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Abstract

Many genetic networks are astonishingly robust to quantitative variation, allowing these networks to continue functioning in
the face of mutation and environmental perturbation. However, the evolution of such robustness remains poorly understood
for real genetic networks. Here we explore whether and how ploidy and recombination affect the evolution of robustness in a
detailed computational model of the segment polarity network. We introduce a novel computational method that predicts the
quantitative values of biochemical parameters from bit sequences representing genotype, allowing our model to bridge
genotype to phenotype. Using this, we simulate 2,000 generations of evolution in a population of individuals under stabilizing
and truncation selection, selecting for individuals that could sharpen the initial pattern of engrailed and wingless expression.
Robustness was measured by simulating a mutation in the network and measuring the effect on the engrailed and wingless
patterns; higher robustness corresponded to insensitivity of this pattern to perturbation. We compared robustness in diploid
and haploid populations, with either asexual or sexual reproduction. In all cases, robustness increased, and the greatest
increase was in diploid sexual populations; diploidy and sex synergized to evolve greater robustness than either acting alone.
Diploidy conferred increased robustness by allowing most deleterious mutations to be rescued by a working allele. Sex
(recombination) conferred a robustness advantage through ‘‘survival of the compatible’’: those alleles that can work with a
wide variety of genetically diverse partners persist, and this selects for robust alleles.
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Introduction

Phenotypic robustness, also called canalization [1], is the ability

of a phenotype to persist when challenged by a perturbation to the

system producing it. Many phenotypes are not the product of an

individual gene, but rather arise from interactions within larger

gene networks. The functions of several well-studied networks

have been shown or predicted to be robust to quantitative

variation in the biochemical kinetics [2–8]. This variation can

come from both intrinsic (genetic) and extrinsic (environmental)

sources: Genetic diversity (polymorphism) within populations can

produce variation in gene expression levels and in the activity of

gene products [9–13]. In a genetically diverse, sexually reproduc-

ing population, recombination is continuously producing new

combinations of alleles, and robustness to genetic variation would

confer a fitness advantage. This intuition is supported by

experiments showing much genetic variation is hidden—i.e.

quantitative variation between individuals has no detectable effect

on phenotype [10]. Another source of perturbation is environ-

mental: Individuals can transiently experience a broad range of

potentially noxious environments (due to pH, oxygen level,

starvation conditions, or temperature) that alter protein activity

and potentially disrupt gene networks. While only genetic effects

are heritable, genetic and environmental variation both perturb

network dynamics, and robustness to one may confer robustness to

the other [14–16].

A possible mechanism to increase robustness is diploidy, as

mutations can be masked by a functional copy (a recessive mutation),

allowing greater tolerance to mutation. However, it is unclear

whether diploidy is an advantage in genetic networks, because it is

also potentially harmful: a diploid network will have mutations twice

as often as a haploid, and a single bad allele could break the network

(a dominant mutation). Most deleterious mutations in enzyme coding

genes are recessive to the wild type alleles [17–19]. For metabolic

networks, Kacser and Burns [20] showed theoretically that most

mutations are recessive because in long metabolic pathways each

individual enzyme contributes weakly to the total flux. This theory

was formulated for metabolic networks where all gene products were

enzymes, and it may not hold for gene regulatory networks [21,22].

Importantly, a majority of disease-causing mutations in transcription

factors are dominant [23]. Experimental evolution on yeast, which

can exist either as haploids or diploids, has shown that different

ploidies are advantageous under different conditions [24–26]. The

advantage of diploidy depends on the frequency of deleterious

dominant mutations, mutation rates, and other factors [27–30].

However, this is an oversimplification because if most deleterious

mutations are recessive, the evolutionary advantage of diploidy

remains questionable as the effects of rare beneficial recessive

mutations could likewise be masked. Such masking of beneficial

mutations in a diploid population has been observed in antibiotic

resistance evolution in yeast [25]. Thus, models investigating the

effects of ploidy on robustness need to incorporate both the spectrum
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of possible mutations, and the functional context in which they occur

(e.g. participation in a network).

Theory predicts that genetic variation combined with gene

interaction favors the evolution of phenotypic robustness

[14,31,32]. The evolution of increased robustness to mutation

(mutational robustness) has been predicted by models of RNA

folding [33,34] and randomly wired transcriptional networks

[5,35,36]. Theory and modeling predict that sexually reproducing

populations, with recombination shuffling alleles, should experi-

ence stronger selection for robustness than asexual populations

[37], and has been shown to hold for randomly-wired interaction

networks [35]. However, it is unknown whether these results hold

for real networks because interactions between mutations may be

more complicated than theoretical studies assume. Additionally,

real networks may have subtle topological or regulatory architec-

ture that differ from randomly-wired model networks in important

ways. Sex and diploidy are commonly found together, and both

may produce greater robustness, but this has not been tested for

gene regulatory networks.

In this study, we investigate how ploidy and sex (recombination)

affect the evolution of robustness in a detailed model of the

segment polarity network. Previous modeling studies focused on

highly simplified and abstract networks [5,33–36], and it is

essential to test whether these findings hold in a realistic network

with a known function. The segment polarity network is a

canonical example of a pattern forming network that is robust to

variation in its underlying biochemical kinetics [2,38]. It is

essential for development in many insects, and the function of its

genes and their interactions within the network are well-

understood. In this network, gene expression is regulated at both

pre- and post-transcriptional levels, with some regulations

requiring cell–cell communication. During development prior to

the operation of the segment polarity network, gap and pair-rule

genes activate expression of wg and en in a noisy prepattern of

stripes. The segment polarity network in Drosophila development

then sharpens and maintains these stripes through the lifetime of

the organism. Correct location of these stripes of expression is

essential for development, as they provide positional information

to activate downstream genes and processes in the proper

locations. Previous work showed that a haploid model reconsti-

tuting the known interactions within this network can robustly

reproduce the observed pattern of gene expression (i.e. the

phenotype) despite large changes in the model parameters

representing the biochemical kinetics [2,38,39].

To investigate the evolution of phenotypic robustness of the

segment polarity network, we developed a novel approach where

model parameters were calculated from a digital genotype, allowing

our model to bridge genotype to phenotype (the pattern of gene

expression) in a way that can capture the quantitative and

qualitative effects of mutation and recombination. Mutations can

alter the strength of interactions, and all connections/processes in

the network can vary and evolve in a simulated population of

organisms. Additionally, we built a diploid model of this network,

which allows 2 versions of each gene and all resulting gene products

to have potentially different kinetics. Using these, we explore how

and whether a diploid model is more robust compared to the

haploid. We simulate a population of individuals (organisms

endowed with the network), with selection only to stabilize the

correct spatiotemporal pattern of expression (phenotype). Using this

more biologically detailed representation of the segment polarity

gene network we compared evolution of robustness in 4 different

populations: sexual haploid, asexual haploid, sexual diploid, and

asexual diploid. We find that diploid sexual networks evolve the

greatest robustness increase and the combination of the two

produces greater robustness than either alone.

Models

We took as a starting point a previous haploid model of the

segment polarity network [2,38,40]. This model, shown in

Figure 1A, reconstitutes the core biological interactions as a set

of ordinary differential equations that govern the time evolution of

mRNA and protein concentrations in a row of 4 cells, starting

from the prepattern of wg and en mRNA expression shown in

Figure 1C. The spatiotemporal pattern of expression depends on

the biochemical parameters in the model. Thus, the model is a

bridge between a kinetic description of the network and the spatial

pattern of gene expression, the phenotype.

In the following paragraphs, we describe extensions to this model

that allow us to simulate evolution of the segment polarity network in

response to selection on the pattern of en and wg expression (the

phenotype). We present a diploid version of the model that allows us

to directly compare evolution and robustness in haploid and diploid

models. We also use a novel framework of deriving model parameter

values from a digital genotype, which allows mutations to alter many

gene properties (i.e. changes in expression level, stability and activity).

Using these, we start with initially viable identical founders and follow

them through 2,000 generations of evolution as shown in Figure 2A.

We use the model to calculate phenotype (the en and wg pattern of

expression) from genotype, apply truncation or stabilizing selection

on the phenotype, using a multinomial sampling scheme to simulate

random mating with a fixed population size (N = 200) and a per-gene

mutation rate (m) of 0.03.

Model of the Haploid Segment Polarity Network
Mathematically, our model of the haploid segment polarity

network is the same as described previously [2,38] with 2

modifications: (1) The equations incorporate parameters for

transcriptional and translational synthesis rates (which were

previously removed by nondimensionalization). Including these

parameters does not alter the dynamic repertoire of the system,

and allows mutations to alter the expression levels of the mRNA &

Author Summary

Most so-called ‘‘higher organisms’’ are diploid (have two
copies of each gene) and reproduce sexually. Diploidy may
be advantageous if one functional copy can mask the
effects of a mutation in the other copy; however, it is a
liability if most mutations are dominant. Sex can increase
genetic diversity and the rate of evolution by creating new
combinations of alleles that might function better
together but can also disrupt working combinations.
Given these trade-offs, why are sex and diploidy so
common, and why do they occur so often together? We
hypothesize that sex and diploidy allow gene networks to
evolve to function more robustly in the face of genetic and
environmental variation. This robustness would be advan-
tageous because organisms are exposed to constantly
changing environments and all genes undergo mutation.
To test this hypothesis, we simulated evolution in a model
of the segment polarity network, a well-studied group of
genes essential for proper development in many organ-
isms. We compared the robustness of haploid and diploid
populations that reproduced either sexually or asexually.
Sexually reproducing diploid populations evolved the
greatest robustness, suggesting an explanation for the
selective advantage of diploid sexual reproduction.

Ploidy and Sex on Evolution of Robustness
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proteins. (2) Cells were 4-sided (changed from 6-sided) to allow

faster computation. This change did not alter the hit rate of

successful solutions in a random parameter search, nor did we

notice a change in the dynamical behavior of the system.

The segment polarity network was reconstituted into a system of

ordinary differential equations. The dependent variables in this

system represent the concentrations of the biomolecules in each

cell (for cytoplasmic/nuclear molecules) or membrane compart-

ment (for membrane-bound molecules). The system simulates a

row (4 cells wide) of square cells with repeating (toroidal) boundary

conditions to represent a 2-D sheet of interacting cells. The

concentration of a membrane-bound protein can be different on

each of the 4 sides of a cell (each side is treated as a separate

compartment), and we simulate diffusion by allowing molecules to

transfer between cells and membrane compartments where

appropriate. The time rate of change for a given concentration

is simply the sum of the processes/mechanisms influencing it:

dXi,j

dt
~synthesis+conversion+transport{decay ð1Þ

where Xi,j is the concentration of molecule X in side j of cell i.

Decay, binding, and translation follow standard mass-action

kinetics (1st or 2nd order). The detailed kinetics of enzymatic

activity and translational activation have not been measured in the

segment polarity network, so these processes are constructed from

Hill functions as described previously [2,40]. Briefly, if protein A

activates production of molecule X, then:

dX

dt
! W A,K ,nð Þ ð2Þ

where W is the Hill function:

W A,K ,nð Þ~
A
K

� �n

1z A
K

� �n ð3Þ

and where A is the concentration of the activator, X is the

concentration of target, K is the concentration of A where

activation is half maximal, and n is the cooperativity (Hill

coefficient). This parameterization is attractive because it can be

tuned to capture a wide range of activation curves with parameters

that are commonly used in standard enzyme kinetics and these

parameters are, in principle, measurable. Additionally, this

function enforces expected qualitative behavior of biological

processes: saturation (biological processes tend to saturate above

some level of activation, after which further addition of activator

ceases to have an effect) and monotonicity.

The complete list of equations and parameters are listed in

Protocol S1 and Tables S1 and S2. All software was written in

Mathematica version 5.2 (Wolfram Research). The system of

equations was integrated using Mathematica’s built-in NDSolve

numerical differential equation solver. To guard against errors in

numerical integration, we tested a subset of the solutions generated

by Mathematica to that returned by Ingeneue [40,41]. Ingeneue

uses a different numerical integration scheme than Mathematica,

and shares no code, and we found no difference between the

solutions returned by the two programs.

From Haploid to Diploid Models of the Segment Polarity
Network

The model shown in Figure 1A is a haploid network, with a

single form of each gene. We constructed a diploid model of the

Figure 1. Model of the segment polarity network. (A) Interactions
in the haploid segment polarity network adapted from von Dassow
(2000). The model incorporates regulatory interactions between 5
genes in the segment polarity network. mRNAs are indicated by
lowercase ovals, proteins by uppercase squares. Solid lines indicate
fluxes, dashed lines are regulatory interactions, activators end in
arrowheads, inhibitors end in circles. Large rectangles indicate cell
membranes. The model simulates a row of 4 cells endowed with
identical networks to that shown here. The row of cells has toroidal
topology and simulates a 2-D sheet of cells. (B) A piece of the diploid
segment polarity network showing the subset of interactions drawn red
in (A). In the diploid network, each gene has 2 alleles with the
corresponding products that participate in the same regulatory
interactions but may do so with quantitative differences between the
2 alleles. The number of regulatory interactions in the diploid network
can be more than doubled because of the increased combinatorics in
diploid networks. (C) Initial conditions for en and wg gene expres-
sion(left), and we required the segment polarity network sharpen the
en and wg expression by 200 minutes (right). Cells with low initial
expression of wg and en must have even lower expression by
200 minutes of development, while the cells expressing initially high
wg and en must maintain high expression.
doi:10.1371/journal.pcbi.1000296.g001

Ploidy and Sex on Evolution of Robustness
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network with 2 versions of each gene and gene product. Figure 1B

shows the diploid network for only the ptc and cid genes; both the

number of distinct biomolecules (boxed items) and the number of

interactions (lines) can increase by a factor of 2 or more. In the

diploid model, there are 2 distinct versions of each mRNA and

protein. However, for complexes, such as the Patched-Hedgehog

dimer, there are 4 possible distinct dimers (4 ways to combine the

2 HH and 2 PTC proteins).

In the diploid network, all molecules maintain the same

activities as in the haploid, but the presence of two alleles must

be correctly implemented to follow the established biology of

diploidy. Fluxes/conversions (solid lines in the network diagram)

are doublings of the haploid version: translation, decay, exo &

endocyctosis, and diffusion. For example, each protein is

translated only from the corresponding mRNA; i.e. CID1 protein

is translated only from cid1 mRNA, while CID2 protein is

translated from cid2 mRNA (and we assume it is independent of

cid1 translation). Similarly, the two versions of each biomolecule

decay independently with 1st order kinetics (we assume the decay

of one allele does not affect the rate of decay of its homologue).

Regulatory interactions (dotted lines in the network) become more

complex in the diploid network, as we must account for the

combined regulatory activity of both alleles. In the example in

Figure 1B, each of the two CID proteins can have a potentially

different effect on the activity of each of the ptc target genes, so the

number of arrows (regulatory interactions) has quadrupled

compared to the haploid case.

For diploid networks, we construct an extension of the Hill

function to allow for two activators controlling expression of a

target. Here, we extend the example of Equation 2 for two

activators (A1 and A2) that can have different efficacies in

activating two targets (X1 and X2):

dX1i

dt
! C A1,A2,KA1X1,KA2X1,nX1ð Þ

dX2i

dt
! C A1,A2,KA1X2,KA2X2,nX2ð Þ

ð4Þ

where X1 and X2 are the concentrations of the two alleles of target

gene X, and A1 and A2 are the concentrations of the two alleles of

activator A, and C is an extension of W (described below). KA1X1

describes how efficiently A1 influences X1 synthesis (i.e. how well

transcription factor A1 activates the production synthesis of X1 by

Figure 2. Bridging genotype to phenotype to simulate
evolution. (A) Flowchart of evolutionary model. A population of
individuals is generated, and their genotype determines their pheno-
type. Individuals are subject to either truncation or stabilizing selection,
and viable individuals mate (if sexual) or divide (if asexual). Each gene in
the next generation has a small (3%) chance of having a mutation. (B)
Each model parameter was determined from genotype represented as a
bit sequence. The model parameter value was calculated from the

amount of complementarity between 2 different bit sequences with a
length of 20 bits (figure shows 10 bits for simplicity), representing the
shapes of interacting surfaces in the biomolecules. Black and red lines
are graphical representations of the shapes these bit sequences
represent; 1’s indicate protrusions, 0’s indicate crevices. Each bit is
weighted double that to its right, and the strength of the interaction is
scaled by the binary exclusive OR (XOR) between the two bit sequences.
A perfect fit in a binding interaction would have a low dissociation
constant, while worse fits would have corresponding looser binding. (C)
Mutations may have specific effects depending on the location in the
gene. Each gene had many separate bit sequences, one for each
parameter in the model that the gene was involved in, corresponding
to the different quantitative effects of mutation. For example, a
mutation in the enhancer or promoter sequence (E/P) would alter gene
expression levels, while mutations in the 59 untranslated region or
translation initiation site (UTR/SD) would alter translation rates.
Mutations in the coding region that alter the binding site for CID on
the PTC protein (Red) would alter the ability of PTC to cleave CID.
Similarly, the different active sites on the CID protein (green, blue,
orange) could be specifically altered by mutations in the coding region.
doi:10.1371/journal.pcbi.1000296.g002

Ploidy and Sex on Evolution of Robustness
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binding productively to the X1 enhancer sequence), KA2X1

describes how efficiently A2 influences X1 synthesis(i.e. how well

transcription factor A2 activates the production synthesis of X1 by

binding productively to the X1 enhancer sequence), etc. We

assume that A1 and A2 proteins do not interact with each other in

activating X (i.e. we do not consider that A1 might block activity of

A2 by nonproductively binding to the enhancer sites on X1) and

the net activity of A1 and A2 is simply their average activity in

binding to the affector for gene X. Furthermore, we assume the

cooperativity reflects the number of occupied binding sites on the

target gene. Substituting
A

KA

?
1

2

A1

KA1X1

z
A2

KA2X1

� �
into the Hill

equation yields:

C A1,A2,KA1X1,KA2X1,nX1ð Þ~
A1

KA1X1
z A2

KA2X1

� �nX1

2nX1z A1
KA1X1

z A2
KA2X1

� �nX1
ð5Þ

The K parameters (KA1X1, KA2X1, etc.) in the diploid model cannot

strictly be interpreted as half maximal activities like their haploid

counterparts because activation depends on both A1 and A2. Note

that a completely homozygous diploid is identical to the haploid;

when the concentrations of both diploid activators and activities

are the same (when A = A1 = A2 and K = K1 = K2) then

C A1,A2,K1,K2,nð Þ~W A,K ,nð Þ. Figure 3 shows the behavior of

Equations 3 and 5.

There are many ways to extend the Hill function (or implement

alternative formulations) to approximate the effects of diploidy,

and increased realism comes at additional computational com-

plexity. A highly realistic model would ideally track the bound

state of each enhancer site for a gene (perhaps including current

availability of the site based on histone acetylation, etc.), the

affinity of each activator allele for each site, and the contribution of

each bound transcription factor to the initiation of transcription.

We settled upon the formulation in Equation 5 because it is simple

(both to use and understand) but captures attractive features of

diploidy. Specifically, our scheme: (1) Captures the same

qualitative biological behavior as the Hill function did in the

haploid case: saturation and monotonicity. (2) Does not dramat-

ically increase the parameter count or complexity of the model. (3)

Allows for direct comparison between the haploid and diploid

models. The homozygous diploid model reduces to the haploid

equivalent when A1 = A2 and K1 = K2. This allows us to compare

directly the evolution of diploid and haploid networks.

Our formulation of Equation 5 has consequences for the

behavior of heterozygous diploid networks. Activation in the

diploid model depends on the average activity (concentration

divided by K parameter) of the two activators. Thus, the loss of

either A1 or A2 can be compensated by a sufficiently large

increase in the concentration of the other (shown in Figure 3). In

the case of a homozygous diploid, if A1 = A2 and both have the

same activity (both have identical K’s), then the total activity is the

same as the haploid. Depending on the activities of the two

activator proteins A1 and A2, the loss of either could result in

anything from an insignificant change (if A1 and A2 were both far

above their respective K’s) to a dramatic change (if A1 and A2 were

near their respective K’s).

We emphasize that the segment polarity network has highly

nonlinear behavior [2,38], and the loss of one allele in an

otherwise homozygous individual will usually not result in a simple

halving of expression in the affected gene. There is substantial

feedback between different genes and different cells, and some

perturbations can result in a complete change in the pattern of

expression, while others will produce almost no change. Because

there are multiple cells in the network that are co-regulating each

other, many genes must be expressed within a correct window of

expression (above one threshold but simultaneously below another)

in each of the cells. Additionally, when there is high cooperativity

in Equations 3 and 5, the resulting gene activity may be

Figure 3. Activation functions for transcription control were constructed from Hill-like functions. (A) Activation curves for haploid or
homozygous diploid (upper graph) and diploid with complete loss of one activator (lower graph). Upper graph plots Equation 3. For a homozygous
diploid model, we constructed the activation curves to reduce to be identical to the haploid (see Equations 3 & 5). Lower graph plots Equation 5
following the complete loss of one activator. In this case, the K parameters are no longer half maximal activations, but still lower values correspond to
stronger action. (B) The general behavior of diploid activation by two activator alleles of different strength, according to Equation 5. In our model, the
loss of one allele can be compensated by a sufficiently large increase in another allele.
doi:10.1371/journal.pcbi.1000296.g003

Ploidy and Sex on Evolution of Robustness
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unchanged (if far from the threshold for activity) or completely lost

(if near threshold).

Our implementation of diploidy does not allow for the

possibility of interactions between the two activator alleles: for

example that A1 and A2 compete for binding sites in such a way

that A1 fails to activate production of X and also (dominantly)

blocks the activity of A2 (by binding nonproductively to enhancer

sites). Similarly, we do not allow for overdominance effects such as

A1 and A2 somehow synergizing so that their combination has

greater activity than an equivalent amount of either alone.

Representing Genotype
The models of the segment polarity network described above

are insufficient to predict the effects of mutations on phenotype

because many parameters in the model are not properties of

individual gene products, but instead reflect interactions between

biomolecules. For example, many parameters in our model

determine how well a transcription factor activates or inhibits its

target’s gene expression. In reality, the strength of such regulatory

interactions could be altered by mutating either the transcription

factor or enhancer sequence, resulting in different patterns of

inheritance depending which gene combination is passed on to the

offspring. Additionally, a single mutation can perturb multiple

parameters in the model: a mutation in a transcription factor will

affect its ability to recognize both enhancer sequences.

Biophysically, interactions in genetic networks rely on physical

binding of biomolecules in regions with complementary surface

chemistry and topology. To capture the qualitative behavior of

such binding, we abstract genotype as a bit sequence (digital

genotype) comprised of 1’s & 0’s that can be imagined as a

surrogate for the physical surface of molecules that participate in a

binding interaction (i.e. an enzyme’s active site or the binding

surface offered by an enhancer consensus sequence) as shown in

Figure 2B. The strength/kinetics of an interaction (represented by

biochemical parameters in our model) are determined by the

degree of complementarity between two bit sequences, weighted

by bit position. Each bit in the sequence is weighted twice that of

its neighbor on the right to allow mutations that alter bit-sequences

to have graded effects from very small to large (the motivation for

this choice is further discussed in the section ‘‘simulating

mutation’’ below). The parameter is derived from the interacting

bit sequences by simply scaling the normalized bitwise XOR value

of the bit sequences according to either a linear

Parameter~min

z max{minð ÞXOR bitSequenceA,bitSequenceBð Þ
2N{1

ð6Þ

or logarithmic scaling:

Parameter~

Exp Ln minð ÞzLn
max

min

� �XOR bitSequenceA,bitSequenceBð Þ
2N{1

� � ð7Þ

bitSequenceA and bitSequenceB are the numeric representations of the

binary interacting sequences and N is the length of the bit

sequence, set to 20 for our simulations. We used linear scaling

(Equation 6) for K parameters, and logarithmic scaling (Equation

7) for all others. Linear vs. log scaling was used so that mutations

usually resulted in a weak/nonexistent interaction as described in

the ‘‘simulating mutation’’ section below. Cooperativities were

restricted to integer values by rounding the results of Equation 6 to

the nearest integer in order to speed numerical integration.

Several parameters reflect the interaction of the segment

polarity genes with genes products outside of the network. Table

S1 lists the general categories of parameters in the model, what

they represent, and indicates whether the parameter is derived

from two different bit sequences (i.e. is an interaction between 2

genes with the segment polarity network) or is derived from the

comparison of a bit sequence from a single gene with 0 (indicating

interaction with general cellular machinery that we assume is

constant). For example, maximal transcription and translation

rates (C and L parameters) are determined by how well the SPN

genes interact with the initiation machinery for these processes.

Evolution of global cellular behavior is slow, while transcription

factors evolve quickly [42], therefore we did not allow global

machinery to change, and held the corresponding bit sequences

fixed at 0 (i.e. all 0’s in the bit sequence, this was chosen for

convenience since again, this sequence did not evolve). This allows

the maximum translation rates of genes to be changed and

inherited as any other property, but does not allow, for example,

heritable ribosomal mutations that would globally alter all

translation rates. Thus, our model explicitly represents the

genotype of 5 genes in the haploid network (10 in the diploid).

For the special case of the lifetime of the PTC-HH protein

dimer(HPH), we reasoned that the stability of the complex reflects a

tripartite interaction involving both proteins with the degradation

machinery in the cell:

HPH~

Exp Ln minð ÞzLn
max

min

� � 1
2

XOR HPHhh,0ð ÞzXOR HPHptc,0
� �� �

2N{1

� � ð8Þ

Where min and max are the range of allowed values (Table S2),

HPHptc is the bit sequence representing the ability of the PTC part

of the PTC HH dimer to interact with the degradation machinery,

and HPHhh represents the same for the HH part of the dimer. The

lifetime of the dimer is the average of the contribution of the ability

of HH to be recognized by the degradation machinery (bit

sequence fixed at 0) and the PTC part.

In the model, different parameters for each gene describe

distinct sub-activities/properties such as mRNA stability, protein

stability, protein activity, expression level, etc., as shown in

Figure 2C. In reality, the DNA sequences determining these

different activities are usually spatially separated on the gene:

enhancer sites (affecting transcription rate) are on the non-coding

region usually away from the ribosomal recognition sequence

(which affects translation rate) and likewise distant from the coding

region of the active site (which affects protein activity). Thus, most

point mutations alter only one or a few properties of the gene

products: for example a mutation in the coding sequence for a real

protein might alter the protein’s activity and stability [43], but not

its transcription rate. Additionally, mutations in a transcription

factor can alter its interactions with a subset of targets while

leaving other interactions unaffected [44]. To capture this in our

model, we use a separate bit sequence for each of a gene’s parameters (sub-

activities). For example, we use separate bit sequences for the

maximum transcription rate of a gene, the stability (mean lifetime)

of the mRNA, maximum translation rate into protein, stability of

the protein, and each of the protein’s activities. Thus, though there

are 5 genes (10 in the diploid model), there are far more bit

sequences (,71 in the haploid model, 142 in the diploid) than

genes. From these bit sequences, all model parameters (57 haploid,

140 diploid) are determined using Equations 6–8. The number of

Ploidy and Sex on Evolution of Robustness
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model parameters is more than half the number of bit sequences

because several parameters are derived by comparing bit

sequences describing properties of segment polarity genes with

fixed cellular machinery (fixed at a value of 0, and not included in

the bit sequence count). Thus, parameters that reflect interaction

with cellular machinery are simply inherited (though they can still

be mutated).

Equations 6 & 7 capture important relationships between

different parameters in the model. In a diploid organism, consider

a mutation in a transcription factor that affects the surface of the

transcription factor that binds the enhancer. Such a mutation will

alter the ability of the transcription factor to recognize the

enhancer sequences of both target alleles: in Equation 4, a

mutation that alters the ability of transcription factor A1 to bind to

enhancer sites will alter both KA1X1 and KA1X2. Conversely, a

mutation in an enhancer sequence will alter the ability of both

transcription factor alleles to regulate the mutated gene. In

Equation 4, a mutation that alters the enhancer sequence of X1

will alter the ability of both transcription factors, A1 and A2, to

recognize it and will alter both KA1X1 and KA2X1. If bit sequence

BA1 transcription represents the surface of A1 that binds to enhancers,

BA2 transcription represents the surface of A2 that binds to enhancers,

BX1 enhancer is the surface presented by gene X1 recognizable by

transcription factors, and BX2 enhancer is the surface presented by

gene X2 to transcription factors, then we can calculate the relative

strengths of the two transcription factors to activate each target

gene using Equation 6:

KA1X1~minKAX

z maxKAX
{minKAX

ð Þ
XOR BA1 transcription,BX1 enhancer

� �
2N{1

ð9aÞ

KA2X1~minKAX

z maxKAX
{minKAX

ð Þ
XOR BA2 transcription,BX1 enhancer

� �
2N{1

ð9bÞ

KA1X2~minKAX

z maxKAX
{minKAX

ð Þ
XOR BA1 transcription,BX2 enhancer

� �
2N{1

ð9cÞ

KA2X2~minKAX

z maxKAX
{minKAX

ð Þ
XOR BA2 transcription,BX2 enhancer

� �
2N{1

ð9dÞ

All 4 KAX parameters share a common range from maxKAX
to

minKAX
. A single mutated bit sequence can affect multiple

parameters, as expected from the underlying biology, and our

model properly captures the qualitative effects of cis and trans

mutations.

To reiterate, our scheme of calculating parameters from

Equations 6–8 is attractive because: (1) It is conceptually consistent

with the underlying biophysical mechanism of binding. The

binding surfaces/active sites are specified either directly by the

genotype (i.e. a regulatory consensus sequence) or indirectly (the

genotype specifies the 3-D shape of a protein), but the ultimate

origin of both is a mutable sequence (the DNA sequence of the

gene). (2) It allows us to compute how well a gene product can

interact with any partner, allowing us to easily simulate the effects

of recombination (which will produce new combinations of alleles

that may not have worked together before) and inheritance, as

parameter values are interactions (not heritable) that depend on

the interacting genes. Our scheme allows us to calculate the

strength of an interaction when, for example, both a transcription

factor and the enhancer sequence it binds are mutated. (3) It

allows us to simulate both cis and trans mutations. Transcriptional

regulation can be altered by a mutation in either the transcription

factor or the enhancer, with different consequences depending on

which is mutated. Our bit sequence representation allows this

aspect of biological reality to be captured. (4) It allows us to

capture the general qualitative features of mutations (see next

section). (5) It is computationally trivial.

Generation of Founder Genotype
To simulate evolution of the network, it was necessary to

generate founder genotypes that produced a viable phenotype

(Figure 1C). To do this, we performed a random search for viable

haploid parameter sets, then converted them to genotypes. To

reduce the number of free parameters in the random parameter

search, we restricted the transcriptional and translational rates (C

and L parameters) to the inverse of the mRNA and protein

lifetimes (H parameters):

Cnode~
1

Hnode

LNODE~
1

HNODE

ð10Þ

This is equivalent to the nondimensionalization scheme used

previously [2,40]. This strategy was used for the en, wg, ptc, and

cid mRNA and proteins. However, because the HH protein will

heterodimerize with PTC protein on adjacent cells, we allowed for

a stoichiometric excess/scarcity of PTC and HH. In the random

parameter search the LHH parameter varied from
0:2

HHH

to
5

HHH

.

This allows the maximal HH protein concentration to vary from

0.2 to 5 times that of PTC. The restriction in Equation 10 was not

applied during evolutionary simulation (i.e. synthesis and stability

were independent).

Table S2 shows the range explored for each parameter in the

random search for founders. The constraints we impose in

Equation 10 enforce that en and wg have a maximal value of 1,

and so all founders have similar patterns of wg and en: in cells that

should express them highly, wg and en are expressed between 0.8

and 1 during the relevant simulation time from 200–500 minutes.

As shown in Table S2, during evolution we allow model

parameters to explore a much larger range for most parameters,

so wg and en expression can rise above the founder levels to a

maximum of 20.

To generate the founder genotypes, we converted working

parameter sets into the corresponding genotypes by inverting

Equations 6 & 7. The parameter value uniquely defines only the

XOR difference between pairs of bit sequences. Thus, we chose a

random value for one bit sequence (each bit position was randomly

set to 0 or 1 with equal probability), then assign a unique value to

the other using the inverse of Equations 6 and 7 above:

bitSequenceA~

XOR bitSequenceB,Round 2N{1
� � parameter{min

max{min

� �� � ð11Þ
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for linearly scaled parameters or

bitSequenceA~

XOR bitSequenceB,Round 2N{1
� �

Log2
parameter{max

min

� �� �� � ð12Þ

for logarithmically scaled parameters. In Equations 11 & 12,

bitSequenceB has each position randomly set to 1 or 0, allowing us to

find a unique value for bitSequenceA. Here, min and max represent

the extremes of the allowed values for the parameter during

evolution according to Table S2. During evolution, we allow a

much wider range of parameter values than during the search for

founders, as mutations should often weaken (but rarely strengthen)

an interaction.

Simulating Mutation
We emphasize that the bit sequences described in the previous

section are abstract surrogates for the 3-D physical surfaces of

molecules that participate in an interaction. They do not attempt

to represent base pairing between complementary nucleotide

sequences as all interactions in the segment polarity network are

protein–protein or DNA/RNA-protein interactions. There is no

general theory that allows us to calculate the strength of binding

between an arbitrary gene product and its partners, nor to predict

the effect of a general mutation on the strength of this binding.

Quantitatively, a point mutation can have varied effects on an

interaction: a complete quenching of an interaction (mutation of

the nucleotide/amino acid that is essential for binding/interac-

tion), an almost imperceptible change (mutation at a site

peripheral to the key interaction that slightly perturbs the

interaction strength), a (less likely) strengthening of the interaction

(a mutation that slightly increases the affinity of binding). In

general, most mutations lower the expression and activity of gene

products, though rare mutations may strengthen them.

After each mating/division in our evolutionary simulation, we

allow a 3% chance per gene of a mutation. In a mutated gene, we

mutate a randomly-chosen bit sequence, with a recursive 10%

chance that an additional bit randomly-chosen bit sequence in the

same gene is mutated. Thus, mutations typically change one bit

sequence (90% probability per mutation) or more than one (10%

probability per mutation) in the gene, allowing mutations to, for

example, change both the activity and stability of a gene product.

When a bit sequence is mutated, we randomize each position of

the bit sequence to a 0 or 1 (mutations result in an independent

random draw). The effect of this is the corresponding parameter(s)

is/are set to a value between the min and max shown in Table S2.

For example, the mean lifetime for a gene product (H parameters)

will have a log-distributed random value between 161026 and 100

after a mutation (mean = 161022; a factor of 500 lower than the

most unstable founder). Thus, 75% of mutations will result in near

to complete elimination of a gene product (with a mean lifetime

less than 1; in the founders, mean lifetimes vary from 5–100). Only

a fraction (,12%) of mutations will produce protein stabilities

comparable to those of the founders. Similarly, values for

transcriptional regulation (half maximal concentrations or K

parameters) will have a random value uniformly distributed

between 0.001 and 100 (mean = 50, a factor of 100 higher than

most founders and no gene product in any simulation evolved

expression high enough to activate a process with such a weak

interaction). This biases the parameter towards extremely high

values (i.e. weak activity), with .99% of mutations producing

ineffective (or dramatically lowered) transcriptional regulation. For

the special case of cooperativities (n parameters), we restricted

these values to a narrow range (mutations produce integer

cooperativities between 1 and 10), as high cooperativities are

computationally expensive. Thus mutations usually produce a

limited change in cooperativity, biased towards low cooperativity

(log scaled). For all other parameters (.80% of parameters),

mutations, on average, produce interactions 2+ orders of

magnitude weaker than the founders.

In our model, mutations usually result in very weak or absent

interactions (i.e. the corresponding parameter has a value so the

interaction is silent). We have not attempted to reproduce the real

distribution of mutational effects. Our model parameters abstract

a wide variety of processes (RNA stabilities, protein stabilities,

transfer/diffusion rates, etc.). For many processes, the mutational

effects are not well known, and capturing the remaining known

mutational spectra would require a separate mutational scheme (or

genotypeRparameter mapping function or both) for each class of

parameter. Our goal was to allow mutations to have graded effects

that usually disrupt interactions but occasionally strengthen them,

and also allow us to calculate the strength of interaction between

arbitrary pairs of partners (that may not have co-existed within the

same individual before). Additional limitations of our mutation

scheme: (1) We do not allow the possibility of whole gene

duplications or genes to evolve novel interactions that are absent

from Figure 1A (i.e. dimerization between en and wg or PTC

degrading en). (2) We do not attempt to capture the relative rates

or magnitudes of mutational effects: one could imagine that

mutations may more frequently alter a protein’s mean lifetime

than the per-molecule maximal catalytic rate due to the differences

in mutational target size. Similarly, the magnitude of mutational

effects may differ: individual amino acids may contribute weakly to

the overall protein stability while mutations in the active site may

dramatically alter catalytic rate.

Simulating Mating and Recombination
In sexual populations, mating was random, with randomly

chosen (with replacement) pairs of parents producing a single

offspring. Recombination proceeded as follows: In diploid sexual

populations, each parent would randomly pass on one of its two

alleles for each gene to the offspring (we did not include the effects

of genetic linkage in this study). In haploid sexual populations, the

haploid offspring produced by mating two haploid parents would

randomly inherit (with 50% chance) one of the two parents’ alleles

for each gene. In both cases, all bit sequences corresponding to an

inherited gene were passed on together, and we did not allow

recombination within genes. Division in asexual populations was

implemented by allowing a randomly chosen individual to

produce a clonal offspring that had the same genotype as the

parent. In all simulations (sexual and asexual), the genotype was

subject to mutation as described above, and individuals repro-

duced until the specified number of viable offspring reached the

population limit. Drift is present in our simulations, as an unlucky

individual may stochastically not mate/produce any offspring, and

individuals could mate with more than one partner in each

generation.

Simulating Evolution
We began by screening many randomly generated haploid

genotypes to find 40 ‘‘founder’’ genotypes that sharpened the

pattern of wg and en mRNA expression as shown in Figure 1C.

We simulated evolution for 2,000 generations starting each

simulation with a single founder. For each founder, we simulated

4 independent parallel runs: sexual haploids, asexual haploids,

sexual diploids, and asexual diploids. Forty diploid founder

genotypes were constructed from the haploid founders by making

them homozygous for the haploid alleles (again, diploids

Ploidy and Sex on Evolution of Robustness
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homozygous for all genes produce the identical phenotype as the

haploid). Each generation in our model of evolution comprised the

5 phases shown in Figure 2A: Prediction of model parameters from

genotype, determining phenotype (spatiotemporal pattern of wg

and en expression), selection on phenotype, reproduction (either

sexual or asexual cloning), and mutation. Population size was fixed

at N = 200, giving 100 (diploids) or 200 (haploids) in each

generation.

We used one of two selection criteria in our simulations:

stabilizing or truncation. Genomic data suggests that gene

expression in Drosophila is under stabilizing selection [45–47], or

selection for an unchanging pattern of expression. In our

stabilizing selection simulations, the founder phenotype is optimal

(fitness f ~1), with fitness falling as the en and wg patterns diverge

from the founder phenotype. Quantitatively, fitness f under

stabilizing selection is:

f ~e{ d
0:5 ð13Þ

where d is the phenotypic distance between the (optimal) founder

and the evolved individual. For haploid individuals:

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4

i~1

eni,f {eni,e

� �2
z wgi,f {wgi,e

� �2
� �vuut ð14Þ

and for diploid individuals where there are 2 potentially distinct en

and wg alleles:

d~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4

i~1

en1i,f zen2i,f

2
{

en1i,ezen2i,e

2

� �2

z
wg1i,f zwg2i,f

2
{

wg1i,ezwg2i,e

2

� �2
 !vuut ð15Þ

where eni,e and wgi,e are the en and wg mRNA concentrations in

the ith cell position in an individual whose fitness is being

determined, eni,f and wgi,f are the levels of en and wg expression of

the (optimal) founder, and horizontal lines indicate time averages

of the concentration from 200 to 500 minutes of development.

When diploids are homozygous for all alleles (producing identical

expression of both en and wg alleles), d reduces to the haploid case.

The developmental function of the segment polarity network is

to stabilize stripes of gene expression to pattern subsequent

development. From the perspective of this function, mutations that

produce insufficiently sharpened wg and en stripes are disastrous

while those that result in an over sharpened pattern are viable. To

explore the consequences of this, we simulated truncation selection

where individuals are dead (f ~0) if wg and en have expression

levels outside of the expression thresholds shown in Figure 1C, or

take too long to stabilize their correct patterns. Otherwise,

individuals are viable with f ~1. In other words, as long as en

and wg are sufficiently high in the correct cells (and sufficiently low

in the rest), the developmental processes that depend on wg and en

expression are unperturbed and the individual will be viable.

These two criteria approximate two biologically plausible

extremes, truncation selection penalizing insufficient sharpening

of the pattern but allowing the pattern to change, while stabilizing

selection penalizes any deviation from the founder pattern.

Measurement of Robustness
We tested robustness to 3 types of perturbations that the real

segment polarity network might be exposed to: (1) Perturbation of

a single bit sequence in a single randomly chosen gene. This

usually caused a dramatic change in one or two parameters, and is

conceptually similar to a point mutation that produces a specific

effect. (2) Perturbation of all parameters. We multiplied each

parameter (after calculating it from genotype) by a randomly-

chosen (log-sampled) value from 0.66 to 1.5, independently (i.e. all

parameters were perturbed by a factor up to 1.5). Extreme

environmental stress (pH change, temperature change, starvation,

etc.) could alter the cellular environment so many parameters are

substantially altered. (3) Perturbation of initial conditions. We

multiplied the initial amount of wg and en mRNA by a randomly-

chosen (log-sampled) value from 0.5 to 2, independently in each

cell (i.e. noise was added to the en and wg prepattern, but this

never changed the positions of the cells with the highest initial en

and wg). A variety of sources (developmental noise, mutations in

genes responsible for the en and wg prepattern, etc) could result in

a perturbed prepattern.

We quantified robustness to these sources of variability and, for

clarity, we will use the term ‘survivorship’ when describing results

from truncation selection and ‘fitness’ for stabilizing selection.

Under truncation selection, we measured the fraction of trials

where the ability to sharpen the pre-pattern (according to the

criteria in Figure 1C) continued in the face of perturbation. Under

stabilizing selection we measured the fitness decrease (Equation 13)

using the distance between the unperturbed and perturbed wg and

en expression levels analogously to Equations 14 and 15.

Results

Diploidy Confers a Robustness Advantage in Random
Genotypes

As described in Models, we generated 40 viable random haploid

genotypes that stabilized and sharpened the pre-pattern to

produce the phenotype shown in Figure 1C. These genotypes

were not the product of evolution, but of randomly searching for

genotypes satisfying the above criteria. We then measured how

robustly the phenotype persisted in the face of perturbation (see

Models), comparing the randomly generated haploid genotypes

with homozygous diploid genotypes (homozygous for the haploid

genotype for all genes). Figure 4 shows the robustness of the

diploid and haploid networks. Homozygous diploid networks were

substantially more robust to perturbations than their haploid

equivalents: diploids had a higher chance to maintain the wg and

en sharpening and showed a smaller change in their en and wg

patterns compared to their haploid equivalents. The diploid

robustness advantage varied with the specific genotype we tested,

but diploids had greater robustness than haploids in .90% of the

genotypes.

Diploidy and Sex Allow Evolution of Increased
Robustness

We next tested whether the greater robustness of diploid

networks persisted when we simulated evolution for 2,000

generations using the same 40 randomly generated, viable

genotypes as founders. In these simulations, we used a high

mutation rate (m= 0.03) with small population sizes (N = 200). We

used each genotype to generate a genetically identical founder

population and simulate evolution under either truncation or

stabilizing selection with the following conditions: haploid sexual,

haploid asexual, diploid sexual and diploid asexual. Thus, each

founder was used in 8 parallel simulations. Our simulations allow

us to incorporate key features of diploidy: (1) Genotype is the

product of evolution, not from a random search of genotypes that

happen to produce the right pattern. (2) There is usually genetic

diversity in a population [9,11–13,48–50] and diploid individuals
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can be heterozygous at loci. (3) Diploid individuals experience

twice as many mutations as haploids during evolution (assuming a

constant per-gene mutation rate).

Regardless of ploidy or reproduction mode (sexual or asexual),

our evolutionary simulations quickly produced a genetically

diverse population, with several quantitatively different alleles

co-existing for most genes in any given generation (expected since

the expected number of mutations per gene per generation

mN = 6). Initially, populations were genetically identical at all loci,

but the founder allele became extinct within a few hundred

generations, after which there was a diversity of several alleles

present in the population, and diploid individuals were heterozy-

gous for most genes.

After simulations were complete, we measured the robustness at

each generation to 3 types of perturbation; results are shown in

Figure 5A–C for the average of all 40 simulations in each

condition. Simulations under truncation and stabilizing selection

showed the same qualitative behavior. All populations evolved

increased robustness to the perturbations. Diploid populations

continued to exhibit increased robustness compared to haploid

populations, especially when combined with sexual reproduction.

Comparing the terminal generations that share a common

founder, diploid sexual populations evolved the greatest robustness

at generation 2,000 in almost all (38/40 truncation; 39/40

stabilizing) tests of robustness to point mutations, most (32/40

truncation; 31/40 stabilizing) tests of robustness to all parameter

perturbations, and a substantial fraction (19/40 truncation; 18/40

stabilizing) of tests of robustness to initial conditions. While we

cannot determine whether the robustness advantages of diploid

sexual populations persist forever (i.e. the asymptotic behavior),

extrapolating from data in Figure 5 suggests that diploid sexual

populations should maintain higher robustness than other

conditions far into the future.

Most Mutations Are Recessive in Diploid Networks
The data shown in Figures 4A and 5A suggest that most

mutations in the diploid network model are recessive: simulated

point mutations had a smaller effect in diploids than haploids. This

is not built in; our network allows for the possibility of dominant

deleterious mutations. Examples of possible dominant (and lethal)

Figure 4. Effect of ploidy on robustness of randomly generated genotypes. Viable haploid (red) and identical homozygous diploid (blue)
genotypes were subjected to perturbation. We measured robustness under truncation selection (left column) by measuring the fraction of perturbed
individuals that continue to reproduce the threshold pattern shown in Figure 1C. For stabilizing selection(right column) we measured the fitness of
the perturbed individuals according to Equation 13. (A) Robustness to a point mutation simulated by randomizing a single bit sequence in a
randomly chosen gene. (B) Robustness to independently perturbing all parameters by a factor up to 1.5. (C) Robustness perturbing initial conditions
of en and wg in all cells by a factor up to 2. Error bars are standard error of the mean (n = 40 genotypes).
doi:10.1371/journal.pcbi.1000296.g004
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mutations that we observed during simulated evolution: (1) A

sufficiently hyperactive WG protein (which is initially expressed at

non-zero levels in all cells in our simulation) could disrupt the

normal gene expression pattern through excessive global wg

autoactivation or global en activation. (2) A mutation in the

enhancer of cid that causes loss of inhibition by en would result in

overexpression of CID that disrupts the wg and en patterns. In our

simulations, mutations usually result in nonproductive interac-

tions, so mutation (1) is far less likely than mutation (2); the former

requires the (unlikely) mutation that produces strong autoactiva-

tion while the latter requires a (more frequent) loss-of-function.

There are two mechanisms that may contribute to the increased

robustness in diploid populations: First, diploidy allows masking of

a perturbed allele by its homologue (i.e. most mutations are

recessive). Second, diploid populations may evolve increased

robustness faster than their haploid counterparts through a

mechanism independent of dominance. To separate these, we

measured robustness in diploid populations by simulating

Figure 5. Measurements of robustness in evolving populations. Left column plots truncation selection, right column plots stabilizing
selection. Diploid sexual populations evolved the greatest robustness by 2,000 generations regardless of selection criteria. (A–C) Robustness is
measured under the same conditions as shown in Figure 4. (D) Symmetric double mutations that perturbed a single property of both alleles in the
diploid network identically (see text); haploid plots are unchanged from left column and are shown for comparison. Plots show average of 40
simulations, smoothed with a sliding window over 50 generations.
doi:10.1371/journal.pcbi.1000296.g005
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symmetric mutations that perturb both versions of an allele by the

same amount, so there is no unperturbed homologue to mask the

perturbed allele. Symmetric point mutations altered the same bit

sequence in both alleles of the perturbed gene by the same amount

(both homologous bit sequences were altered by an XOR

operation with the same random value). Figure 5D shows the

results of symmetrically perturbed diploid populations compared

to their singly-perturbed haploid counterparts. The robustness of

the symmetrically perturbed diploid populations was very close to

the haploids, and changed only slightly over time, indicating that

the majority of mutations are recessive in our diploid model of the

segment polarity network.

The ability of the network to mask the effects of mutation may

itself be evolving (i.e. over time, the network evolves so that more

mutations are recessive). Such evolution would manifest in diploid

populations as an increase in robustness to (single) point mutation

without an increase in robustness to symmetric point mutations.

Our data indicates this is the case for diploid sexual populations, as

the dramatic increase in robustness to point mutations over time is

almost eliminated under symmetric mutation. Diploid asexuals

show a far smaller increase, indicating that sex accelerates evolution

of greater masking (i.e. greater dominance of functional alleles).

Diploid Sexual Populations Select Strongly for
Compatible Alleles

Why does sex produce more robust populations? In our

simulations, individuals have reduced fitness/survivorship if they

fail to sharpen the correct en and wg patterns sufficiently. Fitness/

survivorship can be reduced by two sources: a new mutation or, in

sexual populations, recombination of alleles that do not function

properly together. Figure 6 shows the relative effect of recombi-

nation and mutation on survival. During the simulation, we

recorded the number of dead individuals and their genotypes, and

whether they had a new mutation. Figure 6A shows the fraction of

individuals with a new mutation that were viable. This data is

qualitatively consistent with Figure 5A, but includes mutations that

could alter multiple genes and bit-sequences during evolution. To

determine how often recombination produced incompatible allele

combinations, we measured the fraction of deaths where

individuals did not have a new mutation (i.e. the fraction of the

dead due to recombination). Figure 6B shows diploid sexual

populations showed a near doubling of this fraction compared to

the haploid sexual populations. Thus, diploid sexual populations

experience a greater pressure to maintain alleles that both produce

the correct phenotype and that are also highly compatible with the

Figure 6. Distinguishing effects of mutation from recombination. (A) Fraction of mutated individuals that were viable during evolutionary
simulation. (B) Fraction of dead individuals during the simulation that did not have a mutation. A dramatically higher fraction of deaths were caused
by recombination in sexual diploid populations than sexual haploid. (C) Fitness load calculated from Equation 16. Plots show average of 40
simulations, smoothed with a sliding window over 50 generations.
doi:10.1371/journal.pcbi.1000296.g006
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other alleles in the population. Recombination constantly

produces new allele combinations that cause quantitative varia-

tion; thus sexual populations (especially diploid sexual populations)

more strongly select for genotypes (and alleles) that are robust to

quantitative variation.

In Figure 6C, we plot the fitness load for each of our simulations

defined as:

Fitness load~
fmax{f

fmax
ð16Þ

where fmax is the fitness of the most fit individual in the generation,

and f is the mean fitness of all individuals in that generation.

Consistent with Figure 6B, we see that recombination produces a

higher fitness load in diploid populations (the fitness load is

noticeably higher in diploid sexual populations compared to

diploid asexuals), but not haploid populations (the fitness load of

the two haploid populations are nearly equal). Proulx and Phillips

[14] showed the upper bound for selection for mutational

robustness is the fitness load minus the mutation rate. All 4

populations have fitness loads higher than m, with diploid sexual

populations having the greatest expected pressure to evolve (and

maintain) mutational robustness. Taken together, our data shows

that the combination of sex with diploidy synergize to produce the

strongest selection for mutational robustness.

Phenotypes Move Away from Some Selection Thresholds
Under truncation selection, individuals were dead if they failed

to sharpen en and wg sufficiently or if they did so too slowly.

Populations under stabilizing selection were penalized if the en or

wg pattern was altered, but fitness was independent of the time the

prepattern was sharpened. To explore how aspects of the

phenotype and network function evolved, Figure 7 plots the time

at which the pattern was sharpened sufficiently and the average wg

and en levels at the time selection acted (200–500 min). Under

both selection types, populations evolved to sharpen wg more

rapidly, with all populations showing similar speeding. In contrast,

sexual populations maintained the time to sharpening of the en

pattern, but asexual populations (particularly diploid asexual)

showed slowed sharpening. Thus, evolution did not exclusively

favor faster sharpening. Under truncation selection, the expression

levels at which both wg and en stabilized (in the different cells that

should express those genes highly) evolved to higher and higher

values. Expression of wg showed more change compared to en,

and wg expression often decreased in cells that had to express it at

low levels. The highest possible en and wg level is 20 in our

simulations, and requires both maximal transcription and highly

stable products (long mean lifetimes). In general, diploid sexual

populations show the greatest tendency to move away from

thresholds of failure (high expression in the appropriate cell, and

low elsewhere), while diploid asexual populations sometimes move

towards expression thresholds (higher expression in cells that

should express low levels, and slightly later en sharpening).

Moving away from thresholds of failure could confer increased

robustness by buffering the system to tolerate to small changes in

expression. However, we emphasize the segment polarity network

has been shown to exhibit highly nonlinear behavior, with

successfully larger perturbations first producing almost no change

in the pattern of expression followed by an abrupt collapse of the

normal pattern [2]. Each of the 40 founders evolved slightly

different phenotypes and robustness, and Figure 8 shows the

correlation between the phenotype and robustness. Figure 8A plots

mutational robustness against time to stabilization of the en and

wg patterns for both truncation and stabilizing selection after

2,000 generations. Faster stabilization of the pattern was

associated, on average, with only a modest increase in robustness.

The average robustness of the diploid and haploid founders is also

plotted (large circles). The best-fit lines indicate the correlation

between evolved robustness and sharpening time; intersection of

this line with the mean founder behavior indicates the robustness

increase was due solely to changes in expression time. However,

the best-fit lines lie above the founders, indicating that the

robustness evolved through a mechanism independent of a faster

time to sharpening. Similarly, Figure 8B correlates mutational

robustness with expression level in the highest-expressing cell for

truncation selection; there was little expression change under

stabilizing selection. We did not fit lines to the data, as such a fit

would be dominated by the outliers; most of the simulations

showed little change in expression. However, there is only weak

correlation between expression level and robustness, and the

robustness that evolves is clearly not due solely to superthreshold

buffering. Thus, both stabilization and truncation selection evolves

greater robustness, particularly diploid sexual populations through

mechanisms that do not have profound changes in phenotype.

Diploid Sexual Populations Evolve Greater Robustness at
Lower Mutation Rates

In the previous simulations, mutational robustness was expected

to evolve due to the high mutation rate. Theory predicts such

robustness should evolve when there is substantial genetic

diversity, specifically when mN.1. Sex may allow selection for

robustness at lower mutation rates, and this has been shown in

randomly-wired transcriptional networks [35]. To test whether

this holds in our network, we ran simulations with m= 1/

N = 0.005. Figure 9 shows the results of this simulation for 38

founders. We observed little robustness evolution in haploid

populations, with no significant increase in robustness by

generation 5,000. In contrast, diploid sexual populations evolved

higher mutational robustness, while asexual diploid populations

showed a transient decrease in robustness that stabilized by

generation 1,000. As before, symmetric double mutations

eliminated the diploid robustness advantage, indicating the diploid

advantage was due to dominance of functional alleles. Again,

recombination resulted in a greater fitness penalty in diploid

populations compared to haploid (Figure 9C), and diploid sexual

populations had the highest fitness load (Figure 9D). Thus, diploid

sexual populations still experience the strongest selection for

robustness when mN = 1.

Discussion

We explored how ploidy and sex shape the evolution in a model

of an actual, well-characterized, developmental genetic network.

The segment polarity network is one of the best characterized

networks, and comprises a functional module [2] that is conserved

across insects and beyond. Previous theoretical and modeling

studies have predicted mutational robustness can evolve, but we

believe it is essential to test these findings in as detailed a model as

possible. Our model allows us to bridge genotype to phenotype

and to capture fundamentally important aspects of allelic fitness

which no previous model has represented. We found that diploidy

and sex combine to allow populations to evolve the greatest

robustness to mutation, global perturbations affecting all interac-

tions, and initial conditions. Diploidy confers an immediate

robustness advantage as most deleterious mutations are recessive

in our network, and over time the network evolves so that

functional alleles become more dominant. Recombination,

Ploidy and Sex on Evolution of Robustness
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especially in diploid populations, produced a greater fitness load

that selected for greater robustness evolution even at lower

mutation rates of m= 1/N. Recombination in our network

constantly shuffled alleles and prevented the stabilization of

matched allele combinations that could be maintained in asexual

populations. In sexual populations, the constant shuffling of alleles

by recombination in a genetically diverse population selects for

those alleles that are highly compatible with others—i.e. alleles

that are robust to genetic variation and mutation.

It is useful to compare our evolutionary model to that of

previous computational studies on robustness evolution. Wagner

[5] simulates evolution in randomly-wired haploid regulatory

networks, which have been used in numerous studies

[35,36,51,52]. The Wagner model assumes a fixed time step,

steep nonlinearities that result in effectively discrete expression

levels and additive regulatory effects. All parameters reflect the

strength of transcriptional activation/repression and mutation

allows single mutations to change an inhibitor to an activator with

50% probability. In contrast to this, our model allows continuously

variable expression levels with more graded nonlinearities (the

maximum Hill coefficient in our simulations was 10). Previous

models with fixed time steps [5,36] reported a dramatic increase in

speed in generating the target pattern of gene expression, while we

observed only a slight speeding of wg (but not en) sharpening. In

our model, molecular half lives can be mutationally altered as they

would be in real life, which is difficult to translate to a fixed-time

step model. It also permits non-additive interactions between

multiple transcriptional regulators. Our model does not allow the

sign of a regulatory interaction to change (inhibitors never switch

to activators), and allows mutations to be cis or trans (the Wagner

model parameters represent cis effects only [5]), thus allowing a

meaningful exploration of diploidy. In our model, mutations are

Figure 7. Evolution of phenotype. Comparison of changes in phenotype during evolutionary simulations. Plots show average of 40 trials,
smoothed with a sliding window over 50 generations. Top row indicates the average time when all 4 cells satisfied the criteria in Figure 1 for wg (right
column) and en (left column) expression. Remaining graphs show average en and wg expression level in each of the 4 cells from 200 to 500 simulated
minutes of development. Cell 1 corresponds to the leftmost cell in the row of 4 cells from Figure 1C. The correct pattern is high en expression in cell 3
and high wg in cell 2 and low expression everywhere else. Expression levels were almost unchanged under stabilizing selection.
doi:10.1371/journal.pcbi.1000296.g007
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qualitatively similar to Wagner [5], as most result in nonproduc-

tive/weak interactions.

Other simulations have attempted to capture more accurate

quantitative effects of mutation and other biological parameters.

Robustness evolution has also been explored in models of mRNA

secondary structure prediction [33,34]. These models allow the

detailed quantitative prediction of effects of mutation which we

cannot do for our model; additionally it is difficult to explore the

effects of recombination and diploidy in these models in a way that

would meaningfully translate to genetic regulatory networks. It

would be possible to alter our model so that the bit sequences

represented mutable DNA/RNA sequences from which the

interaction strength is calculated. We did not explore this because

we wanted a general scheme to capture interactions within the

network, and most model parameters reflect protein-protein or

protein-DNA interactions. If we replaced our binary bit sequences

with sequences of DNA bases (ATGC) or the 20 amino acids,

there is no tractable function to describe how well the two would

interact, as such a calculation would require prediction of the

tertiary or quaternary structure. For the case of protein-DNA

interactions with known binding motifs, the effects of mutations

can be approximated [53,54], and it would be an interesting

extension to this work to incorporate a similar approximation.

However, there are many interactions in addition to transcrip-

tional regulation in our model, and such a scheme would not allow

us to model all parameters. One final limitation of computer

simulation is that we are limited by available computing power to

relatively small populations and high mutation rates. Real

Drosophila effective population sizes and mutation rates differ from

our simulations by more than an order of magnitude. Drosophila

populations are monomorphic for most genes (Nm,1), so

robustness is unlikely to evolve through the mechanism in our

model. The small population size we use strongly increases the

effect of drift, and may lead to increased genetic load and

heterozygosity compared to larger/infinite populations [55].

Additionally, the increased drift due to low population sizes can

hide the effect of weak selective pressures [56,57]. Despite these

limitations, our simulation incorporates a more realistic network

and mutational effects than those in previous studies, and further

advances in computing power will allow larger simulations.

Theory has predicted that sex and diploidy can evolve increased

robustness in the presence of genetic variation [14,27–

29,31,32,37]. Mutational robustness can evolve without recombi-

nation when there is sufficient genetic variation (Nm.1). In

randomly-wired haploid transcriptional networks, recombination

leads to evolution of robustness when Nm= 1 [35], a result that we

did not observe in our haploid segment polarity network, though

this may be due to the short duration of our simulations (5,000

generations) or small population sizes. More generally, Proulx and

Phillips[14] predict that selection for robustness depends on the

fitness load (effect of variation from all sources), and we clearly see

diploid sexual populations have the greatest load (from mutation

and recombination), while sex has little effect on haploid

populations (Figures 6 and 9). Our results are generally consistent

with this theory except for the substantial decrease in mutational

robustness under conditions of lower mutation rate in asexual

populations (Figure 9). The most likely explanation for this

decrease is because the diploid founders are homozygous for all

alleles, and thus both ‘halves’ of the network are identical. Theory

predicts networks would rapidly accumulate deleterious recessive

mutations[14,58] that were masked by the working counterpart,

and such mutations would persist in asexual populations without

recombination to remove them. Because there is only a single

working allele, there is nothing to rescue this network when that

allele is mutated, resulting in a decrease in robustness compared to

the founder. The decrease in robustness does not continue forever,

reaching a minimum by approximately generation 1,000. The

initial decrease in robustness reflects the loss of functionally

redundant alleles possessed by the founders, consistent with theory

that suggests selection to maintain both alleles is weak [58].

We found diploidy confers a robustness advantage primarily

because most deleterious mutations are recessive to their working

Figure 8. Correlation between phenotype and robustness. Plots show relationship between robustness and phenotype in each of the evolved
populations. Large circles indicate the mean phenotype and robustness of the diploid and haploid founders. Small points show the phenotype and
robustness at generation 2,000 for each of the 40 simulations. (A) Robustness to point mutations compared with the time to sharpening wg (right)
and en (left) patterns. Lines are least-squares best fit to the generation 2,000 phenotypes, and show a weak increase in robustness with faster
sharpening. (B) Robustness to point mutations compared with the wg (right) and en (left) level in the cell with high expression. Plot not shown for
stabilizing selection, as there was little variation in en and wg expression (Figure 7). Lines were not fit to these data because the points for extreme
values would dominate the fit. There may be a weak increase in robustness due to higher en and wg expression, but most populations did not
dramatically change expression and it is clear the evolved robustness increase is not due solely to higher expression of en and wg.
doi:10.1371/journal.pcbi.1000296.g008
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counterparts. Our model allows the possibility of dominant

mutations, but predicts that most deleterious mutations are

recessive in the segment polarity network. This is consistent with

metabolic networks, however, we do not allow for the possibility of

interference between two alleles (i.e. that wg1 might bind

nonproductively to its targets, blocking wg2 activity as shown in

Figure 3 and discussed in the Models section). Because of this, our

model may underestimate the rate of dominant deleterious

mutations, which are important for dominance evolution [59].

Future studies could explore the effect of more detailed allelic

interaction, and incorporate more realistic rates of the different

types of mutation and their quantitative effect, once such data is

available. Additionally, our scheme allows us to simulate the effects

of both cis and trans mutations, and future studies could also

explore differences in mutational rates and whether they are

consistent with genomic data [60].

The selection pressure that acts upon the real segment polarity

network is not known. Since the segment polarity network stabilizes

stripes of gene expression that activate downstream processes at the

proper location, fitness must depend on the pattern produced. Our

truncation selection explores the simple assumption that the

expression of a segment polarity gene must be above a threshold

for activation of those processes in the correct location and below this

threshold everywhere else, for development to proceed normally.

Figure 9. Diploid sexual populations evolve mutational robustness at lower mutation rate. Plots show results of 38 simulations to 5,000
generations with m= 0.005, smoothed with a sliding window of 100 generations. (A) Robustness to point mutations shows diploid sexual populations
evolve greater robustness, while diploid asexual populations have a transient decrease in robustness. (B) Symmetric double mutations were
simulated the same as Figure 5D and eliminated most of the diploid robustness advantage. (C) Fraction of mutated individuals that were viable
during evolutionary simulation. (D) Fitness load calculated according to Equation 16.
doi:10.1371/journal.pcbi.1000296.g009
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Alternatively, genomic data [45–47] suggest that many genetic

networks are under stabilizing selection—maintaining specific,

optimal levels of gene expression through time. Our simulations

show truncation selection leads to evolution of higher gene expression

(far above threshold) in those cells that should express the gene.

Intuitively, very high gene expression levels should buffer the system

to tolerate perturbations that cause slight changes in expression level

[61], and our simulations are consistent with this intuition and

previous modeling [62]. We do not impose a cost associated with

higher expression, though presumably greater synthesis comes with a

metabolic cost that would eventually limit the expression. The

ultimate level of expression depends upon on the balance of synthesis

and degradation, and mutations that solely increase the stability of a

gene product likely have little metabolic cost, but it is difficult to

determine the upper limit for gene product stability. Thus, in

truncation selection, our founders had non-optimal patterns of gene

expression that satisfied the developmental task; and evolved towards

a more optimal phenotype with high expression levels of essential

genes. However, the increase in expression alone shows only a weak

correlation with increased robustness (Figure 8), and robustness in

both truncation and stabilizing selection shows similar increases

despite an unchanging pattern under stabilizing selection. Many

parameters in our model reflect the activity of a gene product (K

parameters) and so gene activity can change without changes in

expression. It is likely that the absolute expression level is less

important than the amount by which the expression exceeds the

minimum/maximum threshold for activity. Thus, populations

rapidly produce increased robustness regardless of whether the initial

phenotype is optimal, and can evolve increased robustness without

dramatic changes in phenotype.

Several extensions of this work warrant future study. We do not

allow for the possibility of new regulatory interactions or gene

duplication events (but we do allow for interaction loss) that alter

the topology of the network. The topology of the segment polarity

network to robustly stabilize stripes of wg and en expression may

be nearly optimal, as indicated by a search of nearby network

topologies in a simplified network [63]. It would be interesting to

extend our simulations to allow the topology to change (i.e. the rise

of new regulatory interactions) and gene duplication events, to see

whether this topology is evolutionarily preserved or, if evolution

settles on an alternate network. Gene duplication events would be

particularly interesting because a duplication of all genes in the

network would effectively increase the ploidy. Many organisms

exist as tetraploid, octaploid or beyond, and others can amplify

their genomic content through endoreplication [64] to attain very

high ploidy(.1000C). Additionally, some viruses can have high

effective ploidy when multiple viruses infect the same cell [65].

Our study suggests that having 2 copies of each gene can confer a

robustness advantage over just one because most mutations are

recessive and this more than compensates for the doubling of

mutation rate. It would be interesting to explore under what

conditions an increase in ploidy ceases to be advantageous in real

networks, and why diploidy, as opposed to tetraploidy or beyond is

so common. Finally, our scheme for translating genotype to model

parameters would easily extend to randomly-wired networks used

in previous studies [5], and allow diploid networks to be explored.

It is an open question as to how general our results are for other

real networks. Theory and modeling studies indicated that

increased phenotypic robustness readily evolves under conditions

of interacting genes and variation in haploid networks

[5,31,35,36]. Based on these studies and ours, we speculate

diploid sexual populations will evolve greater mutational robust-

ness in networks when most deleterious mutations are recessive,

and there is sufficient interaction between gene products so that

recombination will select for alleles that can combine robustly with

other alleles. By allowing both masking (by diploidy) and allele

shuffling (recombination), the two can combine to achieve greater

robustness than either alone. Thus, a sexual population for which

robustness is important would likely favor a dominant diploid, not

haploid, life cycle.
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