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Abstract

Orientation selectivity is the most striking feature of simple cell coding in V1 that has been shown to emerge from the
reduction of higher-order correlations in natural images in a large variety of statistical image models. The most
parsimonious one among these models is linear Independent Component Analysis (ICA), whereas second-order
decorrelation transformations such as Principal Component Analysis (PCA) do not yield oriented filters. Because of this
finding, it has been suggested that the emergence of orientation selectivity may be explained by higher-order redundancy
reduction. To assess the tenability of this hypothesis, it is an important empirical question how much more redundancy can
be removed with ICA in comparison to PCA or other second-order decorrelation methods. Although some previous studies
have concluded that the amount of higher-order correlation in natural images is generally insignificant, other studies
reported an extra gain for ICA of more than 100%. A consistent conclusion about the role of higher-order correlations in
natural images can be reached only by the development of reliable quantitative evaluation methods. Here, we present a
very careful and comprehensive analysis using three evaluation criteria related to redundancy reduction: In addition to the
multi-information and the average log-loss, we compute complete rate–distortion curves for ICA in comparison with PCA.
Without exception, we find that the advantage of the ICA filters is small. At the same time, we show that a simple spherically
symmetric distribution with only two parameters can fit the data significantly better than the probabilistic model underlying
ICA. This finding suggests that, although the amount of higher-order correlation in natural images can in fact be significant,
the feature of orientation selectivity does not yield a large contribution to redundancy reduction within the linear filter bank
models of V1 simple cells.
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Introduction

It is a long standing hypothesis that neural representations in

sensory systems are adapted to the statistical regularities of the

environment [1,2]. Despite widespread agreement that neural

processing in the early visual system must be influenced by the

statistics of natural images, there are many different viewpoints on

how to precisely formulate the computational goal the system is

trying to achieve. At the same time, different goals might be

achieved by the same optimization criterion or learning principle.

Redundancy reduction [2], the most prominent example of such a

principle, can be beneficial in various ways: it can help to

maximize the information to be sent through a channel of limited

capacity [3,4], it can be used to learn the statistics of the input [5]

or to facilitate pattern recognition [6].

Besides redundancy reduction, a variety of other interesting

criteria such as sparseness [7,8], temporal coherence [9], predictive

information [10,11] , or bottom-up saliency [12] have been formulated.

An important commonality among all these ideas is the tight link

to density estimation of the input signal.

At the level of primary visual cortex there is a large increase in

the number of neurons. Hence, at this stage the idea of

redundancy reduction cannot be motivated by a need for

compression. However, the redundancy reduction principle is

not limited to be useful for compression only. More generally, it

can be interpreted as a special form of density estimation where

the goal is to model the statistics of the input by finding a mapping

which transforms the data into a representation with statistically

independent coefficients [5]. In statistics, this idea is known as

projection pursuit density estimation [13] where density estimation

is carried out by optimizing over a set of possible transformations

in order to match the statistics of the transformed signal as good as

possible to a pre-specified target distribution. Once the distribution

has been matched, applying the inverse transformation effectively

yields a density model for the original data. From a neurobiolog-

ical point of view, we may think of the neural response properties

as an implementation of such transformations. Accordingly, we

here think of redundancy reduction mainly in terms of projection

pursuit density estimation.

A crucial aspect of this kind of approach is the class of

transformations over which to optimize. From a statistician’s point

of view it is important to choose a regularized function space in

order to avoid overfitting. On the other hand, if the class of

possible transformations is too restricted, it may be impossible to
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find a good match to the target distribution. From a visual

neuroscientist’s point of view, the choice of transformations should

be related to the class of possible computations in the early visual

system. Here we assume the simplest case of linear transforma-

tions, optionally followed by a pointwise nonlinearity.

Intriguingly, a number of response properties of visual neurons

have been reproduced by optimizing over the class of linear

transformations on natural images for redundancy reduction (for a

review see [12,14]). For instance, Buchsbaum and Gottschalk as

well as Ruderman et al. revealed a link between the second-order

statistics of color images and opponent color coding of retinal

ganglion cells by demonstrating that decorrelating natural images

in the trichromatic color space with Principal Component Analysis

(PCA) yields the luminance, the red-green, and the blue-yellow

channel [15,16]. Atick and Redlich derived the center-surround

receptive fields by optimizing a symmetric decorrelation transfor-

mation [17]. Later, also spatio-temporal correlations in natural

images or sequences of natural images were linked to the receptive

field properties in the retina and the lateral geniculate nucleus

(LGN) [18–20].

On the way from LGN to primary visual cortex, orientation

selectivity emerges as a striking new receptive field property. A

number of researchers (e.g., [21,22]) have used the covariance

properties of natural images to derive linear basis functions that

exhibit similar properties. Decorrelation alone, however, was not

sufficient to achieve this goal. Rather, additional constraints were

necessary, such as spatial locality or symmetry.

It was not until the reduction of higher-order correlations were

taken into account that the derivation of localized and oriented band-

pass filters—resembling orientation selective receptive fields in V1—

was achieved without the necessity to assume any further constraints.

Those filters were derived with Independent Component Analysis

(ICA), a generalization of Principal Component Analysis (PCA),

which aims at reducing higher-order correlations as well [8,23].

This finding suggests that within the linear filter model,

orientation selectivity can serve as a further mechanism for

redundancy reduction. The tenability of this hypothesis can be

tested by measuring how large the advantage of orientation

selective filters is over non-oriented filter shapes. The importance

of such a quantitative assessment has first been pointed out by Li and

Atick [22] and are the main focus of several publications [12,22,24–

29]. Generally speaking, two different approaches have been taken

in the past: In the first approach, nonparametric methods such as

histograms or nearest neighbor statistics have been used with the

goal to estimate the total redundancy of natural images [22,27,29].

While this approach seeks to answer the more difficult question how

large the total redundancy of natural images is, the second approach

compares the importance of orientation selectivity for redundancy

reduction only within the class of models that are commonly used to

describe V1 simple cell responses [24–26,28].

Using histogram estimators, Zhaoping and coworkers [22,27]

argued that the contribution of higher-order correlations to the

redundancy of natural images is five times smaller than the

amount of second-order correlations. They concluded that this

amount is so small that higher-order redundancy minimization is

unlikely to be the main principle in shaping the cortical receptive

fields.

Two objections may be raised against this conclusion: First, it is

not clear how generally valid the result of [27] is. The study relies

on the assumption that higher-order dependencies at distances

beyond three pixels are negligible. More recent work based on

nearest neighbor methods [29], however, finds a substantially

larger amount of higher-order correlations when taking depen-

dencies over longer distances into account. Secondly, even if the

contribution of higher-order correlation was only 20% of the

amount of second-order correlations, this contribution is not

necessarily negligible. Several previous studies report that the

redundancy reduction achieved with ICA for gray level images is

at the same level at about 20% [24–26]. Taken together these two

findings suggest that orientation selective ICA filters can account

for virtually all higher-order correlations in natural images. If this

was true, it would strongly support the idea that redundancy

reduction could be the main principle in shaping the cortical

receptive fields.

In general, however, density estimation in high dimensions is a

hard problem and the results reported in the literature do not fit

into a consistent view. Therefore, the crucial challenge is to control

for all technical issues in order to allow for safe conclusions about

the effect of orientation selectivity on redundancy reduction. Here,

we address many such issues that have not been addressed before.

In our study, we take the second approach and focus on ‘‘linear

redundancy reduction’’—the removal of statistical dependencies

that can be achieved by linear filtering. While most studies have

been carried out for gray level images the two studies on color

images find the advantage of ICA over PCA to be many times

larger for color images than for gray level images with an

improvement of more than 100% [25,26]. Since it is not clear how

to explain the large difference between color and gray value

images, we reinvestigate the comparison between the orientation

selective ICA filters and the PCA filters for color images using the

same data set as in [25,26].

Our goal is to establish a reliable reference against which more

sophisticated image models can be compared to in the future. We

elaborate on our own previous work [28] by optimizing the ICA

algorithm for the multi-information estimators used in the

comparison. Additionally, we now test the advantage of the

resulting orientation selective ICA filters comprehensively with

three different types of analyses that are related to the notion of

redundancy reduction, density estimation, and coding efficiency:

(A) multi-information reduction, (B) average log-likelihood, and

(C) rate-distortion curves.

Our results show that orientation selective ICA filters do not

excel in any of these measures: We find that the gain of ICA in

Author Summary

Since the Nobel Prize winning work of Hubel and Wiesel it
has been known that orientation selectivity is an important
feature of simple cells in the primary visual cortex. The
standard description of this stage of visual processing is
that of a linear filter bank where each neuron responds to
an oriented edge at a certain location within the visual
field. From a vision scientist’s point of view, we would like
to understand why an orientation selective filter bank
provides a useful image representation. Several previous
studies have shown that orientation selectivity arises when
the individual filter shapes are optimized according to the
statistics of natural images. Here, we investigate quantita-
tively how critical the feature of orientation selectivity is
for this optimization. We find that there is a large range of
non-oriented filter shapes that perform nearly as well as
the optimal orientation selective filters. We conclude that
the standard filter bank model is not suitable to reveal a
strong link between orientation selectivity and the
statistics of natural images. Thus, to understand the role
of orientation selectivity in the primary visual cortex, we
will have to develop more sophisticated, nonlinear models
of natural images.

Orientation Selective Coding of Natural Images
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redundancy reduction over a random decorrelation method is only

about 3% for color and gray-value images. In terms of rate-

distortion curves, ICA performs even worse than PCA. Further-

more, we demonstrate that a simple spherically symmetric model

with only two parameters fits the filter responses significantly

better than a model that assumes marginal independence . Since

in this model the specific shape of the filters is ignored, we

conclude that it is unlikely that orientation selectivity plays a

critical role for redundancy reduction even if the class of

transformations is extended to include contrast gain control

mechanisms [30,31]. While many of the previous studies do not

provide enough detail in order to explain their different outcomes,

we provide our code and the dataset online (http://www.kyb.

tuebingen.mpg.de/bethge/code/QICA/) in order to ensure the

reproducibility and verifiability of our results.

Materials and Methods

An important difficulty in setting up a quantitative comparison

originates from the fact that it bears several issues that may be

critical for the results. In particular, choices have to be made

regarding the evaluation criteria, the image data, the estimation methods,

which linear transformations to include in the comparison, and which

particular implementation of ICA to use. The significance of the

outcome of the comparison will depend on how careful these

choices have been made. The most relevant issues will be

addressed in the following.

Notation and Nomenclature
For both, color and gray-value data, we write x to refer to single

vectors which contain the raw pixel intensities. Vectors are indicated

by bold font while the same letter in normal font with a subindex

denotes one of its components. Vectors without subindices usually

denote random variables, while subindices indicate specific

examples. In some cases it is convenient to define the corresponding

data matrix X~ x1, . . . ,xNð Þ which holds single images patches in

its columns. The letter N denotes the number of examples in the

dataset, while n is used for the dimension of a single data point.

Transformations are denoted by W , oftentimes with a subindex

to distinguish different types. The result of a transformation to

either a vector x or a data matrix X will be written as y~Wx or

Y~WX , respectively.

Probability densities are denoted with the letters p and q,

sometimes with a subindex to indicate differences between

distributions whenever it seems necessary for clarity. In general,

we use the hat symbol to distinguish between true entities and their

empirical estimates. For instance, py yð Þ~px W{1y
� �

: detWj j{1
is

the true probability density of y after applying a fixed transforma-

tion W , while p̂py yð Þ refers to the corresponding empirical estimate.

A distribution p yð Þ is called factorial, or marginally independent,

if it can be written as a product of its marginals, i.e.,

p yð Þ~Pn
i~1 pi yið Þ where pi yið Þ is obtained by integrating p yð Þ

over all components but yi.

Finally, the expectation over some entity f with respect to y
is written as E

y
f yð Þ½ �~

Ð
p yð Þf yð Þdy. Sometimes, we use the

density instead of the random variable in the subindex to

indicate the distribution, over which the expectation is taken.

If there is no risk for confusion we drop the subindex. Just as

above, the empirical expectation is marked with a hat symbol, i.e.,

ÊE f yð Þ½ �~ 1
N

PN
k~1 f ykð Þ.

How to Compare Early Vision Models?
A principal complicacy in low-level vision is the lack of a clearly

defined task. Therefore, it is difficult to compare different image

representations as it is not obvious a priori what measure should be

used.

Multi-information. The first measure we consider is the

multi-information [32], which is the original objective function that is

minimized by ICA over the choice of filters W . The multi-

information assesses the total amount of statistical dependencies

between the components yi of a filtered patch y~Wx:

I p yð Þ½ �~DKL p yð ÞjjP
j

pj yj

� �
:

� �
~ E

p
log

p yð Þ
Pjpj yj

� �" #
~

Xn

j~1

h pj yj

� �� �
{h p yð Þ½ �: ð1Þ

The terms h pj yj

� �� �
and h p yð Þ½ � denote the marginal and the joint

entropies of the true distribution, respectively. The Kullback-Leibler-

Divergence or Relative Entropy

DKL pj qj½ �~ E
p

log
p yð Þ
q yð Þ

� �
is an information theoretic dissimilarity measure between two

distributions p and q [33]. It is always non-negative and zero if and

only if p equals q. If the redundancy reduction hypothesis is taken

literally, the multi-information is the right measure to minimize,

since it measures how close to factorial the true distribution of the

image patches in the representation y really is.

The application of linear ICA algorithms to ensembles of

natural images reliably yields transformations consisting of

localized and oriented bandpass filters similar to the receptive

fields of neurons in V1. It is less clear, however, whether these

filter properties also critical to the minimization of the multi-

information? In order to assess the tenability of the idea that a V1

simple cell is adjusted to the purpose of redundancy reduction, it is

important to know whether such a tuning can—in principle—result

in a large reduction of the multi-information. One way to address

this question is to measure how much more the multi-information is

actually reduced by the ICA filters in comparison to others such as

PCA filters. This approach has been taken in [28].

One problem with estimating multi-information is that it involves

the joint entropy h p yð Þ½ � of the true distribution which is generally

hard to estimate. In certain cases, however, the problem can be

bypassed by evaluating the difference in the multi-information

between two representations x and y. In particular, if y is related to

x by the linear transformation y~Wx it follows from definition (1)

and the transformation theorem for probability densities

py yð Þ~px xð Þ det
Ly

Lx

� �				 				{1

~px W{1y
� �

: detWj j{1

that difference in multi-information can be expressed as

I p yð Þ½ �{I p xð Þ½ �~
X

k

h pk ykð Þ½ �{h p yð Þ½ �{

X
k

h pk xkð Þ½ �{h p xð Þ½ �
 !

~
X

k

h pk ykð Þ½ �{
X

k

h pk xkð Þ½ �{log detWj j:

For convenience, we chose a volume-conserving gauge [28] where

all linear decorrelation transforms are of determinant one, and

Orientation Selective Coding of Natural Images
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hence log detWj j~0. This means that differences in multi-

information are equal to differences of marginal entropies which

can be estimated robustly. Thus, our empirical estimates of the

multi-information differences are given by:

DI&
X

k

h p̂pk ykð Þ½ �{
X

k

h p̂pk xkð Þ½ � s:t: det Wð Þj j~1 ð2Þ

For estimating the entropy of the univariate marginal distributions,

we employ the OPT estimator introduced in [28] which uses the

exponential power family to fit the marginal distributions by

OPTimizing over the shape parameter. This estimator has been

shown to give highly reliable results for natural images. In particular,

it is much more robust than entropy estimators based on the sample

kurtosis which easily overestimate the multi-information.

Average log loss (ALL). As mentioned earlier, redundancy

reduction can be interpreted as a special form of density estimation

where the goal is to find a mapping which transforms the data into

a representation with statistically independent coefficients. This

means that any given transformation specifies a density model over

the data. Our second measure, the average log-loss (ALL),

evaluates the agreement of this density model with the actual

distribution of the data:

E
p

{log p̂p yð Þ½ �~{

ð
p yð Þlog p̂p yð Þdy~H p½ �zDKL pkp̂p½ � ð3Þ

The average log-loss is a principled measure quantifying how

different the model density p̂p yð Þ is from the true density p yð Þ [34].

Since the KL-divergence is positive and zero if and only if p̂p~p the

ALL is minimal only if p̂p matches the true density. Furthermore,

differences in the average log-loss correspond to differences in the

coding cost (i.e., information rate) in the case of sufficiently fine

quantization. For natural images, different image representations

have been compared with respect to this measure in [24–26].

For the estimation of the average log-loss, we compute the

empirical average

E
p

{log p̂p yð Þ½ �& ÊE
y

{log p̂p yð Þ½ �~{
1

N

XN

k~1

log p̂p ykð Þ: ð4Þ

This estimator is equivalent to the first method in Lewicki et al.

[24,35] apart from an extra term N log s in their defining

equation. This extra term is only necessary if one aims at relating

the result to a discrete entropy obtained for a particular bin width

s.

While the empirical average in Eq. 4 in principle can be prone

to overfitting, we control for this risk by evaluating all estimates on

an independent test set, whose data has not been used during the

parameter fit. Furthermore, we compare the average log-loss to

the parametric entropy estimates h p̂p½ � that we use in (A) for

estimating the multi-information changes (see Eq. 2). The

difference between both quantities has been named differential log-

likelihood [36] and can be used to assess the goodness of fit of a

model distribution:

ÊE {log p̂p½ �{h p̂p½ �~ E
p̂p

log p̂p½ �{ÊE log p̂p½ �:

The shape of the parametric model is well matched to the actual

distribution if the differential log-likelihood converges to zero with

increasing number of data points.

Rate-distortion curves. Finally, we consider efficient coding or

minimum mean square error reconstruction as a third objective. In

contrast to the previous objectives, it is now assumed that there is

some limitation of the amount of information that can be

transmitted, and the goal is to maximize the amount of relevant

information transmitted about the image. In the context of neural

coding, the redundancy reduction hypothesis has oftentimes been

motivated in terms of coding efficiency. In fact, instead of

minimizing the multi-information one can equivalently ask for the

linear transformation W which maximizes the mutual information

between its input x and its output Wxzj when additive noise j is

added to the output [3,37,38]. It is important to note, however,

that this minimalist approach of ‘‘information maximization’’ is

ignorant with respect to how useful or relevant the information is

that has been transmitted [14].

For natural images, the source signal x is a continuous random

variable which requires infinitely many bits to be specified with

unlimited precision. In reality, however, the precision is always

limited so that only a finite amount of bits can be represented.

Both, the multi-information and the average log-loss do not take

into account the problem what information should be encoded

and what information can be discarded. Therefore, it is interesting

to compare the redundancy reduction of the linear transforms with

respect to the relevant image information (while the irrelevant

information can be discarded anyway). To this end, we here resort

to the framework of linear transform coding as it has been

developed in the field of image compression [39,40], and which

constitutes the theoretical foundation of the JPEG standard.

It is clear that at the level of V1 the number of neurons,

encoding the retinal image, is substantially larger than the number

of fibers in the optic nerve. Therefore, it is not the need for

compression that makes rate distortion theory interesting at this

stage. However, Barlow’s redundancy reduction hypothesis must

not be equated with compression. In more recent work, Barlow

introduced the term ‘redundancy exploitation’ instead of ‘redun-

dancy reduction’ in order to avoid this misunderstanding [41]. But

also if we think in terms of density estimation rather than

compression, it is still important to take into account that not all

possible changes in the image pixels may be of equal importance

for inferring the content of an image. Therefore, we here want to

combine the notion of redundancy reduction with a measure for

the quality with which the image can be reconstructed from the

information that is preserved by the representation. Following

Lewicki and coworkers (method 2 in [24,35]) we will consider the

mean squared error reconstruction that can be achieved at a

certain quantization level of the transformed representation. This

objective is in fact very much related to the task of image

compression.

Clearly, we expect that the criteria for judging image

compression algorithms may not provide a good proxy to an

accurate judgement of what information is considered relevant in a

biological vision system. In particular, the existence of selective

attention suggests that different aspects of image information are

transmitted at different times depending on the behavioral goals

and circumstances [12]. That is, a biological organism can change

the relevance criteria dynamically on demand while for still image

compression algorithms it is rather necessary that this assessment is

made once and forever in a fixed and static fashion.

These issues are outside the scope of this paper. Instead we

follow the common path in the past to use the mean squared

reconstruction error for the pixel intensities. This is the measure of

choice for high-rate still image compression [42]. In particular, it is

common to report on the performance of a code by determining

its rate–distortion curve which specifies the required information

Orientation Selective Coding of Natural Images
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rate for a given reconstruction error (and vice versa) [40].

Consequently, we will ask for a given information rate, how do the

image representations compare with respect to the reconstruction

error. As result, we will obtain a so-called rate–distortion curve

which displays the average reconstruction error as a function of the

information rate or vice versa. The second method used in [24,35]

is an estimate of a single point on this curve for a particular fixed

value of the reconstruction error.

The estimation of the rate–distortion curve is clearly the most

difficult task among the three criteria. The framework of transform

coding [39], which is extensively used in still image compression,

makes several simplifying assumptions that allow one to obtain a

clear picture. The encoding task is divided into two steps: First, the

image patches x are linearly transformed into y~Wx. Then the

coefficients yj are quantized independently of each other. Using

this framework, we can ask whether the use of an ICA image

transformation leads to a smaller reconstruction error after

coefficient quantization than PCA or any other transform.

As for quantizing the coefficients, we resort to the framework of

variable rate entropy coding [43]. In particular, we apply uniform

quantization, which is close to optimal for high-rate compression

[39,44]. For uniform quantization, it is only required to specify the

bin width of the coefficients. There is also the possibility to use a

different number of quantization levels for the different coeffi-

cients. The question of how to set these numbers is known as the

‘bit allocation problem’ because the amount of bits needed to

encode one coefficient will depend monotonically on the number

of quantization levels. The number of quantization levels can be

adjusted in two different but equivalent ways: One possibility is to

use a different bin width for each individual coefficient.

Alternatively, it is also possible to use the same bin width for all

coefficients and multiply all coefficients with an appropriate scale

factor before quantization. The larger the variance of an

individual coefficient, the more bits will be allocated to represent

it.

Here, we will employ the latter approach, for which the bit

allocation problem becomes an inherent part of the transforma-

tion: Any bit allocation scheme can be obtained via post-

multiplication with a diagonal matrix. Thus, in contrast to the

objective function of ICA, the rate–distortion criterion is not

invariant against post-multiplication with a diagonal matrix. For

ICA and PCA, we will determine the rate–distortion curve for

both, normalized output variances (‘‘white ICA’’ and ‘‘white

PCA’’) and normalized basis functions (‘‘normalized ICA’’ and

‘‘orthonormal PCA’’), respectively.

Decorrelation Transforms
The particular shape of the ICA basis functions is obtained by

minimization of the multi-information over all invertible linear

transforms y~Wx. In contrast, the removal of second-order

correlations alone generally does not yield localized, oriented, and

bandpass image basis functions. ICA additionally removes higher-

order correlations which are generated by linear mixing. In order

to assess the importance of this type of higher-order correlations

for redundancy reduction and coding efficiency we will compare

ICA to other decorrelating image bases.

Let C~E xxT
� �

be the covariance matrix of the data and

C~UDUT its eigen-decomposition. Then, any linear second-

order decorrelation transform can be written as

W~D2
:V :D{1=2:UT ð5Þ

where D and U are defined as above, V is an arbitrary orthogonal

matrix and D2 is an arbitrary diagonal matrix. It is easily verified

that Y~WX has diagonal covariance for all choices of V and D2,

i.e., all second-order correlations vanish. This means that any

particular choice of V and D2 determines a specific decorrelation

transform. Based on this observation we introduce a number of

linear transformations for later reference. All matrices are square

and are chosen to be of determinant lm, where m is the number of

columns (or rows) of W (i.e., l~
ffiffiffiffiffiffiffiffiffi
P li

m
p

is the geometrical mean of

the eigenvalues li,i~1, . . . ,m).

Orthogonal principal component analysis (oPCA). If the

variances of the principle components (i.e., the diagonal elements

of D) are all different, PCA is the only metric-preserving

decorrelation transform and is heavily used in digital image

coding. It corresponds to choosing V~Im as the identity matrix

and D2~lD1=2, such that WoPCA~lUT.

White principal component analysis (wPCA). Equalizing

the output variances in the PCA representation sets the stage for the

derivation of further decorrelation transforms different from PCA.

In order to assess the effect of variance equalization for coding

efficiency, we also include this ‘‘white PCA’’ representation into our

analysis: Choose V~Im as for orthonormal PCA and then set

D2~mIm with m~l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D1=2ð Þm

p
such that WwPCA~mD{1=2UT.

Symmetric whitening (SYM). Among the non-orthogonal

decorrelation transforms, symmetric whitening stays as close to the

input representation as possible (in Frobenius norm) [45]. In terms

of early vision this may be seen as an implementation of a wiring

length minimization principle. Remarkably, the basis functions of

symmetric whitening resemble the center-surround shape of

retinal ganglion cell receptive fields when applied to the pixel

representation of natural images [17]. The symmetric whitening

transform is obtained by setting V~U and D2~mIm such that

WSYM~m UD{1=2UT.

Random whitening (RND). As a baseline which neither

exploits a special structure with respect to the input representation

nor makes use of higher-order correlations we also consider a

completely random transformation. To obtain a random orthogonal

matrix we first draw a random matrix G from a Gaussian matrix-

variate distribution and then we set VRND~ GGT
� �{1=2

G. With

D2~mIm we obtain WRND~mVRNDD{1=2UT.

White independent component analysis (wICA). Finally,

ICA is the transformation which has been suggested to explain the

orientation selectivity of V1 simple cells [8,23]. Set V~VICA for

which the multi-information I Y½ � takes a minimum. With

D2~mIm we obtain WwICA~mVICAD{1=2UT.

Normalized independent component analysis (nICA). Nor-

malized independent component analysis (nICA) differs from white

ICA (WwICA) only by a different choice of the second diagonal matrix

D2. Instead of having equal variance in each coefficient, we now

choose D2 such that the corresponding basis vector of each coefficient

has the same length in pixel space. It is easy to see that our first two

criteria, the multi-information and the negative log-likelihood, are

invariant under changes in D2. It makes a difference for the rate–

distortion curves as in our setup the variance (or, more precisely, the

standard deviation) determines the bit allocation. Practically, WnICA

can be determined by using WwICA as follows: First, we compute the

matrix inverse A : ~W{1
wICA and determine the Euclidean norm

a1, . . . ,am of the column vectors of A. With Da~diag a1, . . . ,amð Þ,
we then obtain WnICA~ 1ffiffiffiffiffiffiffiffiffiffiffiffi

det Dað Þm
p DaWwICA.

ICA Algorithm
If the true joint probability distribution is known, the

minimization of the multi-information over all linear transforma-

tions can be formulated without any assumptions about the shape

of the distribution. In practice, the multi-information has to be
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estimated from a finite amount of data which requires to make

assumptions about the underlying density.

There are many different ICA algorithms which differ in the

assumptions made and also in the optimization technique

employed. The choice of the particular ICA algorithm used here

was guided by a set of requirements that arise from the specific

problem setting. Although a wide variety of ICA algorithms has

been published, none of them fits exactly all of our requirements.

We would like to use an ICA algorithm, which gives the ICA

image basis the best chance for the comparison with other image

representations. For the comparison of the multi-information

reduction, we are using the OPT estimator introduced in [28]

which has been found to give the most reliable results. This

estimator employs a parametric estimate of the coefficient

distributions based on the exponential power family which is

known to provide an excellent fit to the coefficient distributions of

natural images [28,46]. Our ICA algorithm should make the same

assumptions about the data as we make for the final comparison of

the multi-information reduction. Therefore, we are also using the

exponential power family model for the marginal densities during

the minimization of the multi-information. In addition, we want to

have an ICA basis which is indistinguishable from the other image

representations with respect to the second-order statistics.

Therefore, we are using a pre-whitened ICA algorithm, whose

search space is restricted to the subgroup of orthogonal matrices

SO nð Þ. One of the most efficient ICA methods in the public

domain specialized to pre-whitened ICA is FastICA [47]. We use

this fixed-point algorithm as an initialization. Subsequently, the

solution is further refined by performing a gradient ascent over the

manifold of orthogonal matrices on the likelihood of the data,

when each marginal is modelled by a the exponential power

distribution as in the case of the OPT estimator.

In order to optimize the objective function over the subspace of

orthogonal matrices, we adapted the algorithms for Stiefel

manifolds proposed by Edelman et al. [48] to the simpler case

of orthogonal groups and combined it with the line-search routine

dbrent from [49] to achieve a rather straightforward gradient

descent algorithm. For the initialization with FastICA, we use the

Gaussian non-linearity, the symmetric approach and a tolerance

level of 1025.

Spherically Symmetric Model
A well known result by Maxwell [50] states that the only

factorial distribution invariant against arbitrary orthogonal

transformations is the isotropic Gaussian distribution. Natural

images exhibit marginals which are significantly more peaked than

Gaussian. Nevertheless, their distribution does share the spherical

symmetry with the Gaussian as already found by [51] for gabor

filter pairs and lately exploited by [31] for nonlinear image

representations. Therefore, it makes sense to compare the

performance of the ICA model with a spherically symmetric

model of the whitened data yw~WRNDx. Note that any

spherically symmetric model is still invariant under orthogonal

transformations while only the Gaussian additionally exhibits

marginal independence.

While the radial distribution of a Gaussian (i.e., the distribution

over the lengths of the random vectors) is a x-distribution, whose

shape and scale parameter is determined by the number of

dimensions and the variance, respectively, the spherical symmetric

model may be seen as a generalization of the Gaussian, for which

the radial distribution p rð Þ with r: ~ yk k2 can be of arbitrary

shape. The density of the spherically symmetric distribution (SSD)

is defined as py yð Þ~pr rð Þ=Sn rð Þ, where Sn rð Þ~rn{12pn=2
�

C n=2ð Þ is the surface area of a sphere in Rn with radius r. For

simplicity we will model the radial distribution with a member of

the Gamma family

p rð Þ~
ru{1exp { r

s

� �
suC uð Þ , r§0 ð6Þ

with shape parameter u and scale parameter s, which can be easily

matched to the mean and variance of the empirical distribution via

s~dVarVar r½ �
.

ÊE r½ � and u~ÊE r½ �2
.dVarVar r½ �.

Dataset
The difference in the performance between ICA and other

linear transformations clearly depends on the data. For gray-scale

images we observed in our previous study [28] that the difference

in the multi-information between ICA and any other decorrelation

transform is consistently smaller than 5%. In particular, we

controlled for the use of different pictures and for the effect of

different pre-processing steps.

Here, we resort to the dataset used in a previous study [25,26],

which among all previous studies reported the largest advantage of

ICA compared to PCA. This color image dataset is based on the

Bristol Hyperspectral Images Database [52] that contains multi-

spectral recordings of natural scenes taken in the surroundings of

Bristol, UK and in the greenhouses of Bristol Botanical Gardens.

The authors of [26] kindly provided to us a pre-processed version

of the image data where spectral radiance vectors were already

converted into LMS values. During subsequent processing the

reflectance standard was cut out and images were converted to log

intensities [26].

All images come at a resolution of 2566256 pixels. From each

image circa 5000 patches of size 767 pixels were drawn at

random locations (circa 40000 patches in total). For chromatic

images with three color channels (LMS) each patch is reshaped as

a 76763 = 147-dimensional vector. To estimate the contribution

of color information, a comparison with monochromatic images

was performed where gray-value intensities were computed as

I~log 1
3

LzMzSð Þ
� �

and exactly the same patches were used

for analysis. In the latter case, the dimensionality of a data sample

is thus reduced to 49 dimensions. All experiments are carried out

over ten different training and test sets sampled independently

from the original images.

Our motivation to chose 767 patches is to keep the same setting

as in [26] for the sake of comparability. As this patch size is rather

small, we performed the same analysis for patch sizes of 15615 as

well. All results in the paper refer to the case of 767 image

patches. The results for 15615 can be found in the supplementary

material (Text S1).

The statistics of the average illumation in the image patches, the

DC component, differs significantly from image to image.

Therefore, we first separated the DC component from the patches

before further transforming them. In order to leave the entropy of

the data unaffected, we used an orthogonal transformation. The

projector PremDC is computed such that the first (for each color

channel) component of PremDCx corresponds to the DC compo-

nent(s) of that patch. One such a possible choice is the matrix

p~

1 0 0 � � �
1 1 0 � � �
1 0 P � � �
..
.

1

266664
377775

T
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However, this is not an orthogonal transformation. Therefore, we

decompose P into P~QR where R is upper triangular and Q is an

orthogonal transform. Since P~QR, the first column of Q must be

a multiple of the vector with all coefficients equal to one (due to the

upper triangluarity of R). Therefore, the first component of QTx is a

multiple of the DC component. Since Q is an orthonomal

transform, using all but the first row of QT for PremDC projects

out the DC component. In the case of color images PremDC becomes

a block-diagonal matrix with QT as diagonal elements for each

channel.

By removing the DC component in that manner, all linear

transformations are applied in n{1 dimensions, if n denotes the

number of pixels in the original image patch. In this case the

marginal entropy of the DC-components has to be included in the

computation of the multi-information in order to ensure a valid

comparison with the original pixel basis. We use the same

estimators as in [28] to estimate the marginal entropy of DC-

component.

Results

Filter Shapes
As in previous studies [8,23] the filters derived with ICA

exhibited orientation selective tuning properties similar to those

observed for V1 simple cells (see Figure 1). For illustration, we also

show the basis functions learned with PCA and RND in Figure 1.

The basis functions A are obtained by inverting the filter matrix

W (including the DC component). The result is displayed in the

upper panel (Figure 1A–C). Following common practice, we also

visualize the basis functions after symmetric whitening (Figure 1D–

F).

The basis functions of both PCA and ICA exhibit color

opponent coding but the basis functions of ICA are additionally

localized and orientation selective. The basis functions of the

random decorrelation transform does not exhibit any regular

structure besides the fact that they are bandpass. The following

quantitative comparisons will show, however, that the distinct

shape of the ICA basis functions does not yield a clear advantage

for redundancy reduction and coding efficiency.

Multi-Information
The multi-information is the original objective function that is

minimized by ICA over all possible linear decorrelation trans-

forms. Figure 2 shows the reduction in multi-information achieved

with different decorrelation transforms including ICA for

chromatic and gray value images, respectively. For each

representation, the results are reported in bits per component,

i.e., as marginal entropies averaged over all dimensions:

ShT~
1

n

Xn

k~1

h pk ykð Þ½ � ð7Þ

Table 1 shows the corresponding values for the transformations

RND, SYM, PCA and ICA. For both chromatic images and gray-

value intensities, the lowest and highest reduction is achieved with

RND or ICA, respectively. However, the additional gain in the

multi-information reduction achieved with ICA on top of RND

constitutes only 3.20% for chromatic images and 2.39% for

achromatic in comparison with the total reduction relative to the

pixel basis (PIX). This means that only a small fraction of

redundancy reduction can actually be accounted to the removal of

higher-order redundancies with ICA.

One may argue that the relatively small patch size of 767 pixel

may be responsible for the small advantage of ICA as all

decorrelation functions already getting the benefit of localization.

In order to address the question how the patch size affects the

linear redundancy reduction, we repeated the same analysis on a

whole range of different patch sizes. Figure 3 shows the multi-

information reduction with respect to the pixel representation

(PIX) achieved by the transformations RND and ICA. The

achievable reduction quickly saturates with increasing patch size

such that its value for 767 image patches is already at about 90%

of its asymptote. In particular, one can see that the relative

advantage of ICA over other transformations is still small (,3%)

also for large patch sizes. All Tables and Figures for patch size

15615 can be found in the additional material (Text S1).

Average Log-Loss
Since redundancy reduction can also be interpreted as a special

form of density estimation we also look at the average log-loss

which quantifies how well the underlying density model of the

different transformations is matched to the statistics of the data.

Table 2 shows the average log-loss (ALL) and Table 3 the

differential log-likelihood (DLL) in bits per component. For the

average log-loss, ICA achieved an ALL of 1.78 bits per component

for chromatic images and 1.85 bits per component for achromatic

images. Compared to the ALL in the RND representation of

1.9 bits and 1.94 bits, respectively, the gain achieved by ICA is

again small. Additionally, the ALL values were very close to the

differential entropies, resulting in small DLL values. This confirms

that the exponential power distribution fits the shape of the

individual marginal coefficient distributions well. Therefore, we

can safely conclude that the advantage of ICA is small not only in

terms of redundancy reduction as measured by the multi-

information, but also in the sense of density estimation.

Comparison to a Spherical Symmetric Model. The fact

that ICA fits the distribution of natural images only marginally

better than a random decorrelation transform implies that the

generative model underlying ICA does not apply to natural

images. In order to assess the importance of the actual filter shape,

we fitted a spherically symmetric model to the filter responses. The

likelihood of such a model is invariant under post-multiplication of

an orthogonal matrix, i.e., the actual shape of the filter. Therefore,

a good fit of such a model provides strong evidence against a

critical role of certain filter shapes.

As shown in Table 2, the ALL of the SSD model is 1.67 bits per

component for chromatic images and 1.65 bits per component for

achromatic images. This is significantly smaller than the ALL of

ICA indicating that it fits the distribution of natural images much

better than ICA does. This result is particularly striking if one

compares the number of parameters fitted in the ICA model

compared to the SSD case: After whitening, the optimization in

ICA is done over the manifold of orthogonal matrices which has

m m{1ð Þ=2 free parameters (where m denotes the number of

dimensions without the DC components). The additional

optimization of the shape parameters for the exponential power

family fitted to each individual component adds another m

parameters. For the case of 767 color image patches we thus have
144:145

2
~10440 parameters. In stark contrast, there are only two

free parameters in the SSD model with a radial Gamma

distribution, the shape parameter u and the scale parameter s.

Nevertheless, for chromatic images the gain of the SSD model

relative to random whitening is almost twice as large as that of

ICA and even three and a half times as large for achromatic

images.
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PLoS Computational Biology | www.ploscompbiol.org 7 April 2009 | Volume 5 | Issue 4 | e1000336



Since the SSD model is completely independent of the choice of

the orthogonal transformation after whitening, its superior

performance compared with ICA provides a very strong argument

against the hypothesis that orientation selectivity plays a critical

role for redundancy reduction. In addition, it is also corroborates

earlier arguments that has been given to show that the statistics of

natural images does not conform to the generative model

underlying ICA [51,53].

Besides the better fit of the data by the SSD model, there is also

a more direct way of demonstrating the dependencies of the ICA

coefficients: If YwICA~ y1, . . . ,yNð Þ is data in the wICA

representation, then the independence assumption of ICA can

be simulated by applying independent random permutations to

the rows of YwICA. Certainly, such a shuffling procedure does not

alter the histograms of the individual coefficients but it is suited to

destroy potential statistical dependencies among the coefficients.

Subsequently, we can transform the shuffled data YsICA back to

the RND basis YsRND~WRNDW{1
wICAYsICA. If the ICA coeffi-

cients were independent, the shuffling procedure would not alter

the joint statistics, and hence, one should find no difference in the

multi-information between YsRND and YRND. But infact, we

observe a large discrepancy between the two (Figure 4). The

Figure 1. Examples for Receptive Fields of Various Image Transforms. Basis functions of a random decorrelation transform (RND), principal
component analysis (PCA) and independent component analysis (ICA) in pixel space (A–C) and whitened space (E–F). The image representation in
whitened space is obtained by left multiplication with the matrix square root of the inverse covariance matrix C{1=2 .
doi:10.1371/journal.pcbi.1000336.g001

Figure 2. Multi-Information Reduction per Dimension. Average differential entropy ShT for the pixel basis (PIX), after separation of the DC
component (DCS), and after application of the different decorrelation transforms. The difference between PIX and RND corresponds to the
redundancy reduction that is achieved with a random second-order decorrelation transform. The small difference between RND and ICA is the
maximal amount of higher-order redundancy reduction that can be achieved by ICA. Diagram (A) shows the results for chromatic images and
diagram (B) for gray value images. For both types of images, only a marginal amount can be accounted to the reduction of higher order
dependencies.
doi:10.1371/journal.pcbi.1000336.g002
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distributions of the sRND coefficients were very close to Gaussians

and the average marginal entropy of sRND yielded ShsRND{
hGaussT&{0:001 bits in contrast to ShRND{hGaussT&{0:1 bits.

In other words, the finding that for natural images the marginals of

a random decorrelation transform have Laplacian shape (a&1)

stands in clear contradiction to the generative model underlying

ICA. If the ICA model was valid, one would expect that the sum

over the ICA coefficients would yield Gaussian marginals due to

the central limit theorem. In conclusion, we have very strong

evidence that the ICA coefficients are not independent in case of

natural images.

Rate-Distortion Curves
There are different ways to account for the limited precision

that is imposed by neural noise and firing rate limitations. As

mentioned above the advantage with respect to a plain

information maximization criterion can equivalently be measured

by the multi-information criterion considered above [37,54]. In

order to additionally account for the question which representa-

tion optimally encodes the relevant image information, we also

present rate distortion curves which show the minimal recon-

struction error as a function of the information rate.

We compare the rate–distortion curves of wICA, nICA, wPCA

and oPCA (see Figure 5). Despite the fact that ICA is optimal in

terms of redundancy reduction (see Table 2), oPCA performs

optimal with respect to the rate-distortion trade-off. wPCA in turn

performes worst and remarkably similar to wICA. Since wPCA

and wICA differ only by an orthogonal transformation, both

representations are bound to the same metric. oPCA is the only

transformation which has the same metric as the pixel represen-

tation according to which the reconstruction error is determined.

By normalizing the length of the ICA basis vectors in the pixel

space, the metric of nICA becomes more similar to the pixel basis

and the performance with respect to the rate-distortion trade-off

Table 1. Comparision of the Multi-Information Reduction for
Chromatic and Achromatic Images.

Absolute Difference Relative Difference

Color Gray Color Gray

RND-PIX 24.069460.0043 23.125260.0043

SYM-RND20.059360.0004 20.025960.0006 SYM{RND
SYM{PIX

1.4460.01 0.8260.02

PCA-RND20.062760.0008 20.035360.0011 PCA{RND
PCA{PIX

1.5260.02 1.1260.03

ICA-RND 20.134560.0008 20.076760.0008 ICA{RND
ICA{PIX

3.2060.02 2.3960.02

Differences in the multi-information reduction between various decorrelation
transforms (SYM, PCA, ICA) relative to a random decorrelation transform (RND)
compared to the multi-information reduction achieved with the random
decorrelation transform relative to the original pixel basis (RND-PIX). The
absolute multi-information reduction is given in bits/component on the left
hand side. The right hand side shows how much more the special decorrelation
transforms SYM, PCA and ICA can reduce the multi-information relative to the
random (RND) one.
doi:10.1371/journal.pcbi.1000336.t001

Figure 3. Redundancy Reduction as a Function of Patch Size. The graph shows the multi-information reduction achieved by the
transformations RND and ICA for chromatic (A) and achromatic images (B). The gain quickly saturates with increasing patch size such that its value for
767 image patches is already at about 90% of its asymptote. This demonstrates that the advantage of ICA over other transformations does not
increase with increasing patch size.
doi:10.1371/journal.pcbi.1000336.g003

Table 2. Average Log-Loss (ALL) for Chromatic and
Achromatic Images.

Color Gray

ALL ALL

RND 1.948660.0035 1.941460.0044

SYM-RND 20.088160.0004 20.040260.0005

PCA-RND 20.075160.0009 20.039160.0011

ICA-RND 20.163760.0007 20.088060.0007

SSD-RND 20.276160.0025 20.286860.0032

The first row shows the average log-loss (ALL, in bits/component) of the density
model determined by the linear transformation RND. The value was obtained
by averaging over 10 separately sampled training and test sets of size 40.000
and 50.000, respectively. The following rows show the difference of the ALL of
the models SYM, PCA, ICA and of the spherically symmetric density (SSD) to the
ALL of the RND model. The smaller average log-loss of the SSD model
compared to the ICA model fundamentally contradicts the assumptions
underlying the ICA model.
doi:10.1371/journal.pcbi.1000336.t002
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improved considerably. Nevertheless, for a fixed reconstrucion

error the discrete entropy after quantization in the oPCA basis is

up to 1 bit/component smaller than for the corresponding nICA-

basis.

In order to understand this result more precisely, we analyzed

how the quantization of the coefficients affects the two variables of

the rate–distortion function, discrete entropy and reconstruction error.

Figure 6 shows an illustrative example in order to make the

following analysis more intuitive. The example demonstrates that

the quality of a transform code not only depends on the

redundancy of the coefficients but also on the shape of the

partition cells induced by the quantization. In particular, when the

cells are small (i.e., the entropy rate is high), then the

reconstruction error mainly depends on having cell shapes that

minimize the average distance to the center of the cell. Linear

transform codes can only produce partitions into parallelepipeds

(Figure 6B). The best parallelepipeds are cubes (Figure 6A). This is

why PCA yields the (close to) optimal trade-off between

minimizing the redundancy and the distortion, as it is the only

orthogonal transform that yields uncorrelated coefficients. For a

more comprehensive introduction to transform coding we refer the

reader to the excellent review by Goyal [39].

Discrete entropy. Given a uniform binning of width d the

discrete entropy Hd of a probability density p xð Þ is defined as

Hd~{
X

i

pi log pi with pi~

ð
Bi

p xð Þdx, ð8Þ

where Bi denotes the interval defined by the i-th bin. For small

bin-sizes d?0, there is a close relationship between discrete and

differential entropy: Because of the mean value theorem we can

approximate pi&p jið Þd with j[Bi, and hence

Hd&{
X

i

p jið Þd log p jið Þd½ �

~{
X

i

d p jið Þlog p jið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d?0

?{
Ð

p xð Þ log p xð Þ dx

{log d
X

i

p jið Þd|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d?0
?1

:

Thus, we have the relationship Hd&h{log d for sufficiently small

d (i.e., high-rate quantization). In other words, Hd asymptotically

grows linearly with {log dð Þ. Therefore, we can fit a linear

function to the asymptotic branch of the function

Hd~Hd {log dð Þ which is plotted in Figure 7A (more precisely

we are plotting the average over all dimensions). If we take the

ordinate intercept of the linear approximation, we obtain a

nonparametric estimate of the differential entropy which can be

compared to the entropy estimates reported above (Those

estimates were determined with the OPT estimator).

Equivalently, one can consider the function hd {log dð Þ: ~

Hd{ {log dð Þ which gives a better visualization of the error of

the linear approximation (Figure 7, left, dashed line). For

hd {log dð Þ the differential entropy is obtained in the limit

h~lim {log dð Þ??hd~limd?0hd.

This analysis shows that differences in differential entropy in

fact translate into differences in discrete entropy after uniform

quantization with sufficiently small bins. Accordingly, the

minimization of the multi-information as proposed by the

redundancy reduction hypothesis does in fact also minimize the

discrete entropy of a uniformly quantized code. In particular, if we

look at the discrete entropy of the four different transforms, oPCA,

wPCA, wICA, nICA (Figure 7B), we find that asymptotically the

two PCA transforms require slightly more entropy than the two

ICA transforms, and there is no difference anymore between

Table 3. Differential Log-Likelihood (DLL) for Chromatic and Achromatic Images.

Color Gray

DLL SaT DLL SaT

RND 20.011360.0007 1.041360.0026 20.005760.0006 1.013260.0046

SYM 20.038860.0009 0.896160.0021 20.019560.0009 0.948660.0040

PCA 20.022460.0007 0.914560.0024 20.008760.0007 0.942560.0025

ICA 20.037860.0009 0.768760.0017 20.015460.0011 0.843460.0025

The small DLL values suggest, that the exponential power distribution fits the shape of the individual coefficient distributions well. In addition, we also report the
average exponent SaT of the exponential power family fit to the individual coefficient distributions (a~1 corresponds to a Laplacian shape).
doi:10.1371/journal.pcbi.1000336.t003

Figure 4. The Distribution of Natural Images does not Conform
with the Generative Model of ICA. In order to test for statistical
dependencies among the coefficients YwICA of whithened ICA for
single data samples, the coefficients were shuffled among the data
points along each dimension. Subsequently, we transform the resulting
data matrix YsICA into YsRND~WRNDW{1

wICAYsICA . This corresponds to
a change of basis from the ICA to the random decorrelation basis (RND).
The plot shows the log-histogram over the coefficients over all
dimensions. If the assumptions underlying ICA were correct, there
would be no difference between the histogram of YsRND and YRND.
doi:10.1371/journal.pcbi.1000336.g004
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oPCA and wPCA or wICA and nICA. This close relationship

between discrete and differential entropy for high-rate quantiza-

tion, however, is not sufficient to determine the coding

performance evaluated by the rate–distortion curve. The latter

requires to compare also the reconstruction error for the given

quantization.

Reconstruction error. The reconstruction error is defined as

the mean squared distance in the pixel basis between the original

image and the image obtained by reconstruction from the

quantized coefficients of the considered transformation. For the

reconstruction, we simply use the inverse of the considered

transformation, which is optimal in the limit of high-rate

quantization.

When looking at the reconstruction error as a function of the

bin width (Figure 8) we can observe much more pronounced

differences between the different transformations than it was the

case for the entropy. As a consequence, the differences in the

reconstruction error turn out to be much more important for the

rate-distortion trade-off than the differences in the entropy. Only

the two transformations with exactly the same metric, wPCA and

wICA, exhibit no difference in the reconstruction error. This

suggests that minimization of the multi-information is strictly

related to efficient coding if and only if the transformation with

respect to the pixel basis is orthogonal. As we have seen that the

potential effect of higher-order redundancy reduction is rather

small, we expect that the PCA transform constitutes a close

approximation to the minimizer of the multi-information among

all orthogonal transforms because PCA is the only orthogonal

transform which removes all second-order correlations.

Discussion

The structural organization of orientation selectivity in the

primary visual cortex has been associated with self-organization

since the early seventies [55], and much progress has been made to

narrow down the range of possible models compatible with the

empirical findings (e.g., [56–58]). The link to visual information

processing, however, still remains elusive [59–61].

More abstract unsupervised learning models which obtain

orientation selective filters using sparse coding [8] or ICA [23] try

to address this link between image processing and the self-

organization of neural structure. In particular, these models not

only seek to reproduce the orientation tuning properties of V1

simple cells but they additionally address the question of how the

simple cell responses collectively can instantiate a representation

for arbitrary images. Furthermore, these image representations are

learned from an information theoretic principle assuming that the

learned filters exhibit advantageous coding properties.

The goal of this study is to quantitatively test this assumption in

the simple linear transform coding framework. To this end, we

investigated three criteria, the multi-information—i.e., the objec-

tive function of ICA—the average log-loss, and rate-distortion

curves. There are a number of previous studies which also aimed

at quantifying how large the advantage of the orientation selective

ICA filters is relative to second-order decorrelation transforma-

tions. In particular, four papers [24–26,28], are most closely

related to this study as all of them compare the average log-loss of

different transformations. However, they did not provide a

coherent answer to the question how large the advantage of

ICA is compared to other decorrelation transforms.

Lewicki and Olshausen [24] found that their learned bases show

a 15–20% improvement over traditional bases. However, their

result cannot be used to compare second-order and higher-order

redundancy reduction because the entire analysis is based on a

dataset in which all images have been preprocessed with a

bandpass filter as in olshausen:1996. Since bandpass filtering

already removes a substantial fraction of second-order correlations

in natural images, their study is likely to systematically underes-

timate the total amount of second-order correlations in natural

images.

Lee et al. [25,26] reported an advantage of over 100% percent

for ICA in the case of color images and a more moderate but

substantial gain of about 20% for gray-value images. In order to

avoid possible differences due to the choice of data set we here

used exactly the same data as in [25,26]. Very consistently, we find

only a small advantage for ICA of less than five percent for both

multi-information and the average log-loss. In particular, we are

not able to reproduce the very large difference between color and

gray-value images that they reported. Unfortunately, we cannot

pinpoint where the differences in the numbers ultimately come

from because it is not clear which estimation procedure was used

in [25,26].

The estimators used for the measurements in the present study

have been shown previously to give correct results on artificial data

[28] and we provide our code online for verification. Furthermore,

Weiss and Freeman showed for an undirected probabilistic image

model that whitening already yields 98% of the total performance

[62]. Finally, the superior performance of the simple SSD model

with only two free parameters provides a very strong explanation

for why the gain achieved with ICA is so small relative to a

random decorrelation transform: Since a spherically symmetric

model is invariant under orthogonal transformations and provides

a better fit to the data, the actual shape of the filter does not seem

to be critical. It also shows that the fundamental assumption

Figure 5. Rate-distortion Curves. Rate-distortion curve for PCA and
ICA when equalizing the output variances (wPCA and wICA) and when
equalizing the norm of the corresponding image bases in pixel space
(oPCA and nICA). The plot shows the discrete entropy Hd in bits
(averaged over all dimensions) against the log of the squared
reconstruction error s2 . oPCA outperforms all other transforms in
terms of the rate-distortion trade-off. wPCA in turn performes worst and
remarkably similar to wICA. Since wPCA and wICA differ only by an
orthogonal transformation, both representations are bound to the
same metric. oPCA is the only transformation which has the same
metric as the pixel representation according to which the reconstruc-
tion error is determined. By normalizing the length of the ICA basis
vectors in the pixel space, the metric of nICA becomes more similar to
the pixel basis and the performance with respect to the rate-distortion
trade-off can be seen to improve considerably.
doi:10.1371/journal.pcbi.1000336.g005
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underlying ICA—the data are well described by a linear

generative model with independent sources—is not justified in

the case of natural images.

From all these results, we can safely conclude that the actual

gain of ICA compared to PCA is smaller than 5% for both gray

level images and color images.

Is Smaller Than 5% Really Small?
A valid question to ask is whether comparing the amount of

higher-order correlations to the amount of second-order correla-

tions is the right thing to do. Even if the amount of higher-order

correlations may be small in comparison to the amount of second-

order correlations, we still know that higher-order correlations can

Figure 6. The Partition Cell Shape is Crucial for the Quantization Error. The quality of a source code depends on both the shapes of the
partition cells and on how the sizes of the cells vary with respect to the source density. When the cells are small (i.e., the entropy rate is high), then,
the quality mainly depends on having cell shapes that minimize the average distance to the center of the cell. For a given volume, a body in
Euclidean space that minimizes the average distance to the center is a sphere. The best packings (including the hexagonal case) cannot be achieved
with linear transform codes. Transform codes can only produce partitions into parallelepipeds, as shown here for two dimensions. The best
parallelepipeds are cubes which are only obtained in the case of orthogonal transformations. Therefore PCA yields the (close to) optimal trade-off
between minimizing the redundancy and the distortion as it is the only orthogonal decorrelation transform (see [39] for more details). The figure
shows 50.000 samples from a bivariate Gaussian random variable. Plot (A) depicts a uniform binning (bin width D~0:01, only some bin borders are
shown) induced by the only orthogonal basis for which the coefficients x1 and x2 are decorrelated. Plot (B) shows uniform binning in a decorrelated,
but not orthogonal basis (indicated by the blue lines). Both cases have been chosen such that the multi-information between the coefficients is
identical and the same entropy rate was used to encode the signal. However, due to the shape of the bins in plot (B) the total quadratic error
increases from 0.4169 to 0.9866. The code for this example can be also downloaded from http://www.kyb.tuebingen.mpg.de/bethge/code/QICA/.
doi:10.1371/journal.pcbi.1000336.g006

Figure 7. Discrete vs. Differential Entropy. (A) Relationship between discrete and differential entropy. Discrete entropy SHdT averaged over all
channels as a function of the negative log bin width. The straight lines constitute the linear approximation to the asymptotic branch of the function.
Their interception with the y-axis are visualized by the gray shaded, horizontal lines. The dashed lines represent ShdT which converge to the gray
shaded lines for d?0. (B) There are only small differences in the average discrete entropy for oPCA, wPCA, wICA, nICA as a function of the negative
log bin width. Since the discrete entropy of the DC component is the same for all transforms, it is not included in that average but plotted separately
instead.
doi:10.1371/journal.pcbi.1000336.g007
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be a critical signature of the content of an image. For example,

textures are very useful to demonstrate how changes in higher-

order correlations can change the perceptual meaning of an

image.

Our results on the rate-distortion trade-off can be taken as an

indication that the fraction of higher-order correlations captured

by ICA is perceptually less relevant. This interpretation is further

corroborated by a psychophysical comparison of the perceptual

redundancy of the ICA and the PCA basis [63]. Another

confirmation of this interpretation can be obtained if we use the

learned image representations as generative models. Perceptually

image patches sampled from the ICA model do not look more

similar to natural image patches than those sampled from the

random decorrelation basis (Figure 9). Currently, we are running

psychophysical experiments which also show quantitatively that

there is no significant difference between the ICA model and the

PCA model if the subjects have to discriminate between textures

that are generated by these models.

In summary, we were not able thus far to come up with a

meaningful interpretation for which the improvement of ICA

would be recognized as being large. On the basis of the present

study it seems rather unlikely that such a measure can be found for

linear ICA. Instead, we believe that more sophisticated, nonlinear

image models are necessary to demonstrate a clear advantage of

orientation selectivity.

What about Nonparametric Approaches?
The focus on linear redundancy reduction models in this study

is motivated by the goal to first establish a solid and reproducible

result for the simplest possible case before moving on to more

involved nonlinear transformations. Nevertheless, it is important

to discuss what we can expect if the restriction to linear

transformations is dropped. From a nonparametric analysis [27],

Petrov and Zhaoping concluded that higher-order correlations in

general contribute only very little to the redundancy in natural

images and, hence, are probably not the main cause for the

receptive field properties in V1. The empirical support for this

claim, however, is limited by the fact that their comparison is

based on mutual information estimates within a very small

neighborhood of five pixels only. This is problematic as it is known

that many kinds of higher-order correlations in natural images

become apparent only in much higher-dimensional statistics [64].

Furthermore, their estimate of the amount of second-order

correlations is not invariant against pointwise nonlinear transfor-

mations of the pixel intensities.

In a more recent non-parametric study, Chandler and Field

arrived at a very different result regarding the relative contribution

of second-order and higher-order dependencies [29]. They use

nearest-neighbor based methods to estimate the joint entropy of

natural images in comparison to ‘‘spectrum-equalized’’ noise and

white noise, where ‘‘spectrum-equalized’’ noise denotes Gaussian

noise with exactly the same spectrum as that of natural images. As

shown in Figure 18 of [29] they find a smaller difference between

spectrum-equalized noise and white noise than between natural

images and spectrum-equalized noise. Hence, from their finding, it

seems that the amount of higher-order correlations in natural

images is even larger than the amount of second-order

Figure 8. Reconstruction Error vs. Bin Width of Discrete
Entropy. Reconstruction error s2 as a function of the bin width d,
shown on a logarithmic scale. The differences between the different
transforms are relatively large. Only the two transformations with
exactly the same metric, wPCA and wICA, exhibit no difference in the
reconstruction error.
doi:10.1371/journal.pcbi.1000336.g008

Figure 9. Comparison of Patches Sampled From Different Image Models. The figure demonstrates that the perceptual similarity between
samples from the ICA image model (C) and samples from natural images (B) is not significantly increased relative to the perceptual similarity between
samples from the RND image model (A) and (B).
doi:10.1371/journal.pcbi.1000336.g009
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correlations. Also this result has to be taken with care: Reliable

non-parametric estimates in high-dimensions are difficult to obtain

even if one resorts to nearest-neighbor based methods, and the

estimate of the amount of second-order correlations in [29] is not

invariant against pointwise nonlinear transformations of the pixel

intensities, too.

In summary, the present nonparametric studies do not give a

unique answer regarding the total amount of higher-order

correlations in natural images. Since estimating the absolute

amount of multi-information is an extremely difficult task in high

dimensions, the differences in the results can easily originate from

the different assumptions and approximations made in these

studies. Consequently, it remains an open question how large the

true total redundancy of natural images is. In any case, it is clear

that there are many higher-order redundancies in natural images

that play a crucial role for visual perception. No matter how large

these redundancies are in comparison to the second-order

correlations, we need to develop better image models that have

the right structure to capture these regularities.

What about Nonlinear Image Models?
Apart from the non-parametric approaches, a large number of

nonlinear image models has been proposed over the years which

are capable to capture significantly more statistical regularities of

natural images than linear ICA can do (e.g., [62,65–72]). In fact,

Olshausen and Field [8] already used a more general model than

linear ICA when they originally derived the orientation selective

filters from higher-order redundancy reduction. In contrast to

plain ICA, they used an overcomplete generative model which

assumes more source signals than pixel dimensions. In addition,

the sources are modeled as latent variables like in a factor analysis

model. That is the data is assumed to be generated according to

x~Aszj where A denotes the overcomplete dictionary, s is

distributed according to a sparse factorial distribution, and j is a

Gaussian random variable. The early quantitative study by

Lewicki and Olshausen [24] could not demonstrate an advantage

of overcomplete coding in terms of the rate-distortion trade-off

and also the more recent work by Seeger [70] seems to confirm

this conclusion. The addition of a Gaussian random variable j to

As, however is likely to be advantageous as it may help to

interpolate betweem the plain ICA model on the one hand and the

spherically symmetric model on the other hand. A comparison of

the average log-loss between this model and plain ICA has not

been done yet but we can expect that this model can achieve a

similar or even better match to the natural image statistics as the

spherically symmetric model.

The spherical symmetric model can also be modeled by a

redundancy reduction transformation which changes the radial

component such that the output distribution is sought to match a

Gaussian distribution [31]. Hence, the redundancy reduction of

this model is very similar to the average log-loss of the spherically

symmetric distribution. From a biological vision point of view, this

type of model is particularly interesting as it allows one to draw a

link to divisive normalization, a prominent contrast gain control

mechanism observed for virtually all neurons in the early visual

system. Our own ongoing work [30] shows that this idea can be

generalized to a larger class of Lp-spherically symmetric

distributions [67]. In this way, it is possible to find an optimal

interpolation between ICA and the spherically symmetric case

[73]. That is, one can combine orientation selectivity with divisive

normalization in a joint model. Our preliminary results suggests

that optimal divisive normalization together with orientation

selectivity allows for about 10% improvement while divisive

normalization alone (i.e., the spherical symmetric model) is only

2% worse [30].

Concluding Remarks
Taken together, the effect of orientation selectivity on

redundancy reduction is very limited within the common linear

filter bank model of V1 simple cells. In contrast to Zhaoping and

coworkers, we do not claim that higher-order redundancy

minimization is unlikely to be the main constraint in shaping the

cortical receptive fields [22,27]. Our conclusion is that although

there are significant higher-order correlations in natural images,

orientation selective filtering turns out to be not very effective for

capturing these. Nevertheless, we do expect that visual represen-

tations in the brain aim to model those higher-order correlations,

because they are perceptually relevant. Therefore, we think it is

important to further explore which type of nonlinear transforma-

tions would be suitable to capture more pronounced higher-order

correlations. The objective functions studied in this paper are

related to factorial coding, density estimation and minimization of

the pixel mean square reconstruction error. Of course, there are

also other alternatives that are interesting, too. For example,

Zhaoping proposed that one possible goal of V1 is to explicitly

represent bottom-up saliency in its neural responses for visual

attentional selection [12]. As a further alternative, we are cur-

rently trying to extend the efficient coding framework to deal

with other loss functions. Obviously, the goal of the visual system

is not to preserve the pixel representation of the visual

input. Instead, seeing serves the purpose to make successful

predictions about behaviorally relevant aspects of the environment

[74]. Since 3D shape inference is necessary to almost any naturally

relevant task, it seems particularly interesting to explore the role of

orientation selectivity in the context of 3D shape inference [75].

For a quantitative account of this problem one can seek to

minimize the reconstruction error for the 3D shape rather than for

its 2D image. Certainly, this task is much more involved than

image reconstruction. Nevertheless, we need to think more about

how to tackle the problem of visual inference within the framework

of unsupervised learning in order to unravel the principles of

neural processing in the brain that are ultimately responsible for

our ability to see.

Supporting Information

Text S1 In the article we chose a patch size of 767 in order to

enhance the comparability to previous work. The supplementary

material contains all results (figures and tables) for patch size

15615.

Found at: doi:10.1371/journal.pcbi.1000336.s001 (2.82 MB PDF)
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7. Földiák (1990) Forming sparse representations by local anti-hebbian learning.
Biol Cybern 64: 165–170.

8. Olshausen B, Field D (1996) Emergence of simple-cell receptive field properties

by learning a sparse code for natural images. Nature 381: 560–561.
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