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Abstract

Blood is a dense suspension of soft non-Brownian cells of unique importance. Physiological blood flow involves complex
interactions of blood cells with each other and with the environment due to the combined effects of varying cell
concentration, cell morphology, cell rheology, and confinement. We analyze these interactions using computational
morphological image analysis and machine learning algorithms to quantify the non-equilibrium fluctuations of cellular
velocities in a minimal, quasi-two-dimensional microfluidic setting that enables high-resolution spatio-temporal
measurements of blood cell flow. In particular, we measure the effective hydrodynamic diffusivity of blood cells and
analyze its relationship to macroscopic properties such as bulk flow velocity and density. We also use the effective
suspension temperature to distinguish the flow of normal red blood cells and pathological sickled red blood cells and
suggest that this temperature may help to characterize the propensity for stasis in Virchow’s Triad of blood clotting and
thrombosis.
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Introduction

Red blood cells are the major component of blood and with a

radius of ,4 mm and a thickness of ,1–2 mm are sufficiently

large that the effects of thermal fluctuations are typically

negligible, i.e. their equilibrium diffusivity is very small

(Dthermal~
kT

f
*0:1 mm2

�
s where f is the viscous drag coefficient

for a flat disk with radius 4 mm in water at room temperature [1]).

However, when suspensions of these soft cells are driven by

pressure gradients and/or subject to shear, complex multi-particle

interactions give rise to local concentration and velocity gradients

which then drive fluctuating particle movements [2–4]. Nearly all

studies of whole blood to date focus on only the mean flow

properties, with few notable exceptions [5]. Since the rheology of

suspensions in general is largely determined by the dynamically

evolving microstructure of the suspended particles [6], it is

essential to measure both the dynamics of individual cells and

the collective dynamics of cells in order to understand how the

microscopic parameters and processes are related to larger scale

phenomena such as jamming and clotting. We complement the

large body of work characterizing the flow of sheared and

sedimenting rigid particulate suspensions [7–11] and here study

the statistical dynamics of pressure-driven soft concentrated

suspensions while making connections to human physiology and

disease. In particular, we provide quantitative evidence that there

is heterogeneity in cellular velocity and density. This heterogeneity

may play a role in the slow flow or stasis that can lead to the

collective physiological and pathological processes of coagulation

or thrombosis, as Virchow noted more than 100 years ago [12].

To investigate the short-time dynamics of flowing red blood cells

we develop and use computational image processing [13] and

machine learning algorithms to segment and track individual blood

cells in videos captured at high spatial and temporal resolution in a

microfluidic device (Figures 1 and 2 and Videos S1, S2, S3, S4, S5,

S6, S7, S8). We measure individual cell trajectories comprised of

more than 25 million steps across more than 500,000 video frames.

These measurements enable us to ask and answer questions about

the variability of velocity fluctuations at the scale of individual

normal and sickled red blood cells with variable shape and rigidity.

We quantify the effect of bulk flow velocity and density on the

microscopic velocity fluctuations, and the role of collective behavior

under pathological conditions which alter these properties.

We utilized microfluidic devices with cross-sectional area of

250 mm612 mm, similar to the devices used to characterize the

phase diagram for vaso-occlusion in an in vitro model of sickle cell

disease [14]. The 12 mm dimension of the microfluidic channels

along one axis confines the cell movements in this direction;

indeed the range of motion is already hydrodynamically limited by

the Fahraeus effect [15]. The primary advantage of this quasi-two-

dimensional experimental geometry is the ability to visualize the
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cells easily, because any significant increase in the size of the

channel in this direction would make the cell tracking impossible.

This small dimension changes the dynamics as compared to those

of cells moving through large circular channels, owing to the

effects of the relatively large shear rates in the narrow dimension

and our inability to measure fluctuations along this axis, but our

system nevertheless enables the characterization and measurement

of the quasi-two-dimensional statistical dynamics of both normal

and pathological blood flow with very high time and spatial

resolution. We chose a set of device and blood parameters relevant

to human physiology and pathology in the microcirculation

associated with capillaries and post-capillary venules. We derived

our quasi-two-dimensional data from the middle fifth of the

250 mm-high channel, where the narrow 12 mm thickness provides

the only significant shearing direction, and this shear rate (,10/

sec) is in the physiological range for the microcirculation [15].

Results

Figure 3a quantifies the planar fluctuations of individual blood

cells in terms of the mean-squared displacement, ÆDr2(t)æ =

Æ(rbulk(t)2rcell(t))
2æ where S:T denotes a spatial average, and shows

that ÆDr2(t)æ = Dt, with an effective diffusion constant D much

larger than the equilibrium diffusivity (,0.1 mm2/s). (See Videos

S1, S2, S3, S4, S5, S6, S7, S8 for examples of this diffusive

behavior.) Thus movement of a cell in relation to the bulk at one

instant becomes rapidly decorrelated with its subsequent move-

ment, except over very short times relative to the time of

interaction between cells. ÆDr2(t)æ is roughly isotropic at shorter

times, and then anisotropic at longer times with fluctuations

parallel to the direction of flow 50% larger than perpendicular to

it, a finding which is qualitatively consistent with observations of

sheared and sedimenting rigid particulate suspensions [3,16]. This

diffusive behaviour is itself dynamical in its origin, being driven by

the relative flow of fluid and cells and the boundary. To

understand this dependence, we also plotted in Figure 3b the

evolution of the scaling exponent a~
logSDr2 tð ÞT{ log D

log t
as a

function of the bulk flow velocity (Vbulk) and red blood cell

concentration for more than 700 different experiments with

different blood samples. We find that an increase in Vbulk from rest

to about 50 mm/s is associated with a change in dynamics from

stationary through sub-diffusive to diffusive. However, over the

pathophysiologically relevant range of densities studied (15%–

45%) there is no consistent effect on the nature of the statistical cell

dynamics. Figure 3b shows significant variation in this dynamical

process, and only by combining measurements of a large number

of cell trajectories are we able to see that the curve flattens with

increasing Vbulk as a approaches 1.0. Further, in Figure 3c we

show that Æaæ,1.0, providing additional support for the conclusion

that the typical flow is diffusive.

A diffusive process has a characteristic length scale l
corresponding to the mean free path that a cell travels before an

interaction, and a characteristic time scale corresponding to the

time between these interactions, typically given by the inverse of

local shear rate _cc, at the low Reynolds numbers typical of

microvasculature flows in vivo as well as in our experiments (where

Re = O(0.01)). Then the effective diffusivity scales as D~C _ccl2,

where C is a dimensionless constant which will depend on

microscopic properties such as cell shape and rigidity. There are

three length scales in the problem that can determine the effective

diffusive length scale l: cell size, cell separation, and cell distance

from the boundary. Different length scales will dominate in

different limits of density, geometry, and cell size, as a cell will

travel only a fraction of the inter-cellular distance before it

interacts with another cell or a boundary. In the unconfined limit

where the boundary is infinitely far away, the only characteristic

scale is the cell size so that l*R, and D*C _ccR2. This dilute limit

has received the most attention to date [2,4], but is far from the

soft, dense, and confined suspensions we study. The two remaining

origins for this characteristic scale are: (i) the distance between cells

(about 3 mm at a two-dimensional density of 33%) which is

comparable to and even smaller than the cell size; (ii) the small

height of our channel, 12 mm, which implies that the discoid red

blood cells interact with the wall. The cells are typically oriented

with their discoid faces perpendicular to the smallest dimension of

the channel. The strong local shear ( _cch~
Vbulk

h
, where 2h is the

channel height) relative to the wall leads to an effective diffusivity

D~C _cchl2, where l~min h,Rð Þ. As has previously been shown

[4,6,16,17], a velocity gradient can lead to particle interactions

and rearrangements in all three principal directions particularly

when the shapes of the particles are non-spherical as here. This is

particularly true in our study because the particles (cells) are disc-

like and deformable, so that the combination of shape anisotropy

and the generation of normal forces via tangential interaction in

soft contact can lead to diffusive motions in the measurement

plane [18]. In Figure 4a, we show this diffusive behaviour for Vbulk

.,50 mm/s. The measured D<8 mm2/s, and C&
1

20
for l ,

3 mm. By sampling over times longer than
Cl

Vbulk

*
1

300
s, our

measurements reach far enough into the asymptotic behavior of

the dynamics to characterize this diffusive process. Over shorter

times, we expect a mixture of diffusive and ballistic dynamics,

though this effect in our results is dominated by the fact that

extremely small displacements are below our analytic sensitivity

and appear as stasis. In addition, cell velocities fluctuate because of

the localized spatio-temporal fluctuations in shear rate, i.e.,

S _cc{S_ccTð Þ2T=0. (See Videos S1, S2, S3, S4, S5, S6, S7, S8.)

These shear rate fluctuations could potentially also contribute to

the effective diffusivity of the cells, but here we limit ourselves to

the simplest mean field picture that ignores the fluctuations in the

shear rate itself.

To assess the relative role of microscopic determinants such as

cell shape and stiffness on this diffusive process, we investigated the

Author Summary

Viewed from a distance, flowing blood looks like a uniform
fluid, but up close the cells in the blood change their
position and speed somewhat heterogeneously. These
individual cell movements may play a role in the
physiology and pathophysiology of nutrient and gas
transport, clotting, and diseases where normal processes
go wrong. To characterize these random motions, we need
to follow individual cells in a very crowded suspension—
cells usually occupy more than one-third of the volume in
blood. We have developed computer software that can
separate individual cells in a crowd and track them as they
flow. We use this software to analyze blood flow at the
level of the cell and find new and possibly important
differences between the blood from healthy patients and
the blood from patients with sickle cell disease, a disorder
in which blood cells become stiff and often stop flowing.
We provide evidence that blood from patients with sickle
cell disease shows decreased random cellular motions and
suggest that this difference may provide a physical basis
for the increased risk of occlusion in sickle cell disease.

Statistical Dynamics of Flowing Red Blood Cells
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behavior of blood cells from patients with sickle cell disease. Red

blood cells from these patients become stiff in deoxygenated

environments as a result of the polymerization of a variant

hemoglobin molecule [19], resulting in a dramatic increase in the

risk of sudden vaso-occlusive events with a poorly understood

mechanism [20]. In Figure 4b, we plot D versus Vbulk for

oxygenated and deoxygenated sickle cell blood and see that for

a given bulk flow rate, the stiffer cells have a smaller diffusivity.

Since D~C _cchl2, our results therefore imply that Cdeoxygenated,

Coxygenated, i.e., the stiffness of the cells influences the dynamics of a

pressure-driven suspension independent of Vbulk, likely due to

changes in the nature of the interactions of cells with each other,

with the channel walls, or with the plasma velocity gradients. The

tangential and normal forces between two fluid-lubricated soft

moving objects is a complex function of shape, separation,

stiffness, relative velocity, and fluid viscosity. Tangential interac-

tions between soft cells lead to normal forces that push the cells

away from each other, thus reducing the friction between them

[18]. Since the effective diffusion coefficient of this driven system is

inversely proportional to the frictional drag, we expect the

diffusion coefficient for the stiffer cells to be smaller than that

for soft oxygenated cells when the flow velocity is held constant, as

is observed.

Discussion

Hydrodynamic interactions between red blood cells lead to

velocity fluctuations and diffusive dynamics of the individual cells.

Figure 1. Cell tracking and experimental setup. The top panel shows a sample tracking image. Cells are segmented using morphological
criteria and are tracked from frame to frame. The middle panel shows a subset of tracked cells, each with a bounding box. Each cell has a series of
small color circles projecting from its centroid showing the subsequent trajectory. The black arrows represent that particular cell’s velocity fluctuation
relative to the median, with magnitude amplified by 4 for visualization. The bottom panel shows the experimental setup which is described in detail
in [14] (see Videos S1, S2, S3, S4, S5, S6, S7, S8 for more detail).
doi:10.1371/journal.pcbi.1000288.g001

Statistical Dynamics of Flowing Red Blood Cells
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Figure 2. Snapshots of the segmentation process for a single video frame. See Methods for more detail. From top to bottom: 1. Raw video
frame; 2. Thresholded binary version; 3. Foreground markers; 4. Background markers; 5. Marker-controlled watershed transformation; 6. Segmented
objects filtered by size and shape. See Videos S1, S2, S3, S4, S5, S6, S7, S8 for additional detail.
doi:10.1371/journal.pcbi.1000288.g002
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Figure 3. Cellular-scale dynamics. The top panel (a) shows average fluctuations in squared cellular displacement as a function of time (e.g.,
ÆDr2(t)æ) with x- and y-axes defined in the top panel of Figure 1. The middle panel (b) shows the nature of the collective microscopic dynamics

characterized by a~
logSDr2 tð ÞT{ log D

log t
(see text). The dynamics are diffusive for Vbulk.50 mm/s. Error bars show medians and standard deviations

for binned data. The bottom panel (c) compares cellular-scale dynamics to cellular volume fraction and shows that density variation in this range has
no effect on the nature of cellular scale dynamics.
doi:10.1371/journal.pcbi.1000288.g003
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Changes in Vbulk or cellular stiffness alter D and therefore control

the magnitude of velocity fluctuations. Cellular velocity fluctua-

tions are quantified by their mean square,

SdV2T~S Vbulk{Vcellð Þ2T, which may be interpreted in the

language of the statistical physics of driven suspensions [16,21] as

an effective suspension temperature. Just as thermal temperature

reflects the mean squared molecular velocity fluctuation, the

suspension temperature reflects the mean squared cellular velocity

fluctuation. This temperature will then change with Vbulk as well as

with particle stiffness. Slower flows will have lower effective

suspension temperature, as will flows of stiffer particles. In Figure 5,

we show the measured probability distribution of dV2 for two

different flow experiments and see that it has longer tails than an

equilibrium Maxwell-Boltzmann distribution owing to the non-

equilibrium nature of the system, consistent with observations in

physical suspensions [3,10]. We may nevertheless use the crude

analogy of an effective temperature to characterize ‘‘hot’’ blood

flow which has increased ÆdV2æ and is also less likely to coagulate

or ‘‘freeze’’ than is a ‘‘cold’’ blood flow where cells are not

fluctuating and local stasis is more likely to arise and to persist.

Virchow’s Triad characterizes the conditions leading to thrombo-

sis as stasis, endothelial dysfunction, and hypercoagulability [12]

and our results offer one possible explanation for why pathological

blood with stiffer cells and smaller cellular velocity fluctuations will

occlude at flow rates where normal blood will not.

In conclusion, we have identified random walk-like behavior for

pressure-driven dense suspensions of soft particles in quasi-two-

dimensional confinement which we quantify in terms of cellular

velocity fluctuations as a function of blood flow rate, shape, and

stiffness. Our results suggest that these fluctuations may be

involved in the collective pathophysiological processes of occlusion

and thrombosis, both of which are strongly heterogeneous in space

and time. While simple scaling ideas are suggestive, a well-defined

microscopic mechanism for this process remains to be established.

Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of Partners Healthcare Systems (2006-

P-000066). All patients provided written informed consent for the

collection of samples and subsequent analysis.

Blood Flow Video Acquisition
Videos were captured of blood flowing in microfluidic devices

under controlled oxygen concentration. Microfluidic fabrication

and blood sample collection and handling are described in detail

elsewhere [14]. Blood flowed through channels with cross-

sectional dimension of 250612 mm and was driven by a constant

pressure head. A juxtaposted network of gas channels allowed

control over the oxygen concentration within the blood channel

network. Blood samples were collected in EDTA vacutainers and

had hematocrit ranging from 18% to 38%. By changing oxygen

concentration in situ, we were able to compare the oxygenated and

deoxygenated behavior of the same sample and largely control for

any differential contributions of the plasma. Videos were captured

at a rate of 60 frames per second, with a resolution of about

6 pixels per micron. (See Videos S1, S2, S3, S4, S5, S6, S7, S8 for

examples.) We note that the rapid rate of deoxygenation in our

studies results in little change in shape for most cells, consistent

with existing understanding of heterogeneous hemoglobin poly-

merization, while the magnitude of the change in stiffness is

expected to be more independent of deoxygenation rate [19,22].

Blood Cell Image Segmentation
We developed morphological image processing algorithms to

identify a significant fraction of the cells in captured frames of

video. See Figure 2 for examples of the segmentation approach.

All software was written in MATLAB (The MathWorks, Natick,

Mass.). These algorithms implement marker-controlled watershed

segmentation, described in detail in reference 13. Marker images

were computed by identifying annular and filled cells of

heuristically-determined sizes and shapes.

Annular cells were defined as fillable holes not touching the border.

Markers for these annuli were created by subtracting border-

contacting high-intensity regions and performing morphologic

reconstruction on the result. This reconstruction operation used a

marker image that was morphologically opened with a 5 mm line

segment oriented in increments of 45 degrees. The reconstruction was

then subtracted from the border-cleared image. The final result was

dilated using a disk with radius 0.2 mm. Filled cells were defined using

granulometry with a circular structuring element of radius 2 mm.

Markers for these cells were selected using two transformations of this

opened image: the distance transformation of the thresholded binary

image followed by the h-maxima transformation with a height of 3.

Background pixels were identified by the skeletonization of a

thresholded binary image. Previously determined cell markers were

added to the binary image. The result was eroded using a disk with

radius 0.5 mm. The skeletonization of this erosion was the background

marker image. Foreground and background markers were used to

impose minima on the intensity gradient of the original image after

background subtraction and histogram equalization. The watershed

transformation was then applied to the gradient of the intensity image.

The watershed catchment basins, or blobs, were then filtered

heuristically by size, shape, and orientation of the objects’ convex

hulls. First-pass thresholds were determined empirically by

manually segmenting several video frames in Adobe Photoshop.

Initial size limits were total convex hull area between 5 and

50 mm2. A measure of convex hull circularity was calculated by

comparing the effective radius based on the object area to the

effective radius based on the object’s perimeter. A circle has a ratio

of 1. All other objects have ratios less than 1. The initial circularity

threshold was set at 0.6. After an initial filtering process, video

frames were re-filtered using thresholds for all morphologic

characteristics based on the mean convex hull metrics with

allowed variation of twice the standard deviation.

Blood Cell Tracking Between Frames
We then developed machine learning algorithms to track these

segmented cells from frame to frame and to compute velocities for

individual cells. For each object segmented in each video frame,

potential ‘‘child’’ cells were iteratively identified in the subsequent

frame and ranked by changes in size, shape, and displacement.

Child cells were reassigned if a better ‘‘parent’’ cell was identified.

Maximum changes in x- and y-displacement were calculated

based on apparent flow rates. Y displacement was limited to

600 mm/s in either direction, and x displacement was limited to

1200 mm/s. Maximum changes in area, perimeter length, and

eccentricity were determined by manual tracking of several video

frames in Adobe Photoshop as part of a validation check on the

tracking algorithm. Area was initially allowed to vary by 50%,

perimeter by 50%, and eccentricity by 60%.

After all cells in a frame were tracked or determined to be un-

trackable, the median inter-frame displacement was computed for all

tracked objects. Any tracking events representing displacements that

were five times greater than the maximum of the median or the

analytic sensitivity threshold (1 mm) were excluded, and the whole

frame was retracked with this tighter displacement threshold.

Statistical Dynamics of Flowing Red Blood Cells
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Tracking events which represented the extension of existing

trajectories were rejected if they represented a change in cell velocity

greater than twice the maximum of the median frame displacement

or an analytic sensitivity threshold. After excluding these inconsistent

tracking events, the whole video frame was retracked iteratively until

no trajectory extensions exceeded this threshold.

Figure 4. Shear-induced diffusion coefficients. The top panel (a) shows the hydrodynamic diffusion coefficient D as a function of the bulk flow
velocity Vbulk for flows fast enough for the diffusive behavior to be recovered, i.e. Vbulk.,50 mm/s based on Figure 3. The bottom panel (b) compares
this relationship for soft oxygenated sickle cells and stiff deoxygenated sickle cells where we see that Ddeoxygenated,Doxygenated. Error bars show
medians and standard error for binned data.
doi:10.1371/journal.pcbi.1000288.g004
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Figure 5. Cellular velocity fluctuations as an effective temperature. These two panels compare probability distribution functions for
normalized squared velocity fluctuations from two different experiments with chi-squared distributions with 2 degrees of freedom. x̂ is normalized
with mean 0 and standard deviation 1, and x- and y-axes are defined in the top panel of Figure 1. This comparison shows that blood flow has an
effective suspension temperature with longer tails as a result of the non-equilibrium nature of the pressure-driven system.
doi:10.1371/journal.pcbi.1000288.g005
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Assessment of Calculated Cell Velocity
Our measured cell velocities were based on more than 25

million displacements calculated across more than 500,000 video

frames. We improved and measured the accuracy of our cell

velocity measurements a number of different ways, including

manual segmentation by an observer of selected video frames and

manual tracking by an observer of selected of cells from frame to

frame. Inaccuracies in cell velocity measurements can be separated

into two categories: errors in the location of a cell, and errors in

the assignment of a tracking event for two identified cells. We took

a series of steps to reduce the magnitude and bias of this noise and

to ensure that it does not influence our results.

Reducing noise in cell location. The first type of inaccuracy

comes from the need to assign a single pixel location to each cell. We

chose the centroid of each segmented pixel blob. Because of random

variation in image intensity due to lighting and movement of cells

out of the focal plane, the calculated centroid for a given cell cannot

be established with absolute precision. We estimated this

uncertainty first by optimizing our segmentation algorithm based

on several video frames segmented manually in Adobe Photoshop,

and second by manually tracking several dozen trajectories and

comparing our manual cell positions with those of the segmentation

and tracking algorithms. We determined that the analytic resolution

of the combined segmentation and tracking algorithms was at least

5 pixels (,1 mm), meaning that the true location of a cell identified

in a video frame could vary at least 5 pixels in any direction from

the calculated position. This analytic sensitivity was then used to

form a tolerance in heuristic cell tracking.

Reducing noise from false positive tracking events. The

second type of inaccuracy comes from the false positive linking of

segmented blobs in successive video frames. These false positive

tracking events could involve actual but distinct cells as well as

spurious cells. In any video frame, there is a chance that non-

cellular regions (e.g., circular regions of plasma bordered by cells)

will have an intensity pattern similar enough to that of a cell to be

identified as a cell. If these regions persist from one frame to the

next, they may be falsely identified as a tracked cell, and their

‘‘velocities’’ will degrade the accuracy of our results. We took steps

to prevent the introduction of such false positives in our data, and

we took further steps to reduce the impact these false positives.

To prevent the introduction of false positives in our data, we

first optimized our segmentation algorithm to minimize the

introduction of false positives. We manually segmented several

video frames using Adobe Photoshop and optimized our cellular

segmentation algorithms by comparing calculated segmentation

functions to manual segmentation functions. We then filtered

image blobs by morphologic characteristics including area,

perimeter, orientation, eccentricity, and shape. Thresholds for

this heuristic filtering process were developed from the analysis of

several manually-segmented video frames.

To reduce the impact of false positives and to improve the

accuracy of the tracking algorithm, we used several heuristics.

Tracking events were identified by evaluating cells in two passes.

In the first pass, wide tolerances were used to identify likely

tracking events without bias. The median of these displacements

was then used to form tighter tolerances for a second pass. This

second pass removed any tracking events which required

displacements greater than five times the median displacement

and five times the analytic sensitivity in the x- or y-direction. If a

tracking event was added to an existing trajectory, the integrity or

consistency of that trajectory was assessed. We excluded any

change in displacement relative to the median that was greater

than twice the median in either direction and twice the analytic

sensitivity.

Velocities calculated for all processed videos were then assessed

by comparing with tracking results for random composite videos.

We assembled videos with successive frames randomly stitched

together from different videos or from the same video but sampled

from time points such that no cell would appear on two

consecutive frames. Any tracking events identified in these videos

were false positives. We created dozens of these videos and used

them to estimate the false positive rate of our tracking logic. These

random videos rarely yielded more than 10 tracking events

between successive frames. We doubled this number and used a

conservative threshold of 20 tracking events. We excluded any

video from our analysis if a single pair of successive frames yielded

fewer than 20 tracking events.

False positive tracking events were less likely to persist in

multiple-step trajectories. For well-tracked videos, most of the

shorter trajectories would persist as longer trajectories. We

established minimum quality thresholds for the number of longer

trajectories as a proportion of shorter trajectories. If too few of the

shorter trajectories were successfully tracked for more frames, the

videos were excluded from the analysis.

The image processing errors for each frame are likely to be

independent from one frame to the next. The true velocity

fluctuations, however, are likely to be correlated from frame to

frame over very short times. We can therefore look at these

measured fluctuations in velocity between different cells over

increasing time intervals and confirm that they decrease as they

are averaged over more and more frames. We know that over long

times, there is a well-defined bulk flow velocity. Individual cells do

not zoom ahead of the bulk over long times, nor do they stop in

the middle of the stream for significant periods of time. Over long

times, the fluctuations of individual cell velocities must therefore

regress to zero, and the coefficient of variation measured over

these long times will tend to zero, as is the case for these instances

of normal blood in steady flow. The decreasing coefficient of

variation therefore supports the validity of these velocity

measurements.

The segmentation and tracking algorithms work best for cells

that are isolated, appear in the focal plane, and generate a sharp

phase contrast in the microscope. Cells in this subset which retain

these characteristics across several frames will contribute very

accurate velocity measurements. One can therefore be very

confident that the median cell velocities calculated for cells with

long trajectories will be valid. We can then compare cumulative

displacements of cells with long tracking trajectories to overall

cumulative displacements to assess the validity of tracking

information derived from a given video.

Assessing noise in final data. Finally, in our data analysis,

we compared our overall results to those for subsets of our data

consisting of velocities calculated only from longer trajectories as

compared to velocities calculated for shorter trajectories. We

reasoned that the noise in our data set remaining after data

processing is more prevalent in the shorter trajectories. The effects of

limited analytic sensitivity will average out over long trajectories, and

false positive segmentation and tracking events are very unlikely to

persist across several frames. We re-ran our analysis using these

reduced data sets and confirmed our reported findings.

Measurement of Two-Dimensional Cell Density
We measured projected cell density first by thresholding

grayscale intensity images using the MATLAB graythresh

function. We then combined this thresholded image with the

foreground cell markers calculated by our segmentation algorithm.

Under steady state conditions, we would expect this density

calculation to be relatively stable.
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Previous studies have reported a coefficient of variation for

hematocrit of 3% due to biological variation, and another 3% due

to analytic variation achieved with commonly used automated

hematologic analyzers [23]. These automated analyzers work with

typical volumes of (20,000 cells*1/0.4 total volume/cell volu-

me*80 mm3 cell volume/cell = 46106 mm3), which is about 100

times larger than the volume projected in a typical video frame.

The relationship between an actual three-dimensional volumet-

ric density and a projected two-dimensional density depends on

the orientation of the red blood cells and the depth of the flow

chamber in the direction of the projection. Under steady state

conditions, our density measure is stable over time with a

coefficient of variation typically between 10% and 25%.

Supporting Information

Video S1 A 3-second video of sickle cell blood captured at 60

frames per second flowing in 10% oxygen at about 53 mm/s.

Found at: doi:10.1371/journal.pcbi.1000288.s001 (8.16 MB AVI)

Video S2 Video S1 with segmented cells highlighted in color.

Color will stay constant if the cell is tracked from one frame to the

next.

Found at: doi:10.1371/journal.pcbi.1000288.s002 (8.14 MB AVI)

Video S3 Video S1 showing all tracked cell trajectories greater

than 4 frames long. Each tracked cell also has a black line showing

4 times the velocity deviation vector with respect to the bulk.

Found at: doi:10.1371/journal.pcbi.1000288.s003 (8.17 MB AVI)

Video S4 Video S1 showing a translating rectangular frame of

reference. The rectangle moves with the bulk in the bottom panel,

and this translating frame is the frame of reference in the top

panel.

Found at: doi:10.1371/journal.pcbi.1000288.s004 (2.90 MB AVI)

Video S5 A 3-second video of sickle cell blood captured at 60

frames per second flowing in 0% oxygen at about 59 mm/s.

Found at: doi:10.1371/journal.pcbi.1000288.s005 (8.15 MB AVI)

Video S6 Video S5 with segmented cells highlighted in color.

Color will stay constant if the cell is tracked from one frame to the

next.

Found at: doi:10.1371/journal.pcbi.1000288.s006 (8.15 MB AVI)

Video S7 Video S5 showing all tracked cell trajectories greater

than 4 frames long. Each tracked cell also has a black line showing

4 times the velocity deviation vector with respect to the bulk.

Found at: doi:10.1371/journal.pcbi.1000288.s007 (8.16 MB AVI)

Video S8 Video S5 showing a translating rectangular frame of

reference. The rectangle moves with the bulk in the bottom panel,

and this translating frame is the frame of reference in the top

panel.

Found at: doi:10.1371/journal.pcbi.1000288.s008 (2.68 MB AVI)
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