

at w~0. For cells with preferred directions close to the stimulus,

Figure 5. Performance of the n-tWTA readout in a 2AFC
discrimination task in a two-column model. The probability of
correct discrimination of the n-tWTA readout is shown as function of n.
The probability of correct discrimination was estimated by averaging
over 105 realizations of the neural stochastic response in an IHPP model
for spike time distribution as defined in equation (23) with: N~100,
r~50 Hz, ro~1 Hz, T~10 ms and t~5 ms.
doi:10.1371/journal.pcbi.1000286.g005

Figure 6. Simulation of a hypercolumn population raster plot.
Spiking responses of 360 cells coding for an external stimulus h~00

during a single trial are shown. Each line shows the spike-times of a
single cell. The cells are arranged according to their preferred directions.
Spike times of cell with preferred direction w was modeled by an IHPP
with PSTH r tð Þ~rH t{t w{hð Þð Þ, where r~50 Hz is the rate and the
latency function is t Qð Þ~5 1{cos Qð Þ½ � ms. The dashed line shows
t w{hð Þ.
doi:10.1371/journal.pcbi.1000286.g006
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we can approximate the delay function by:

t wk{hð Þ&b wk{hj ja ð31Þ

where a[ 1,2½ � characterizes the delay tuning function near its

unique minimum, for a smooth delay function a~2, and b is a

constant in units of time. Since the tWTA is affected only by the

fastest cells, we can use the approximation of equation (31) to

describe the delay function of the entire hypercolumn, bearing in

mind that the likelihood of cells with preferred directions that are

far removed from the stimulus to affect the tWTA decays

exponentially fast with N.

Using the continuum limit approximation for the exponent in

the right hand side of equation (29), we evaluate the conditional

probability density of the estimation error of dĥh:h{ĥh and obtain:

P dĥh
� �

*
ðpa

dhj ja
dt exp {

a

az1
bNt

az1
a

� �
ze{ a

az1
bN ð32Þ

In the limit of large N, P dĥh
� �

is of O 1ð Þ in N for dĥh~O N{ 1
1za

� �
and decays exponentially with N for dĥh&N{ 1

1za. Hence, we

obtain the following scaling law for the tWTA accuracy:

Dh{1!N1= 1zað Þ ð33Þ

As in the two-column competition in the 2AFC paradigm, the

sensitivity of the tWTA readout in a hypercolumn model scales

algebraically fast with N , in the absence of noise correlations and in

the limit of low baseline firing. This fast scaling is in contrast to the

slow logarithmic scaling of the conventional rate-WTA readout

accuracy wih the population size [24]. Figure 7 shows tWTA

sensitivity, in terms of the inverse root mean square estimation

error, as a function of the population size in a hypercolumn model

for a~1,1:2 . . . 2 from top to bottom. The open squares show

numerical estimation of the sensitivity as obtained by averaging

tWTA error over 104 realizations of simulating the network

stochastic response. The solid lines show fits using the analytical

result of equation (33) with a~1,1:2 . . . 2 from top to bottom.

Effect of correlations on the tWTA estimation

accuracy. To model first spike time correlations in a

hypercolumn, we write the spike times of each cell as the sum of

correlated and uncorrelated parts

tk~tu
kzxcos wkð Þzysin wkð Þzz ð34Þ

where the uncorrelated parts, tu
k, are taken to be distributed

according to an IHPP with a PSTH rk tð Þ~rH t{t wk{hð Þð Þ. For

the sake of simplicity, we take t wð Þ~t 1{cos wð Þð Þ. The terms x, y
and z are the correlated components of the spike times. The z term

represent the effect of shared input to the entire hypercolumn,

whereas, x and y represent the effect of shared input that is

stronger for columns that are functionally closer, i.e., have smaller

preferred directions difference. We assume that the correlated

noise has zero means SxT~SyT~SzT~0 and variance

Sx2T~Sy2T~t2
c and Sz2T~t2. Figure 8 shows typical

realizations of the population response during a single trial of

presenting stimulus h~0 in the presence of noise correlations. In

Figure 8b tc~0 and t~10 ms. The uniform correlations

generates collective fluctuations that shift the entire population

response right (as in the specific realization in the figure) and left of

the dashed line that shows t wk{hð Þ. Nevertheless, this fluctuation

exists in a collective mode of the neural responses that does not

alter the order of firing and hence does not affect tWTA accuracy.

In Figure 8a tc~10 ms and t~0. In this case, the collective

fluctuations shift the response of the entire population up and

down (as in the specific realization in the figure). These

fluctuations limit the accuracy in which the tWTA can estimate

the stimulus. In the limit of large N, the error is dominated by the

correlated response. Neglecting the uncorrelated part of the

fluctuations, we obtain (see Methods):

Dh~
tc

t
ð35Þ

where Dh is measured in radians. Note that equation (35) takes the

form of a signal-to-noise ratio, where the signal is the modulation

amplitude of the delay function, t, and the noise is the component

of collective noise correlations that affect the tWTA estimation, tc.

The tWTA sensitivity, equation (35), is independent of the

collective fluctuations in the uniform direction, t.

Figure 9 shows the asymptotic accuracy of the tWTA as a

function of the noise-to-signal ratio
tc

t
. The solid line shows the

analytical result of equation (35) in the limit of large N. The open

squares show numerical estimation of asymptotic accuracy using a

population of size N~105 cells. The finite size of the network

limits the ability of the numerical estimate to follow the analytic

curve at high accuracy (low noise levels). To compensate

somewhat for this effect, an extremely high firing rate was used

in the simulations.

Effect of baseline firing on the tWTA accuracy. The effect

of nonzero baseline firing on tWTA estimation accuracy is studied

in the framework of a hypercolumn IHPP model with a delayed

step function PSTH. Specifically, we took the following PSTH for

the response of cell k with preferred direction wk:

rk tð Þ~roz r{roð ÞH t{T{t wk{hð Þð Þ ð36Þ

where T is the absolute delay, t hð Þ§0 is the tuning of the delay

Figure 7. Estimation accuracy of the tWTA readout in a
hypercolumn model. The accuracy of the tWTA readout, in terms
of one over the squared estimation error of estimating h~0, is plotted
as a function of the population size, in an IHPP hypercolumn population
model, equation(30). The latency tuning was modeled by t Dhð Þ~
Dhj ja ms (where Dh is measured in radian) with a~1,1:2, . . . ,2 from top

to bottom. Accuracy was measured by averaging the squared
estimation error over 10,000 trials of simulating the neuronal stochastic
response (squares). The solid lines show the analytical fit using
equation (33).
doi:10.1371/journal.pcbi.1000286.g007
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parameter with t 0ð Þ~0. For T~0 in the limit of large N , we can

approximate the probability of the tWTA estimator to be

ĥh[ wkf gN
k~1, equation (29), by:

Po ĥh hj
� �

~
1

Z 1z
r{ro

ro

e{Nrot ĥh{hð Þ
� �

ð37Þ

where Z is a normalizing factor of the probability distribution.

Figure 10a and 10b show histograms of tWTA estimations of

stimulus h~0 for N~360 and N~3600, respectively, in this

model with T~0. The solid line shows the analytical

approximation, equation (37). The distribution is characterized

by a narrow peak around zero error, with a width that decreases to

zero as N grows to infinity and a uniform probability for large

errors. The ratio of the peak distribution of the zero error (at ĥh~h)

to the distribution of a specific large error is given by r=ro.

However, since the width of the peak decreases as N increases

(compare Figure 10a and 10b), the average squared estimation

error increases for large N, even in for T~0, in contrast to the

effect of baseline firing in the 2AFC, where at T~0 the

probability of correct response is an increasing function of N. A

hallmark of the tWTA readout is the high kurtosis of the

estimation error.

In the case of Tw0, using equation (37), one obtains

PT ĥh hj
� �

~ 1{e{NroT
� �

ze{NroT Po ĥh hj
� �

ð38Þ

Hence, in this case the peak to base ratio of the distribution is

decreased and decays exponentially to zero with the product

NroT . This effect is shown by the histogram of tWTA estimation

errors in Figure 10c where we took N~3600 and T~1 ms
(compare with Figure 10b where N~3600 and T~0 ms). The

solid line shows the analytical approximation of equation (38).

Figure 8. Simulation of a hypercolumn population raster in the presence of correlations. Spiking responses of 360 cells coding for an
external stimulus h~00 during a single trial are shown. Every line shows the spike-times of a single cell. The cells are arranged according to their
preferred directions. Spike times are distributed as defined in the section ‘effect of correlations on tWTA accuracy’, see equation (34), with r~50 Hz
and t Qð Þ~15 1{cos Qð Þð Þ ms. For the correlated part: (a) tc~10 ms, t~0 ms; (b) tc~0 ms, t~10 ms. The dashed line shows t w{hð Þ.
doi:10.1371/journal.pcbi.1000286.g008
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Discussion

At the time of the first spike, the tWTA is the ideal observer and,

in the case of angle estimation, it is also the population vector

readout. If a decision must be made at very short times, then the

tWTA is the best readout. It is therefore important that we know

and understand the capabilities and limitation of this readout.

Scaling of the tWTA accuracy with the population size, N, can

show a wide range of behaviors: from constant in N (equation 9),

through logarithmic (equation 13) to algebraic (equation 17).

These different scaling regimes depend on fine details of the tuning

of the probability distribution of the first-spike-times or alterna-

tively on the initial rise of the PSTH response to the stimulus. In

the generic case in which scale, shape and delay parameters are all

tuned to the stimulus, the tWTA accuracy will increase

algebraically with N, in contrast to the expected logarithmic slow

scaling of the conventional rate-WTA readout [24]. Nevertheless,

the tWTA is expected to show high sensitivity to the inherent

neuronal diversity at the level of single cell response properties (see

e.g., [30]). This sensitivity of the tWTA predicts considerable

subject-to-subject variability in psychophysical performance as

well as large fluctuations in the psychophysical accuracy for the

same subject under different stimuli conditions, such as discrim-

inating h1 and h1zdh versus discriminating h2 and h2zdh.

Noise correlations in the fluctuations of first-spike times of

different cells have a drastically detrimental effect on the tWTA

accuracy, limiting the effective number of degrees of freedom in

the network and resulting in finite error levels, even in the limit of

large N , see e.g., equations (21), (22) and (35) and Figures 3 and 9.

This effect is similar to that has been reported in population

coding literature [25–29,31], and depends on the correlations

structure. Here we investigated the effect of correlations that had

simple spatial structure and no temporal structure. A drastically

detrimental effect on the tWTA accuracy is caused by neuronal

response covariance which generates collective fluctuation that

resembles the ‘signal’, i.e., similar to the tuning of the delay

parameter (see Figure 8). For a detailed discussion on the effects of

correlations structure see [27]. The temporal structure of response

covariance may also have a considerable effect. For example, if the

correlations depend on the absolute time, in a manner that they

are negligible for small t and build up later in time, then they will

not necessarily cause saturation of the tWTA accuracy. However,

better empirical understanding of first spike time correlations is

required to yield sufficient constraint for theoretical study of this

issue. It is important to emphasize that by correlations we mean

first spike time covariance of simultaneously recorded cells, in

contrast to other types of correlations [5].

In a 2AFC, task nonzero baseline firing has a twofold

detrimental effect on the tWTA accuracy. The first is in the case

in which the onset of the tWTA readout precedes the stimulus

response of the fastest cell in the entire population, Tw0. In this

case, the tWTA accuracy will decrease as N is increased beyond

Figure 9. Effect of correlations on the asymptotic tWTA
estimation accuracy in a hypercolumn model. tWTA accuracy, in
terms of the root mean square estimation error, Dh, is shown as a

function of the correlations’ strength,
tc

t

180

p

� �
, in a hypercolumn

model, as defined in section ‘effect of correlations on the tWTA
estimation accuracy’, see equation (34). The solid line shows the
analytical asymptotic value, equation (35). Open squares show the
numerical estimation of the asymptotic value as calculated by
averaging the tWTA estimation error over 100 trials in a hypercolumn
model of N~100,000 cells. The latency function that was used was:
t Qð Þ~2 1{cos Qð Þ½ � ms. To minimize the effect of finite N , an extremely
high firing rate of r~5K Hz was used in the IHPP simulations.
doi:10.1371/journal.pcbi.1000286.g009

Figure 10. Effect of baseline firing on the tWTA estimation in a
hypercolumn model. Histograms of tWTA estimation of stimulus
h~0 were obtained in a model of delayed step function response to
the stimulus, equation (36), with t hð Þ~t 1{cos hð Þð Þ, and parameters:
t~50 ms, r~50 Hz and ro~1 Hz. Population size was N~360 in (a)
and N~3600 in (b,c). Histograms were estimated using 106 repetitions
in (a,b) and using 107 repetitions in (c). The solid lines are analytical
approximations of equation (37) in (a,b) and equation (38) in (c).
doi:10.1371/journal.pcbi.1000286.g010
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some optimal value Nmax. This effect can be minimized by

obtaining a more accurate estimate for the minimal response time

of the cells in the population, i.e., effectively decreasing T [5]. The

second effect is a saturating effect, which limits the maximal

accuracy that can be obtained by the tWTA, Pmax
C ~

1

1z ro

r

, even

for T~0. Note that, although Pmax
C is less than 1, psychophysical

accuracy is also finite. The value of Pmax
C can be rather high in

cases in which the baseline firing is small relative to the stimulus

response. These effects can be decreased for any given N by using

a generalized n-tWTA readout that makes a decision according to

the population that fired the first n spikes, see Figure 5.

Nevertheless, for any given fixed value of n, increasing the

population size, N, will decrease the n-tWTA performance to

chance level, for Tw0. Hence, for fast decisions there are

advantages to reading out the responses of small neuronal

populations rather than larger populations.

Baseline firing has similar detrimental effects on the tWTA

readout in estimation tasks (see Figure 10). A hallmark of the

tWTA readout that can serve as a prediction is its high kurtosis.

There are various ways to generalize the tWTA to use more than

one spike in order to overcome the detrimental effect of baseline

firing. One option is that readout is determined by the preferred

direction of the single cell that fired the first n spikes. An

alternative generalization is to define the readout by a ‘vote’ of

cells that fired the first n spikes in the population. In the later case,

different weights may be assigned to the votes. The utility of the

different possible generalizations is expected to depend largely on

the structure of the correlations in the neuronal initial dynamic

response to the stimulus.

In a series of highly influential papers, Thorpe and colleagues

(see e.g., [12,14]), have highlighted the possible role of spike

latency as primary source of information in the CNS and have

shown, for example, how an image falling on the retina could be

reconstructed from a spike latency (see also work of [15]). In the

context of this work, their readout could be thought of as a specific

choice for the n-tWTA generalization. Here, we presented a

systematic investigation of the tWTA accuracy that allows for

comparison with psychophysical accuracy; hence, enables testing

of the hypothesis that tWTA is actually used by the CNS. In

addition, our analysis provides a framework that allows for the

understanding and the investigation of the effects of correlations

and baseline firing on the tWTA accuracy.

Neural network implementations of the tWTA. Consi-

derable theoretical effort has been devoted to the investigation of

neural network models that can implement the conventional rate-

WTA [32–43]. These studies have focused on inputs that are constant

in time and differ by their scale. However, it has been acknowledged

that the temporal structure of the inputs may have a considerable

effect on the WTA readout [43]. This effect shows the sensitivity of

existing rate-WTA neural network models to the order of firing and

demonstrates the capability of neural networks to implement a tWTA

computation. Indeed one can imagine the responses of the (assumed

excitatory) hypercolumn network that code for the external stimulus

by their spike time latency, being input to a n-tWTA readout layer of

laterally all to all connected inhibitory neurons. Once, input to a

inhibitory cell crosses firing threshold of n excitatory post synaptic

potential, it will fire and silence the rest of the network. Investigation

of various neural network implementations, their limitations and

deviations from the mathematically ideal tWTA and the

computational consequences of these deviations if exist is beyond

the scope of the current work and will be addressed elsewhere.

The neural code. To what extent does the CNS use the

tWTA as a readout mechanism? Readout mechanisms used by the

CNS are necessarily dynamic processes that may involve inhibition

and hence generate WTA-like competition between inputs from

different columns. If fast decisions between a small number of

alternatives are required, then the tWTA can provide the correct

result with high probability. In such a case, we predict that the

readout will be determined by competition between relatively small

groups of cells rather than by the entire cell population that

responds to the stimulus so as to decrease the effect of baseline

firing. Such decisions include, for example, estimation of the

direction of motion of a visual stimulus at a low resolution of 45u.
However, for discrimination between many alternatives the tWTA

is limited by the baseline firing. Why is this task more sensitive to

baseline firing? Consider an example in which estimation of the

direction of motion of a visual stimulus is required at a precision of

3.6u. For this angular resolution, a population of at least N~100
cells is needed. Let us assume that at the stimulus onset the

‘correct’ cell fires at a rate of r~100 Hz while the rest of the

population fires at a baseline rate of ro~1 Hz. During the first

t~10 ms of stimulus presentation, the ‘correct’ cell will fire an

average of tr~1 spike, while the rest of the cells will fire an

average of N{1ð Þtro~0:99 spikes; thus, the tWTA is expected to

err in more than 3.6u in about 50% of the cases. Hence, fine

estimation tasks cannot rely on the single first spike, and our theory

predicts that in these cases the first n spikes must be considered

where n should be larger than the average number of baseline

spikes. How should the n-tWTA combine the information from

the first n spikes? The answer to this question depends on the

temporal structure of correlations, fine details of the PSTH, and

on our assumptions on the computational capabilities of this

readout and is beyond the scope of the current paper. The current

work provides the essential framework for addressing this question.

To further study the hypothesis that the CNS actually uses the

tWTA better empirical understanding of the tuning of first spike

time distribution to the stimulus, baseline firing, and the spatial

and temporal structure of noise correlations is required.

Methods

Calculation of tWTA Accuracy in 2AFC in the Case of
Delay Parameter Tuning to the Stimulus

Substituting equation (14) into equation (4), we obtain the

probability of correct discrimination as sum of two terms:

PC~I1zI2 ð39Þ

I1~{N

ðt dhð Þ

0

dt _WW t 0jð ÞeNW t 0jð Þ ð40Þ

I2~{N

ð?
t dhð Þ

dt _WW t 0jð ÞeN W t 0jð ÞzW t dhjð Þð Þ ð41Þ

The integral I1, equation (40), can be evaluated exactly, yielding

the contribution of

I1~1{eNW t 0jð Þ ð42Þ

where we have used t as shorthand for t dhð Þ. The contribution of

I2 to PC is positive; hence, the tWTA error rate, in this case, will

decay to zero exponentially with the population size N .
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For the calculation of I2, equation (41), we change variables to

u tð Þ~{ W t 0jð Þ{W t 0jð ÞzW t dhjð Þ½ �, yielding:

I2~Ne{N W t 0jð Þj j
ð?

0

du
1

1z
_WW t uð Þ dhjð Þ
_WW t uð Þ 0jð Þ

e{Nudu ð43Þ

where for a small positive t:t{t, _WW t dhjð Þ&{rat
a{1

. Assuming
_WW t 0jð Þ=0, the leading term in t uð Þ, for small u, is given by:

t uð Þ&

auð Þ1=a

r
0vav1

u

_WW t 0jð Þ


 

zr

a~1

u

_WW t 0jð Þ


 

 1va

8>>>>>><
>>>>>>:

ð44Þ

Using Watson’s Lemma to evaluate I2 to leading order in N, we

obtain

PC&
1{e{N W t 0jð Þj j 1{A að ÞN{B að Þ� �

0vav1

1{e{N W t 0jð Þj jA að ÞN{B að Þ 1ƒa

(
ð45Þ

where

A að Þ~

_WW t 0jð Þ


 

C 1

a

� �
a

1
a{1

r
0vav1

r

rz _WW t 0jð Þ


 

 a~1

raC að Þ
_WW t 0jð Þ


 

 1va

8>>>>>>><
>>>>>>>:

ð46Þ

and

B að Þ~

1
a {1 0vav1

0 a~1

a{1 1va

8><
>: ð47Þ

Calculation of the tWTA Accuracy in 2AFC with
Correlations

For a given stimulus h, the probability density, P1 tð Þ, that the

first spike of population 1 occurred at time t is

P1 tð Þ~{N

ðt

0

dt’f c t’ð Þ _WWu
1 t{t’ð ÞeNWu

1 t{t’ð Þ ð48Þ

where Wu
i tð Þ~{log 1{

Ð t

0
dtf u

i t hjð Þ
� 


. The probability density,

P2 tð Þ, that population 2 did not fire before time t is given by:

P2 tð Þ~{N

ð?
t

dt’’f c t’’ð Þ _WWu
2 t{t’’ð ÞeNWu

2 t{t’’ð Þ ð49Þ

Assuming the tWTA decides the stimulus is h if the first spike

comes from population 1, the probability of correct response is:

PC~

ð?
0

dtP1 tð ÞP2 tð Þ

~

ð?
0

dt

ðt

0

dt’
ð?

t

dt’’N _WWu
1 t{t’ð ÞeNWu

1 t{t’ð ÞN _WWu
2 t{t’’ð ÞeNWu

2 t{t’’ð Þf c t’ð Þf c t’’ð Þ
ð50Þ

In the limit of large N, N??, we obtain N _WWu
1 t{t’ð ÞeNWu

1 t{t’ð Þ?
d t{t’ð Þ, and due to the delay N _WWu

2 t{t’’ð ÞeNWu
2 t{t’’ð Þ?

H t{ t{t’’½ �ð Þ, we thus obtain

lim
N??

PC~

ð?
0

dtf c tð Þ 1{

ð?
t

f c t’’ð Þ
� �

ð51Þ

In the specific example of Figure 3, the following model was used.

The uncorrelated part of the first spike times was generated by an

IHPP with a delayed step function PSTH, yielding the first-spike-

time probability density: f u
i t hjð Þ~re{r t{t h{wið Þð H t{t h{wið Þð Þ

with t 0ð Þ~0 and t dhð Þ:t. For the correlated part, we used an

IHPP model with PSTH, yielding: f c tð Þ~e{t=tc
�

tc. From

equation (48), the probability density, P1 tð Þ, that the first spike in

column 1 occurred at time t, is given by:

P1 tð Þ~Nr

ðt

0

dt 1ð Þc 1

tc

exp {
t 1ð Þc

tc

{Nr t{t 1ð Þc
� �� �

ð52Þ

The probability density, P2 tð Þ, that no cell in column 2 had fired

until time twt, equation (49), is equal to the probability that the first

spike of the cells in column 2 occurred at any time t’wt:

P2 tð Þ

~Nr

ð?
t

dt’
ðt’{t

0

dt 2ð Þc 1

tc

exp {
t 2ð Þc

tc

{Nr t’{t 2ð Þc{t
� �� � ð53Þ

Note that for tvt, P2 tð Þ~1. The probability of correct

classification is given by:

PC tð Þ~
ðt

0

dtP1 tð Þz
ð?

t

dtP1 tð ÞP2 tð Þ ð54Þ

Substituting equations (52) and (53) into equation (54) and

integrating one obtains the result of equation (20).

tWTA Accuracy in a Correlated Hypercolumn Model
We now turn to calculate tWTA asymptotic accuracy in the

presence of correlations, see section ‘Effect of correlations on the

tWTA estimation accuracy’. In the limit of large N, the estimation

error will be dominated by the correlated noise. We can, therefore,

neglect the fluctuations of the uncorrelated part, tu
k1 (see equation

(34)), replacing its distribution with a delta function at the first time

the PSTH of cell k is larger than zero:

P tu
k1

� �
~d tu

k1{t wkð Þ
� �

ð55Þ

In this case, for a specific realization of x, y and z we can write the

first spike time of cell k as

tk1~t 1{cos h{wkð Þ½ �zxcos wkð Þzysin wkð Þzz ð56Þ

Without loss of generality, we will assume h~0. The tWTA

estimate for the stimulus, ĥh is obtained by taking the derivative of

equation (56) with respect to wk and equating to zero at wk~ĥh

t{xð Þsin ĥh
� �

zycos ĥh
� �

~0 ð57Þ

For small errors, we can approximate:
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ĥh&
y

t
ð58Þ

and obtain:

Sdĥh2T~
Sdy2T

t2
~

tc

t

� �2

ð59Þ

which is equivalent to the result of equation (35).
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