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Abstract

How can we optimize the use of drugs against parasites to limit the evolution of drug resistance? This question has been
addressed by many theoretical studies focusing either on the mixing of various treatments, or their temporal alternation.
Here we consider a different treatment strategy where the use of the drug may vary in space to prevent the rise of drug-
resistance. We analyze epidemiological models where drug-resistant and drug-sensitive parasites compete in a one-
dimensional spatially heterogeneous environment. Two different parasite life-cycles are considered: (i) direct transmission
between hosts, and (ii) vector-borne transmission. In both cases we find a critical size of the treated area, under which the
drug-resistant strain cannot persist. This critical size depends on the basic reproductive ratios of each strain in each
environment, on the ranges of dispersal, and on the duration of an infection with drug-resistant parasites. We discuss
optimal treatment strategies that limit disease prevalence and the evolution of drug-resistance.
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Introduction

The widespread use of antimicrobial drugs during the 20th

century greatly contributed to the increase in human life

expectancy [1]. Yet, the emergence and the spread of drug

resistant parasites erode the benefits associated with these

treatments [2]. We now face the challenge of ‘‘resistance

management’’, which consists in finding a treatment strategy that

most reduces the number of infections, while keeping drug-

resistance at a low frequency. We therefore have to use optimized

treatment policies [3].

The development and the analysis of mathematical models have

played a major role in our understanding of the evolutionary

dynamics of drug resistance. These epidemiological models

allowed to compare various treatment strategies such as different

treatment doses [4,5], the mixing of different drugs, or treatment

cycling [3,6]. However, most of these theoretical studies focused

on the evolution of resistance in a single isolated population. The

evolutionary dynamics of drug resistance in a spatially heteroge-

neous environment seems to have been largely overlooked in the

context of infectious diseases in humans. Yet, attempts have been

made to take into account some aspects of spatial heterogeneity

using spatially implicit models. In these models, the host

population is structured into different compartments experiencing

different treatment strategies [7–9]. The importance of migration

rates among different compartments was pointed out, but relied on

a simplified description of the spatial spread of parasites, with no

isolation by distance. Such a metapopulation framework [10] is

well suited to model the evolutionary dynamics of drug resistance

in networks of hospitals [9] but fails to capture situations with

spatially limited dispersal.

The issue of resistance management is however not restricted to

human infectious diseases. For example, drug-resistance decreases

treatments efficiency in livestock [11], compromises the control of

parasitic fungi and pests in conventional [12] and genetically

modified crops [13]. The impact of the spatial heterogeneity of the

environment has been studied in models of fungicide resistance

[14,15], but also in models of insecticide-resistance management

[16–19], with the concept of a ‘‘stable zone strategy’’ [18], where a

heterogeneous treatment lowers the density of pests, while

preventing the onset of resistance, provided the treated area is

below a critical width.

The underlying concept comes from population genetics studies

[20–24] on the persistence of an allele under spatially varying

selection. When the favorable zone is smaller than a critical size,

migration counteracts the effects of natural selection, and gene

swamping occurs [25]. In these analytical studies however, the

population parameters (including the carrying capacity) are

arbitrarily fixed (but may vary in space [24]). In an epidemiolog-

ical context, the total parasite density, evaluated via the total

density of infected hosts, is typically not constant. Thus, we extend

in this paper the concept of a critical treatment area to an

epidemiological setting. In particular, we focus on the interplay

between demography – the total density of parasites – and the

frequency of drug-resistance. We consider two kinds of disease

transmission: (i) by direct contact between infected and non-

infected individuals, and (ii) via dispersing vectors. Under these

different scenarios, we discuss optimal treatment strategies that

prevent or limit the evolution of drug-resistance in a linear

environment.

Results

Direct transmission model
We first study a parasite life-cycle with direct parasite

transmission between hosts. At time t, and at each point x in a

one-dimensional environment, the host population is divided into
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uninfected individuals, S x,tð Þ, infected individuals that carry drug-

sensitive parasites (labeled WT, for wild-type, throughout the

paper), IWT x,tð Þ, or drug resistant parasites (labeled R throughout

the paper), IR x,tð Þ. The total density of infected individuals is thus

I x,tð Þ~IWT x,tð ÞzIR x,tð Þ, and the proportion, among all

infected individuals, of individuals infected by drug-resistant

parasites is p x,tð Þ~IR x,tð Þ=I x,tð Þ. The within-host parasite

dynamics is not explicitly modeled, and I and p will hereafter be

referred to as the total parasite density and the frequency of

resistant parasites, respectively.

The disease is transmitted locally by direct contact between an

infected and a susceptible individual, with a transmission

parameter b
j
i . The subscript i refers to the parasite type: i~WT

for drug-sensitive parasites and i~R for drug-resistant parasites;

the superscript j refers to the area type: j~T in the treated area,

and j~U in the untreated area. Note that no superscript j is

required for drug-resistant parasites, since they are not affected by the

treatment, see figure 1. Infected individuals recover at rate c j
i , which

corresponds to parasite clearance. Recovered individuals imme-

diately become susceptible to the disease again, as in classical

SIS models [26]. Finally, the total density of the host population

remains constant in space and time (S x,tð ÞzI x,tð Þ~N). This

assumption implies that models with frequency-dependent or

density-dependent selection both lead to the same results [27].

Note also that, even though the total host density N is held

constant, the prevalence of the infection, I x,tð Þ=N, varies in space

and time.

The environment is linear, and divided into treated and

untreated areas, of width A and B, respectively. We focus on

simple spatial patterns of treatment: a pocket of treatment in an

infinite untreated region (A small compared to B, see figure 1b); or

a periodical zebra-like pattern of treated and untreated regions (A
and B of the same order of magnitude, see figure 1c). All infected

individuals are treated in the treated area (but our model can be

readily extended to allow for a partial treatment). The treatment

lowers the transmission of drug-sensitive parasites (bT
WTƒbU

WT),

and/or increases their clearance (cT
WT§cU

WT), while drug-resistant

parasites remain unaffected. The resistance allele induces a fitness

cost [28], so that drug-resistant parasites are selected for in the

treated area, but selected against in the untreated area. This can

be seen by comparing the basic reproductive ratios, R
i,j
0 , of the two

strains (i~WT or i~R) in the two different environments (j~U, for

untreated, j~T, for treated; see figure 1a, and equation (1) below).

The basic reproductive ratio R0 is a compound parameter in

epidemiology, defined as the total number of secondary cases due

to the introduction of a single infected individual in a susceptible

population [26,29,30]. In a well-mixed population, a disease will

spread only if R0 is above unity [31]; R0 is also used to compare

different parasites, and to predict pathogen evolution [32]. For

strain i in habitat j, we have:

R
i,j
0 ~Nbj

i

.
cj

i ð1Þ

As illustrated on figure 1a, the drug-resistant parasites have a

higher basic reproductive ratio than the drug-sensitive parasites in

the treated area (RR
0 wRWT,T

0 ). By contrast, the drug-sensitive

Figure 1. Effects of spatial heterogeneity on the parasites. The
treated area is represented with a dark gray filling. Subfigure (a) shows
the effects of treatment on the basic reproductive ratios R0 . Blue stands
for drug-sensitive and red for drug-resistant. The arrow (1) shows the
effect of treatment on the drug-sensitive parasites, and (2) the cost of
drug-resistance. Subfigures (b) and (c) show numerical resolutions of
the direct transmission model. In (b), the width of the untreated area, B,
is infinite; in (c), B is finite. In (b) and (c), the full black curve is
the prevalence of the disease at equilibrium, I=N , and the orange
curve is the cline of frequency p of individuals infected by the drug-
resistant strain, among all infected individuals. The dashed black
curve represents the equilibrium prevalence in the absence drug-
resistant parasites. Parameters: N~100, bU

WT~0:03, bR~0:025,
bT

WT~0:02, cU
WT~1, cR~1:25, cT

WT~1:5.
doi:10.1371/journal.pcbi.1000337.g001

Author Summary

The spread of drug-resistant parasites erodes the efficacy
of therapeutic treatments against many infectious diseases
and is a major threat of the 21st century. The evolution of
drug-resistance depends, among other things, on how the
treatments are administered at the population level.
‘‘Resistance management’’ consists of finding optimal
treatment strategies that both reduce the consequence
of an infection at the individual host level, and limit the
spread of drug-resistance in the pathogen population.
Several studies have focused on the effect of mixing
different treatments, or of alternating them in time. Here,
we analyze another strategy, where the use of the drug
varies spatially: there are places where no one receives any
treatment. We find that such a spatial heterogeneity can
totally prevent the rise of drug-resistance, provided that
the size of treated patches is below a critical threshold. The
range of parasite dispersal, the relative costs and benefits
of being drug-resistant compared to being drug-sensitive,
and the duration of an infection with drug-resistant
parasites are the main factors determining the value of
this threshold. Our analysis thus provides some general
guidance regarding the optimal spatial use of drugs to
prevent or limit the evolution of drug-resistance.

Evolution of Drug-Resistance in Space
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parasites have a higher basic reproductive ratio than the drug-

resistant ones in the untreated area (RR
0 vRWT,U

0 ).

Both infected and uninfected hosts migrate. The distribution of

the distances of migration (i.e. the kernel of migration) of both

hosts is assumed to be symmetric (i.e. with mean 0) and with

variance s2. We use the classical diffusion approximation, and

higher moments of the distribution are therefore neglected [33].

The above assumptions results in a system a partial differential

equations for the density of people infected by the drug-sensitive

(IWT) and drug-resistant parasites (IR), which is presented in the

Materials and Methods section (see system 14). We derive from

that system the following dynamical equations for the epidemiol-

ogy (parasite density I ) and the evolution (frequency of resistance

p) of the parasite population at the point x and time t (for

readability we drop the time and space dependence notation in I

and p):

LI

Lt
~r p,xð ÞI 1{

I

K p,xð Þ

� �
z

s2

2

L2I

Lx2
ð2aÞ

Lp

Lt
~s I ,xð Þp 1{pð Þzs2 Lp

Lx

L ln I

Lx
z

s2

2

L2p

Lx2
ð2bÞ

where r, s and K are (using j~U in the untreated area and j~T in

the treated area):

r p,xð Þ~N 1{pð Þbj

WTzpbR

h i
{ 1{pð Þc j

WTzpcR

� �
ð3Þ

K p,xð Þ~N{
1{pð Þc j

WTzpcR

1{pð Þb j

WTzpbR

ð4Þ

s I ,xð Þ~ N{Ið Þ bR{b
j

WT

� �
{ cR{c

j

WT

� �
ð5Þ

These variables can be interpreted as a frequency-dependent

population growth rate (r), frequency-dependent population

carrying capacity (K ), and density-dependent selection coefficient

for drug-resistant parasites (s).

This formulation clarifies the feed-back of demography on

evolution (i.e. the selection s varies with the prevalence of the

infection I ), and vice versa (i.e. the parasite population growth rate

r depends on the frequency of resistance p). Figures 1b and 1c

show examples for the spatial variation in prevalence (I=N) and in

the frequency of resistance (p) at equilibrium.

Following on earlier studies [22,23,34], we derived the exact

minimal size of the untreated area, Bc, for drug-sensitive parasites

to invade a drug-resistant parasite population (see Text S1). The

opposite case, namely the invasion condition for a drug-resistant

strain to invade a drug-sensitive population, is more complicated.

Indeed, while the drug-resistant parasites’ traits are constant in

space (as we assume that the treatment has no effect on them), the

drug-sensitive parasites’ transmission and recovery parameters

depend on the spatial location. As a result, the equilibrium density

of a parasite population fixed for the drug-sensitive type varies

across space, and we did not find an exact analytic expression for

this equilibrium density (but approximate solutions can be found

using perturbation solutions [35]). This prevents us from deriving

a general invasion condition for drug-resistance. Yet, we present

below this invasion condition for two extreme migration scenarios.

First, when the migration range is restricted to the nearest

neighbors (i.e. s is small compared to A and B), the density of the

drug-sensitive parasite population varies sharply between

the treated and untreated areas. We assume that RWT,T
0 w1,

i.e. that the drug cannot totally eradicate the parasite in a well-

mixed population even when all individuals are treated (the results

with a more efficient treatment, such as RWT,T
0 v1, are presented in

Text S1). The effect of the initial asymmetry in population size can be

approximated by t, the (untreated/treated) ratio of the equilibrium

parasite densities in each area in the absence of migration:

t~
1{1

�
RWT,U

0

1{1
�

RWT,T
0

ð6Þ

Let us define s and a, so that s (resp. {a2s) is the drug-resistant

parasite’s initial rate of increase in a wholly treated (resp. untreated)

well-mixed population fixed for the drug-sensitive parasite. Using

equation (5), and rearranging, we obtain:

s~
RR

0

RWT,T
0

{1

 !
cR ð7aÞ

a~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{

RR
0

RWT,U
0

{1

RR
0

RWT,T
0

{1

vuuuut ð7bÞ

Using this notation, the critical width of the treated area, under which

the drug-resistant strain cannot invade when initially rare, reads:

Alocal
c ~

sffiffiffiffiffi
2s
p arctan t2a tanh a

ffiffi
s
p

ffiffiffi
2
p

s
B

" # !
ð8Þ

which is similar to the result found in earlier population genetics

studies [24], in which t, s and a are fixed parameters values. In

contrast, our study allows demography to feed-back on evolution; the

population parameters (t, s, a) are interdependent and vary with the

underlying life-history traits (see equations (6) and (7)).

Equation (8) shows that the critical size Alocal
c is proportional to

the range of migration s: the further the hosts migrate, the more

difficult it is for the drug-resistant parasites to invade. A high

migration indeed reinforces gene swamping. This recalls a classical

result in island models, which is that migration might prevent the

maintenance of diversity [36–38]. Equation (7a) shows that the

direction of selection is determined by the basic reproductive ratios

R
i,j
0 of each strain in each environment. In other words, as in

classical well-mixed models (see equation (10) below), the basic

reproductive ratios summarize most of the heterogeneity in

selection pressures acting on the two parasite types. Yet, an

additional epidemiological parameter, the recovery rate from an

infection with drug-resistant parasites, cR, is required to determine

the invasion condition of the drug-resistant parasites. In a spatially

heterogeneous environment indeed, the fate of drug-resistant

parasites does not only depend on the direction of selection

(governed by the ratio of R0s), but also on the intensity of selection

in the two environments. The intensity of selection is inversely

proportional to the drug-resistant parasites generation time, 1=cR.

In contrast, when there is very long-range migration (high s
compared to A and B), the effects of treatment can be averaged

over the whole habitat and, consequently, the asymmetry in

Evolution of Drug-Resistance in Space
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population sizes among treated and untreated areas can be

neglected. A classical invasion analysis based on the calculation of

the basic reproductive ratios of the different parasites is used to

derive the critical area size:

Aglobal
c ~B

cU
WT

cT
WT

RWT,U
0 {RR

0

RR
0 {RWT,T

0

ð9Þ

Note that this critical size depends not only on the various basic

reproductive ratios (R0), but also on the ratio of the recovery rates

from an infection by the drug-sensitive strain, in the untreated

(cU
WT) and treated (cT

WT) areas.

Instead of treating every infected individual in a restricted area

corresponding to a proportion A= AzBð Þ of the environment, we

can choose to treat everywhere the same proportion A= AzBð Þ of

infected individuals. We refer to this strategy as a homogeneous

treatment. Under this homogeneous strategy, the critical A only

depends on the basic reproductive ratios:

Ahomo
c ~B

RWT,U
0 {RR

0

RR
0 {RWT,T

0

ð10Þ

Hence, if we assume that the treatment increases the recovery rate

(cT
WT§cU

WT), then Aglobal
c is smaller than Ahomo

c . At high migration,

drug-resistance therefore appears more easily with a heteroge-

neous treatment than with a homogeneous treatment.

Figure 2 combines the above analytical results in a reciprocal

invasion plot, together with the outcome of numerical integrations of

system (2). For a fixed set of epidemiological parameters, we explore

the possible outcomes of the system, depending on the scaled total

size of the environment AzBð Þ=s and the proportion of the

population that receives treatment (A= AzBð Þ) (Figure S1 shows the

same results, but plotted in function of the scaled sizes of the

untreated (B=s) and treated (A=s) areas). With our parameters,

three outcomes are possible at equilibrium: exclusion of the drug-

sensitive strain (zone (1) in figure 2), exclusion of the drug-resistant

strain (zone (2)), or coexistence of both strains (zone (3)). With other

parameters, a fourth situation is possible, corresponding to

evolutionnary bistabilities, where only one strain is maintained, its

type depending on the initial conditions (see Figure S2). Figure 2

confirms that BwBc is an exact invasion criterion for the drug-

sensitive strain, while AwAlocal
c and AwAglobal

c give good

approximations of the invasion criteria of the drug-resistant strain

for low and large migration ranges s, respectively.

Vector-borne transmission model
In the above section we focused on a scenario with parasite

transmission by direct contact among hosts. In the following we

consider a more complex parasite life cycle involving two different

host species. In particular, we focus on vector-borne transmission

such as in malaria, leshmaniosis, trypanosomiasis and many other

human infections (the model holds for any disease involving the

sequential infection of two different hosts, and can be readily

extended to other two-stage life-cycles, with air-borne or water-

borne transmission for instance). Hereafter, we call the first host

‘‘human’’, and the second host ‘‘vector’’. Both humans and vectors

can migrate, though at potentially different ranges (with parameters

sH and sV respectively); the humans recover (or die) at rate ci (i~WT

for the drug-sensitive strain, and i~R for the drug-resistant strain),

and the vectors disappear at rate ni. The total densities of humans

(NH) and vectors (NV) remain constant, but the prevalence of the

infection may vary. In order to determine the critical width of the

treated area, under which the drug-resistant parasites cannot invade,

we use a low-migration approximation as in the previous section.

The asymmetries in population sizes between untreated and treated

areas are measured by the ratios tH (H for humans) and tV (V for

vectors) (see Text S1 for their formulation).

We find two critical sizes AH
c and AV

c , depending on whether

the initial density is calculated in the human (tH) or vector (tV)

compartments. Simulations show that these two critical sizes

closely bound the real critical size (see figure 3b). With k~H or

k~V, these bounding critical sizes read:

Ak
c ~

seffiffiffiffiffi
2s
p arctan t2

k a tanh a
ffiffi
s
p

ffiffiffi
2
p

s
B

" # !
ð11Þ

The equivalent migration range se depends on the humans’ and

vectors’ migration ranges, but also on the duration of the infection

in both humans and vectors, and reads:

s2
e~

s2
V

�
nRzs2

H

�
cR

1=nRz1=cR

ð12Þ

Figure 2. This Reciprocal Invasion Plot represents the outcome
of the competition between drug-resistant and drug-sensitive
parasites (direct transmission model). This outcome depends on
the total size of the environment scaled by the migration range
parameter AzBð Þ=s, and on the proportion of the treated area
A= AzBð Þ. The curves show the analytical predictions, and the surfaces
result from numerical integrations. The curves delimit regions in the
parameter space where a parasite type can invade a population fixed
for the other type. Both types coexist when each type can invade the
other (i.e. when there is reciprocal invasion). The dashed red curve is
obtained from the critical size Aglobal

c (see equation (9)); the full red
curve corresponds to Alocal

c (see equation (8)), the full blue curve is
obtained from Bc (see Text S1), and finally the dashed gray curve comes
from Ahomo

c , corresponding to a spatially homogeneous treatment (see
equation (10)). In the red zone (1), only the drug-resistant strain persists
at equilibrium; in the blue zone (2), only the drug-sensitive strain
persists; in the gray zone (3) both strains coexist at equilibrium.
Parameters: N~100, bU

WT~0:06, bR~0:055, bT
WT~0:05, cU

WT~1,
cR~1:25, cT

WT~1:5.
doi:10.1371/journal.pcbi.1000337.g002
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The selection parameters s and a are such that s (resp. {a2s) is the

intensity of selection for the drug-resistant parasite in a well-mixed

wholly treated (resp. untreated) population fixed for the drug-

sensitive strain. After rearranging, we obtain:

s&
RR

0

RWT,T
0

{1

 !
1

1=cRz1=nR
ð13aÞ

a&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{

RR
0

RWT,T
0

{1

RR
0

RWT,U
0

{1

vuuuut ð13bÞ

(see Text S1 for the whole expression for the basic reproductive

ratios R
i,j
0 ).

As in the single-host life cycle, the fate of drug-resistant parasites

depends on the intensities of selection in treated (s) and untreated

({a2s) areas. We thus recover very similar expressions for the

intensity of selection (compare equations (7) and (13)), which

depend on the ratios of R0 s and on the generation time of the

drug-resistant strain, which is 1=cRz1=nR in the two-host model.

The drug-sensitive invasion condition, Bc, is presented in Text

S1. The homogeneous invasion condition (see equation (10)) holds,

provided that the basic reproductive ratios are modified according

to the new life-cycle.

Discussion

In this study, we analyze the interplay between epidemiological

and evolutionary dynamics of a drug-resistant parasite strain in a

one-dimensional environment. Following on and extending earlier

population genetics studies on clines [22–24], we derive approx-

imations of invasion conditions for drug-resistant and drug-

sensitive strains, and for different modes of parasite transmission

(by direct contact, or vector-borne). In particular, we derive a

critical treatment area size below which a drug-resistant strain

cannot invade a population fixed for the drug-sensitive strain.

Under the critical treatment size, the effects of gene flow (i.e. the

immigration of drug-sensitive parasites from untreated areas, into

the treated) are stronger than the effects of natural selection (which

favors the drug-resistant strain in the treated area). Understanding

the factors that govern the value of these critical treatment areas

has direct practical implications: in particular, it may allow one to

optimize the use of antimicrobial drugs to prevent the emergence

and spread of drug-resistant pathogens. Furthermore, in the

broader context of insecticide-resistance, fungicide-resistance, or

resistance to toxins in genetically modified crops, taking space into

account may help develop new resistance management strategies.

In our direct transmission model, as pointed out earlier by

Nagylaki [22,24] in a population genetics context, the critical size

of the favorable area is proportional to s, the standard deviation of

the distribution of the distances of migration (i.e. the standard

deviation of the migration kernel), which is thus a measure of the

migration range. More migration increases the critical size because

it counteracts the effect of natural selection in the treated area.

Second, as emphasized by Nagylaki [24], asymmetric densities

(summarized in the compound parameter t) generate asymmetric

gene flow that selectively favor the allele in the most populated

area. In Nagylaki’s study [24], t and the selection parameters s
and a are independent. In our study however, the population

parameters (s, a, t) depend on explicit individual life-history traits

(such as b
j
i , c

j
i ) [39] (for the direct transmission model, see

equations (6), (7a) and (7b) for t, s, and a). Consequently, in

contrast to earlier population genetics studies [24], the effects due

to the asymmetry in population sizes between habitats (t) and to

the heterogeneity of selection pressures (s, {a2s) are intermingled.

In addition, t is always greater than unity. Our critical size is

therefore greater than when no epidemiological feedback on

evolution is considered (see Text S1 for a comparison between

models with or without demographical feedback). The initial

asymmetry in drug-sensitive parasites’ densities makes the drug-

resistant parasites’ invasion harder.

A third factor determining of the critical size is the intensity of

selection for the invading strain, in each environment (s and

{a2s). In a spatially homogeneous habitat, where the intensity of

treatment does not vary in space, the invasion conditions are

exclusively governed by the sign of s, which only depends on the

basic reproductive ratios, R0, of the different parasites in treated

and untreated areas (see Ahomo
c s expression in equation (10)). Yet,

in a spatially heterogeneous environment, where treatment varies

in space, in addition to its direction, the intensity of selection in both

areas is required. The intensity of selection is inversely

proportional to the total duration of an infection with the drug-

resistant strain (1=cR with the direct transmission model, and

1=cRz1=nRð Þ with the vector-borne transmission). This explains

the impact of the drug-resistant infection duration on the critical

area size. As a result, for a given value of R0, the shorter the

duration of the infection (i.e. high bR and cR), the more likely is

the drug-resistant parasite’s invasion (which corresponds to a lower

critical A size, see equations (8) and (11)), because the hosts have

less time to leave the favorable area. Consequently, a parasite with

fast dynamics is better locally adapted that one with slower

dynamics.

The basic reproductive ratios are classically used in epidemi-

ological models to evaluate the costs of drug-resistance [40,41], as

we did in figure 1a. Here we show that it is critical to know which

life-history traits are affected in drug-resistant parasites. This point

has already been raised in models with temporally varying

environments [42,43]. Thus, both temporal [43] and spatial

heterogeneities have the potential to alter the conclusions of

models of well-mixed populations, because the direct correspon-

dence between R0 and the fitness of a parasite strain does not hold

anymore. A practical implication of our results is that accurate

predictions regarding the evolution of drug-resistance require

more information on the life history traits of the parasites which

contribute to the cost of drug resistance [44].

Resistance management
Our model can be used to explore new strategies of resistance

management. Yet, various criteria can be used to define an

optimal strategy [45,46], based on the short-term or long-term

minimization of parasite prevalence, or on the frequency of drug-

resistance at equilibrium or in a transitory phase. In our model, we

focus on the equilibrium (i.e. long-term) frequency of drug-

resistance across space. We define a good treatment strategy as a

strategy under which a maximum proportion of individuals can be

treated, but which best prevents or limits the emergence and

spread of drug-resistant parasites.

Suppose that only a limited stock of treatment is available: only

a part of the population can be treated. Two (extreme) strategies

are considered: treating everyone in a limited area of width A, the

total size of the environment being AzB (a strategy referred to as

heterogeneous treatment), or treating the same proportion

A= AzBð Þ of individuals everywhere (homogeneous treatment).

In both strategies, the same overall number of individuals are

treated, and all of them receive the same dose of treatment. Note
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that the homogeneous treatment is homogeneous from a global

perspective, but heterogeneous locally (and conversely for the

heterogeneous treatment). Our definition thus contrasts with the

terminology used by other authors (e.g. [6]). Which treatment

strategy best prevents the invasion of drug-resistant parasites? With

a homogeneous treatment, there is no coexistence at equilibrium,

and the population will either be fixed at equilibrium for drug-

sensitive parasites, or for drug-resistant parasites. With a

heterogeneous treatment, however, drug-sensitive and drug-

resistant parasites can coexist at equilibrium. We compare the

evolutionary outcomes obtained under the two treatment

strategies in figure 3, using our model of vector-borne transmis-

sion.

For our set of epidemiological parameters, when the migration

range is large (figure 3a), three different cases may be considered:

(1) when the proportion of treated individuals is low (on the left-

hand side of the white point in figure 3a), both strategies are

equivalent because drug resistance does not emerge; (2) when the

proportion of treated individuals is intermediate (between the

white and gray points), drug resistance emerges and spreads in the

heterogeneous treatment strategy but not in the homogeneous one;

(3) when the proportion of treated individuals is high (on the right-

hand side of the gray point, so that AwAhomo
c ), both treatment

strategies are equivalent since drug resistance spreads to the whole

population under both scenarios.

When migration is more local (figure 3b), drug-resistance still

appears for a smaller proportion of treated individuals with the

spatially heterogeneous treatment. However, when the proportion

of treatment is such that AwAhomo
c and BwBc (i.e. between the

gray and black points in figure 3b), drug-resistant parasites

dominate the whole environment with the homogeneous strategy,

while the heterogeneous strategy still limits the spread of drug-

resistance. This is because a spatially heterogeneous treatment

maintains refuges for drug-sensitive parasites.

There is thus a critical migration range, above which the

heterogeneous strategy may better limit the spread of drug-

resistance. This critical migration range can be visualized in

figure 2, at the interception point of the Ahomo
c and Bc curves.

To illustrate further this point, let us take the example of two

vector-borne diseases, malaria and trypanosomiasis. Even though

we give here the example of two human diseases, recall that our

models are general enough to be applicable to a wide range of

parasites and hosts, including other animals and plants, provided

the use of adequate parameters. Anopheles mosquitoes, malaria

vectors, are known to migrate at longer ranges [47] than tsetse flies

[48], which are responsible for the transmission of trypanosomi-

asis. Our model suggests that, because of the different migration

patterns of their vectors, the optimal treatment strategy – treating

everyone but not everywhere or treating everywhere but not

everyone – that would best limit the spread of drug-resistance

might differ between the two systems. It might be better to treat

homogeneously against malaria (see figure 3a), while for

trypanosomiasis the optimal strategy may depend on the available

number of treatment doses (see figure 3b). Undoubtedly, treating

only part of the population raises ethical questions. What appears

to be the best solution for the population as a whole might not

reveal immediately good for some individuals. As a result,

untreated individuals looking for treatment may actively move

towards treated areas, and may therefore mitigate the benefits of

an heterogeneous treatment. Another way of creating a spatially

heterogeneous environment for the parasite would be to use

different drugs in different areas. This strategy, however, may

select for multiple drug resistance (see [8] for a numerical

investigation). Whether a spatial mosaic with two drugs better

prevents the evolution of drug-resistance than a spatially

homogeneous mixture of drugs remains to be investigated.

Of course, more quantitative recommendations for minimizing

parasite prevalence and the evolution of drug-resistance would

require a fully parameterized model of these two systems, as well as

relaxing several simplifying assumptions. In particular, it would be

worth extending our model to dispersal in two spatial dimensions,

and taking diploidy and the effects of dominance into account.

Both extensions have already been studied in a population genetics

context by Nagylaki [22], who showed that the critical favorable

area size is bigger in a model with two spatial dimensions, because

the effect of migration is stronger [22]. Recessivity of the resistance

locus also increases the critical favorable area size [22]. The

analysis of these effects in models with a demographical feed-back

on evolution requires further investigation. In the context of

infectious diseases, it would also be interesting to study the

potential influence of multiple infection events, whereby an

already infected host can be infected by another strain: this would

add another level of competition between parasitic strains, namely

Figure 3. Comparison between homogeneous and heteroge-
neous treatments. This figure represents the frequency of drug-
resistance at equilibrium, as a function of the proportion of treated
individuals (r~A= AzBð Þ), for the homogeneous (green) and hetero-
geneous (red) treatment strategies, with the vector-borne transmission
model. The migration range is high in (a), and low in (b). The curves
result from numerical integrations of the model, and the vertical lines
show the analytical predictions; r Xc½ � means ‘‘proportion of treated
individuals corresponding to the critical size Xc ’’. The red full curve
shows the (spatial) mean frequency of drug-resistance, while the
dashed red curve shows this frequency at the center of the treated area
(x~0). Parameters: NH~1, NV~10, bT

WT~5, bU
WT~5:1, bR~5:05,

bT
WT~2, bU

WT~2, bR~2, cT
WT~2:5, cU

WT~2, cR~2:25, nT
WT~10,

nU
WT~10, nR~10; in (a) sH~

ffiffiffi
1
p

, sV~
ffiffiffi
1
p

; in (b) sH~
ffiffiffiffiffiffiffiffiffi
0:01
p

,
sV~

ffiffiffiffiffiffiffiffiffi
0:01
p

.
doi:10.1371/journal.pcbi.1000337.g003
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within-host competition. Finally, diffusion might not be the best

way to model migration, especially in human populations, where

individuals belong to interaction groups like households, and can

be treated in specific locations like hospitals [9]. It would therefore

be interesting to model more realistically both the spatial

distribution of individuals (i.e. uneven distribution in space) as

well as their migration patterns (i.e. various migration kernels).

In this paper we bridge the gap between the epidemiology and

the population genetics of drug-resistance [49,50] to study the

interplay between demography and evolutionary dynamics in a

spatially structured environment. Taking into account this eco-

evolutionary feedback may help better predict and prevent the rise

and spread of drug or vaccine resistance in pathogen populations.

Materials and Methods

Epidemiological models in a spatially heterogeneous
environment

We study two models, corresponding to two types of parasite

transmission. The parasites are modeled as asexual and haploid. In

all models, the individuals are infected by one strain only at a time,

and this strain cannot be displaced by the other (there is no

coinfection or superinfection). No mutation is explicitly modeled:

we assume that the drug-resistant strain pre-exists the treatment,

and we study the outcome of competition with the resident strain.

We assume that the hosts total density is constant in space and

time. However, the total density of parasites varies.

We focus on simple spatial patterns of treatment: a pocket of

treatment in an infinite untreated region (A small compared to B,

see figure 1b); or a periodical zebra-like pattern of treated and

untreated regions (A and B on the same scale, see figure 1c). The

effect of treatment and the cost of resistance are represented in

figure 1a using composite parameters, the basic reproductive ratios

R0 (see the main text).

The migration is modeled using the diffusion approximation. We

assume that there is no directional preference (the mean of the

dispersal kernel is zero), and that the standard deviation of the

migration kernel is s (the higher this parameter, the further dispersers

go). Higher moments of the distribution are neglected. In the

following, we present the direct transmission model; the analysis of

the vector-borne transmission model is detailed in Text S1.

Direct-transmission model
In our model with direct transmission of the parasites, only the

hosts diffuse, independent of their infectious status; the parasites

move with infected hosts. The densities of each parasite strain

depend on time (t) and space (x). These changes can be written as

a system of reaction-diffusion equations with three terms each

(dropping the time and space dependency in IWT and IR for

readability):

LIWT

Lt
~bU

WT gb xð ÞIWT N{IWT{IRð Þ

{cU
WT gc xð ÞIWTz

s2

2

L2IWT

Lx2

ð14aÞ

LIR

Lt
~bRIR N{IWT{IRð Þ{cRIRz

s2

2

L2IR

Lx2
ð14bÞ

with gb and gc step functions that model the effects of the

treatment, so that gb xð Þ~1 and gc xð Þ~1 in the untreated area,

and gb xð Þ~bT
WT

�
bU

WT and gc xð Þ~cT
WT

�
cU

WT in the treated area.

For each equation in system (14), the first term represents new

infections with strain i, where the transmission of the disease from

infected (Ii) to uninfected (N{
P

k Ik) individuals happens at rate

b
j
i . The second term is the recovery (or death) from the disease,

equivalent to parasite clearance, which happens at rate c
j
i . The last

term stands for the diffusive migration of the hosts, with a

migration range s, which is the standard deviation of the

migration kernel.

The boundary conditions are periodic and reflecting:

LIi=Lxjx~{ AzBð Þ~LIi=Lxjx~ AzBð Þ~0, i[ WT,Rf g ð15Þ

It means that there is no net movement of individuals at the

boundaries. Either the boundary cannot be crossed (like in a cage

or on an island), or there is no net movement of individuals,

because immigration and emigration compensate.

Let I be the total density of infected individuals, and p the

proportion, among all infected individuals, of individuals infected

by drug-resistant parasites:

I~IWTzIR ð16aÞ

p~
IR

I
ð16bÞ

Using system (15), and with a little bit of algebra, we obtain the

partial differential equations describing the dynamics of I and p,

which are presented in the results section (see system (2)).

Critical size in the direct transmission model
Finding the critical size of the treated (resp. untreated) area

comes to studying the stability of the drug-resistant free (resp.

drug-sensitive free) equilibrium. The method for the stability

analysis with the direct transmission model, under the low

migration approximation, is similar to the one already described

in [34,51,52].

Numerical Solutions
The sets of Partial Differential Equations (PDEs) can be

numerically solved using the Method of Lines implemented in

Mathematica’s NDSolve function. For each set of parameters, two

simulations are run, with different initial conditions, corresponding

to the invasion of the drug-sensitive strain in an environment

dominated by the drug-resistant strain, and reciprocally. If there

are bistabilities, the ultimate outcomes of the two simulations are

different.

Supporting Information

Figure S1 Reciprocal Invasion Plot. It is the same plot as in

figure 2 in the main text, but with different axes. Parameters:

N = 100, bWT
U = 0.06, bR = 0.055, bWT

T = 0.05, cWT
U = 1, cR = 1.25,

cWT
T = 1.5

Found at: doi:10.1371/journal.pcbi.1000337.s002 (0.20 MB TIF)

Figure S2 Reciprocal Invasion Plot. The parameters are

different than in figure S1, and a fourth outcome is possible in

zone (4). It corresponds to a situation where, at equilibrium, only

one strain is maintained, but its type depends on the initial

conditions. Parameters: N = 100, bWT
U = 0.05, bR = 0.08,

bWT
T = 0.09, cWT

U = 1, cR = 2, cWT
T = 2.5

Found at: doi:10.1371/journal.pcbi.1000337.s003 (0.20 MB TIF)
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Text S1

Found at: doi:10.1371/journal.pcbi.1000337.s001 (0.25 MB PDF)
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