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Abstract

Extraction of all the biological information inherent in large-scale genetic interaction datasets remains a significant
challenge for systems biology. The core problem is essentially that of classification of the relationships among phenotypes
of mutant strains into biologically informative ‘‘rules’’ of gene interaction. Geneticists have determined such classifications
based on insights from biological examples, but it is not clear that there is a systematic, unsupervised way to extract this
information. In this paper we describe such a method that depends on maximizing a previously described context-
dependent information measure to obtain maximally informative biological networks. We have successfully validated this
method on two examples from yeast by demonstrating that more biological information is obtained when analysis is
guided by this information measure. The context-dependent information measure is a function only of phenotype data and
a set of interaction rules, involving no prior biological knowledge. Analysis of the resulting networks reveals that the most
biologically informative networks are those with the greatest context-dependent information scores. We propose that these
high-complexity networks reveal genetic architecture at a modular level, in contrast to classical genetic interaction rules that
order genes in pathways. We suggest that our analysis represents a powerful, data-driven, and general approach to genetic
interaction analysis, with particular potential in the study of mammalian systems in which interactions are complex and
gene annotation data are sparse.
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Introduction

Understanding the functional interactions between genes

remains a major challenge in the genetics of complex traits and

a fundamental problem in biology. Organisms can be viewed as

information processors, highly evolved to recognize environmental

conditions and respond in a way that maximizes fitness. A major

goal of systems biology is to understand these processes by

perturbing system elements, assaying the resulting phenotypes, and

modeling system responses [1]. These phenotypes are determined

by complex interactions among gene variants and environmental

factors. Thus, the classical genetics approach of combining

perturbations to infer functional relationships between genes

(genetic interactions) can provide especially useful information

for system modeling. In model organisms, particularly in yeast,

such experiments have been performed systematically and at high

throughput [2–7]. In outbred populations, advances in QTL

mapping allow identification of multiple trait loci [8–11].

Extracting the information from these data sets that best describes

the hidden organization of gene activity is a major challenge that

we address here.

Detecting and classifying genetic interactions in a way that

maximizes the information content of the data should correspond

to the most biologically informative mapping of relationships

between genes. This idea casts the problem in terms of information

classification, rendering it a computational challenge for genetic

interaction data involving many genes. This classification problem

has been approached at various levels of analytic detail. Tong and

collaborators [2] considered only one type of interaction (synthetic

growth defects), generating a network of binary edges between

genetic knockouts (interacting or not interacting). Zhong and

Sternberg [12] also classified genetic interaction in binary terms, as

any genetic non-independence or genetic independence. The

analysis of Segré, et al. and others [6,13,14] adds a level of detail

by classifying genetic interactions as aggravating, alleviating, or

neutral, with later studies further sub-classifying the alleviating

interactions [6]. The work of Drees, et al. [5] segregates the

interactions into nine classes, chosen to best correspond to

interaction types identified as being useful in classical genetic

studies. For all of these approaches, it is possible that alternative

classification schemes may reveal more biological information in

the same data, since unexpected but meaningful relationships may

be missed when not explicitly sought. As genetic-interaction

experiments are performed on larger scales, it will become

increasingly difficult to preconceive the most informative classifi-

cation. This is the problem then, to extract the maximum

information from a given data set by optimizing the classification

of interactions. We call the interaction classes rules in this paper.

The classification problem is apparent when the classical

genetics strategy of using genetic interactions to order pairs of
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genes in a biochemical pathway is applied to a large-scale data

set. For example, classical epistasis occurs between two mutant

alleles with different phenotypes, when the double-mutant

phenotype is the same as that of one of the single mutations

(the one bearing the epistatic mutation), and the other

(hypostatic) mutation is thereby masked (The term epistasis is

sometimes used to as a generic term meaning any genetic

interaction. Here we use it in the narrow sense of one mutant

completely masking the effect of another.). The standard,

pathway interpretation of this interaction is serial information

flow from one gene to the other gene to the phenotype [15]. A

serial model, however, could also predict a different genetic

interaction in which both single-mutants and the double-mutant

have identical (non-wild-type) phenotypes, particularly in cases in

which the upstream gene activates the downstream gene. This

type of interaction is sometimes called ‘‘complementary epistasis’’

[16] or ‘‘asynthesis’’ [5]. Both epistasis and asynthesis suggest a

model with serial regulation of the phenotype, and it is not clear

when these two types of serial regulation encode an informative

distinction when embedded in a large-scale data set. Such issues

of interpretation are compounded by differences in the directions

of phenotype effects, which can be positive or negative, and

variations in mutation type, since gain-of-function and loss-of-

function mutants will often have different interpretations. Thus it

is unclear how biologically meaningful the distinctions between

interactions are in a given data set, and the meaning will likely

depend on the function of the biological system and genes being

studied.

It is therefore not surprising that classical pathway recon-

struction techniques that have proven successful for interpreting

the relationships between isolated gene pairs have not been

directly scalable to global interaction networks. It is likely that a

different type of information on genetic architecture might be

obtained when the data are subjected to an alternate analysis

and interpretation. In particular, large-scale data sets involving

interactions among many genes might reveal an underlying

organization in terms of modules of co-functional genes. This

organization may be missed by pathway analysis developed for

preselected gene pairs. A model-independent, agnostic and

data-driven approach is necessary to clarify this issue and

generate networks from which the most information can be

extracted.

We address this question here by proposing that the most

biologically informative classification scheme is the one that

leads to the greatest amount of biological complexity accounted

for in the set of interacting genes. We use the term complexity

here somewhat differently than is usual. We propose to

maximize the complexity in the set according to a previously

described complexity measure that is context-dependent, dis-

counts both redundancy and randomness, and depends on the

entire set of genes [17]. Finding the classification that gives us

the greatest information content requires: (i) a systematic

encoding of genetic interaction data, (ii) a metric for measuring

the complexity of a given classification scheme. To encode

genetic interactions, we follow the strategy of Drees, et al. [5].

To measure the complexity we use the context-dependent

complexity metric developed in our previous work [17] on

networks constructed from given data sets and multiple

classification schemes.

The complexity metric we use depends only on the genetic

interaction network generated by a given data set and

classification scheme. Although network topology (the set of

nodes and the presence or absence of an edge between each node

pair) is fixed for each data set by experimental design (the set of

genetic perturbations used and the pairs tested), edge types vary

according to the classification scheme used and thereby alter the

network. To test the biological relevance of a given classification

scheme [15], we assess the resulting network for local enrichment

of interaction with genes of a common biological function and

search for clusters of genes with similar interaction patterns across

the global network. We find that these clusters correspond to

high-order functional organization, or modules [5]. A biologically

informative network is expected to encode both localized

functional enrichments and dense modules, whereas a non-

informative network will produce few enrichments and map

sparse modules.

Although the terms information, complexity, and entropy are

often used synonymously in the literature, from this point forward

in this work we will use the term complexity to mean the numerical

quantity calculated according to our measure for a given

interaction network (Y, as defined below). By optimizing on this

complexity score, we can determine the maximally informative

classification and study the corresponding genetic interaction

network for biological relevance.

Results

Systematic quantification of genetic interactions
Genetic interactions are defined for a chosen phenotype under

specific environmental conditions, so that the only variables are

the specific genetic perturbations carried by the strains being

compared. This allows the modes of genetic interaction to be

systematically analyzed and formally classified [5]. Consider a

genotype X, and its cognate observed phenotype, PX. The

phenotype could be a quantitative measurement or any other

observation that can be clearly compared across mutant genotypes

(e.g. slow vs. standard vs. fast growth, color or shape of colony,

invasiveness of growth on agar etc.). The genotype is usually

labeled by the mutation of one or more genes, which could be

gene deletions, high-copy amplifications, or other allele forms.

With genotypes labeled by mutant alleles, a set of four phenotype

Author Summary

Targeted genetic perturbation is a powerful tool for
inferring gene function in model organisms. Functional
relationships between genes can be inferred by observing
the effects of multiple genetic perturbations in a single
strain. The study of these relationships, generally referred
to as genetic interactions, is a classic technique for
ordering genes in pathways, thereby revealing genetic
organization and gene-to-gene information flow. Genetic
interaction screens are now being carried out in high-
throughput experiments involving tens or hundreds of
genes. These data sets have the potential to reveal genetic
organization on a large scale, and require computational
techniques that best reveal this organization. In this paper,
we use a complexity metric based in information theory to
determine the maximally informative network given a set
of genetic interaction data. We find that networks with
high complexity scores yield the most biological informa-
tion in terms of (i) specific associations between genes and
biological functions, and (ii) mapping modules of co-
functional genes. This information-based approach is an
automated, unsupervised classification of the biological
rules underlying observed genetic interactions. It might
have particular potential in genetic studies in which
interactions are complex and prior gene annotation data
are sparse.

Information from Genetic Interactions
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observations can be assembled which defines a genetic interaction:

PA and PB for gene A and gene B mutant alleles, PAB for the AB

double mutant, and PWT for the wild type or reference genotype.

The relationship among these four measurements defines a genetic

interaction; for example, if we follow the classic genetic definitions

described above, PAB = PA,PWT,PB describes one type of

epistatic interaction, while PWT,PAB = PA = PB is an example of

asynthesis. There are a total of 45 distinct inequalities that can be

constructed from four phenotypes [5], and these are the

interactions we need to classify.

We consider two genetic interaction data sets from the literature

that use yeast as a model system (Materials and Methods). The first

is a study of genetic interactions observed in invasive growth [5].

When exposed to low-nitrogen growth conditions, the Saccharomyces

cerevisiae laboratory strain S1278b undergoes a cell differentiation

from round single-cell growth to a pathogen-like filamentous form

marked by cell elongation, unipolar distal budding, and invasive

growth. The invasion phenotype was assayed for genetic

interactions among 133 genetic perturbations, including gene

deletions, plasmid-borne high-copy gene insertions, and dominant

negative mutations. The invasion network of the perturbed genes

exhibited 41 of the 45 possible interaction inequalities, which were

classified by the authors into nine modes of genetic interaction

based on classical genetics: epistatic, conditional, suppressive, single-

nonmonotonic, additive, synthetic, asynthetic, double-nonmonotonic, and non-

interactive. The first four are inherently asymmetric and thus were

assigned directionality.

The second data set is from a study by St Onge, et al. of genetic

interactions between genes that impart resistance to the DNA-

damaging agent methyl methanesulfonate (MMS) [6]. Sensitivity

to MMS was assayed in terms of growth rate in the presence of

MMS for all pair-wise combinations of deletions for 26 genes.

Genetic interactions were initially classified as aggravating,

alleviating, or neutral interactions depending on the double-

mutant growth rates relative to the two single mutants. Through

further analysis the alleviating interactions were sub-classified into

five rules of interaction based on models of pathway ordering and

protein co-function, four of which were assigned directionality [6].

To explore alternative classifications we converted the data into

phenotype inequalities (Materials and Methods), which showed

that the MMS-growth network exhibited 10 of the possible 45

interactions.

Context-dependent complexity
To optimally classify the inequalities by maximizing complexity,

we need to define a computable complexity measure for the

networks generated by each classification scheme. Because it is

context-dependent, the optimal classification scheme will likely

vary with the data set being analyzed due to differences in

experimental design and the biological system under study. We

will therefore use a measure of network complexity that scores

networks based on the interrelationships between all elements in

the system – true context-dependence. This measure is designed to

penalize both information redundancy and randomness, both of

which depend on the global network [17]. In genetic interaction

analysis, a gene that completely repeats the interaction patters of

another gene will not significantly increase the complexity of the

system. Likewise, a gene with a perfectly novel interaction pattern

will not increase complexity because it adds no information that

can be contextualized. Thus networks with a balance between

common information and novel information will score higher than

those with an excess of redundant or random content.

Calculation of the complexity involves computing both the

information content of each element and the mutual information

between each pair of elements (Materials and Methods). In

previous work we refer to this as a context-dependent complexity

measure [17], represent this quantity as Y, and have normalized it

to range from zero (no complexity, e.g. a sequence of random bit

strings, or a sequence of identical bit strings) to one (maximal set

complexity).

Based on our previous work on the quantitative approach to

biological information [5], we conjecture that the classification

scheme that maximizes Y is the most biologically informative. We

note that a ‘‘perfect’’ score of Y= 1 is a theoretical bound, and

unlikely to be attained for any finite and experimentally-generated

data set.

We first assessed the complexity of the invasion and MMS-

growth networks using the classifications schemes defined in the

original publications [5,6]. Although many pair-wise combinations

of mutations were not assayed in the invasion network study, the

single-node and mutual information values were nevertheless

calculable for all pairs based on the available data. Thus, we can

compute the complexity Y, although we note that calculations for

networks in which all pair-wise perturbations have been performed

are likely to be more statistically robust. However, the larger the

network is, with more interactions, the better classifications are

generated due to the higher sample size. Results for the published

networks are shown in Table 1. For comparison, we also derived

interaction networks using the classification scheme from the other

work (swapped rules): (i) the invasion network based on the tri-

modal scheme, and (ii) the MMS-growth network using the

inequality-based nine-mode scheme. Interestingly, in both cases

the originally published networks had higher complexity than

networks derived from the alternate, swapped rules (Table 1).

Unsupervised classification of interactions
The use of the complexity measure, Y, allows not only the

assessment of classification schemes based on prior knowledge, but

also a means to find a classification scheme that maximizes this

quantity. Each classification scheme corresponds to a genetic

interaction network, and we propose that the network of maximal

complexity Y corresponds to the network that represents most of

the biological information in the interaction data. Thus, we

systematically searched for networks with the greatest Y for both

genetic interaction data sets.

Table 1. Complexity and number of biological statements
obtained for the two genetic interaction networks for various
interaction classifications.

Classification Scheme Invasion MMS-Growth

Y Statements Y Statements

Drees, et al. [5] 0.57 68 0.27 41

Segré, et al. [13] 0.52 60 0.32 23

St Onge, et al. [6]* - - 0.16 9

Maximal Y 0.79 93 0.62 43

*Subclassification of alleviating interactions could not be performed for the
invasion network since this scheme does not have rules to classify every
inequality in the invasion data.

The first three classification schemes are from the publications cited. Optimized
classifications were determined from unsupervised maximization of complexity
Y, which has a theoretical maximum of 1. The optimized classification scheme
for the invasion data was the greatest found via sampling, whereas the optimal
MMS-growth network is the network of absolute maximum complexity, found
by exhaustive calculation.
doi:10.1371/journal.pcbi.1000347.t001

Information from Genetic Interactions
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The starting point of the search was the list of pair-wise

interaction inequalities, described above, for each network. We

grouped these inequalities in all possible ways, ranging from all

inequalities in one rule set (corresponding to a trivial network with

an identical edge for every experimentally tested pair) to a separate

rule for each inequality – most of which occur multiple times in the

data. For unsupervised classification we did not assign interactions

directionality because of the ambiguities involved in such

definitions, for although in some cases it is clear that one mutation

can be seen as acting on another (e.g. suppression) in many non-

symmetric interactions it is unclear which mutant is causal (e.g.

partial suppression versus conditionality [5]). Furthermore, the

directionality of the underlying molecular action is often

ambiguous. For example, suppression can indicate either molec-

ular bypass or counteraction. Variants of our scheme can take

edge directionality into account (e.g., this was done for the

published networks in Table 1).

The MMS-growth network exhibited only 10 interaction

inequalities among the 26 genes, which implies 115,974 possible

classifications. Although this is a large number it is amenable to

computing the complexity, Y, of every possible classification

scheme. This was possible due to the relatively small network size,

which allowed quick calculation of pair-wise mutual information.

We were thus able to determine the optimal classification scheme

and know absolutely the maximal complexity score, which was

0.62 (Table 1). The optimal scheme classified the ten inequalities

into five rules. These rules are listed in Table 2 and the

corresponding network is shown in Figure 1.

The invasion network contains 41 different phenotype

inequalities. The associated search space is much too large for

an explicit assessment of every possible classification. To find

high-complexity classifications we therefore used a bootstrap

algorithm (Materials and Methods). While this procedure cannot

ensure that the true maximal complexity classification will be

found, we were able to regularly generate classifications with

Y.0.75, a significant improvement over the published classifi-

cations [5]. The final classification scheme corresponded to

Y= 0.79 (Table 1), which we estimate to be the optimal

classification given this data set (the theoretical maximum of

Y= 1 is not necessarily attainable by any finite, experimentally-

generated data set). This classification scheme segregated the

interaction inequalities into five classes as shown in Table 3,

generating a network with five rules of genetic interaction

(consider these as edge types).

Association of Genetic Perturbations with Biological
Functions

The power of our approach is that classifying genetic

interactions based on maximization of complexity, Y, selects the

most informative network based on the data alone. The underlying

assumption is that the maximally informative representation of the

data best corresponds to the genetic interaction ‘‘rules’’ among the

perturbations of the evolved biological system at hand, without

using any prior, received knowledge of the biology in the

maximization procedure. However, we need to define the

information content of the network in some independent way to

validate this claim.

Most yeast genes have now been annotated for biological

function. We can use this prior knowledge after the fact to validate

the complexity-based optimization. To do this, we need to define a

quantifiable measure of the biological information that can be

extracted from a given genetic network using prior knowledge.

Although both the genetic interaction data and the annotations

contain noise, we can find statistically unlikely occurrences of this

kind of relationship, which we call a biological statement: a particular

gene interacting in a single rule with multiple genes annotated with

a single biological function (Materials and Methods; [5]). The

result was a computer-generated list of biological statements relating

genes, interaction modes, and target annotations, with entries such

as: ‘‘A deletion of RAD52 interacts via Rule 1 with deletion

mutations of non-recombinatorial repair genes. (p = 0.0019).’’ The

number of such existing statements will be highly sensitive to the

interaction rules in the network, and thus can serve as a measure of

how informative each classification scheme is in a biological sense.

A list of biological statements was generated for every possible

MSS-growth network and every sampled invasion network. The

complete list for the maximally complex MMS-growth network is

shown in Table 4. Considering all possible MMS-growth

networks, we found a strong correlation between the number of

statements and the information score Y (r = 0.80). The 115,974

data points (one for each network) are summarized in the

histogram in Figure 2, which shows the mean number of

biological statements as a function of binned Y values. There is

a clear trend that a greater information score corresponds to a

greater number of biological statements extracted. We stress that

these two quantities are entirely independent and there is no a

priori reason for such correlation. A similar correlation was

observed in the invasive growth network, although we could only

sample a small subset of random classifications given the greater

Table 2. Rules for maximal complexity in the MMS-growth network.

Rule Rule Frequency Inequalities Inequality Frequency Drees Interpretation

1 120 PAB = PA,PB,PWT 120 epistatic

2 55 PAB,PA = PB,PWT 55 additive

3 92 PAB,PA,PB,PWT 92 additive

4 30 PAB = PA = PB,PWT 24 asynthetic

PAB = PA,PB = PWT 6 non-interactive

5 26 PAB,PA,PB = PWT 14 conditional

PA,PAB = PB,PWT 4 epistatic

PA,PAB,PB,PWT 4 single-nonmonotonic

PAB = PA = PB = PWT 3 non-interactive

PAB,PA = PB = PWT 1 synthetic

Frequencies refer to the number of occurrences of the rule in the full network of 323 interactions, and classical interpretations follow Drees et al. [5].
doi:10.1371/journal.pcbi.1000347.t002

Information from Genetic Interactions
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Figure 1. MMS-growth network with maximal set complexity, Y. (A) is the complete network. Sub-networks of relationships shown in Table 2
for (B) Rule 1, (C) Rule 2, (D) Rule 3, (E) Rule 4, and (F) Rule 5. The same color codes are used in Figure 3.
doi:10.1371/journal.pcbi.1000347.g001

Information from Genetic Interactions
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size of the network. This finding is strong evidence that

maximizing the context-based information measure Y is a good

strategy for inferring information about real biological organiza-

tion. This conclusion is strengthened when we examine the

inferred networks and the implied biological organization, as

discussed below. Our mathematical measure appears to reflect the

real biological organization represented in the data.

Mutual Information Networks
While biological statements characterize local network proper-

ties and define functional subnetworks (Figure 3), global patterns in

genetic interaction networks can also reveal underlying biology. In

particular, pairs of alleles often show a high degree of mutual

information with common interaction partners, such that knowing

the interactions of one allele may allow one to know the

Table 3. Rules for high complexity in the invasion network.

Rule Rule Frequency Inequalities Inequality Frequency Drees Interpretation

1 312 PA,PWT = PB = PAB 146 suppression

PA = PAB,PWT,PB 79 epistatic

PAB,PA,PWT = PB 38 conditional

PAB,PWT = PA,PB 17 conditional

PAB,PA,PWT,PB 14 single-nonmonotonic

PWT,PA = PB = PAB 8 asynthetic

PWT,PAB,PA = PB 4 double-nonmonotonic

PWT = PAB,PA,PB 4 double-nonmonotonic

PWT,PA,PB = PAB 2 epistatic

2 325 PA = PAB,PB,PWT 97 epistatic

PA = PAB = PWT,PB 56 suppression

PA,PAB,PB,PWT 50 single-nonmonotonic

PA,PWT,PB = PAB 47 epistatic

PA,PWT = PB,PAB 41 conditional

PWT = PA = PB,PAB 29 synthetic

PAB,PWT,PA,PB 4 double-nonmonotonic

PWT,PA = PB,PAB 1 additive

3 398 PA = PAB,PWT = PB 143 non-interactive

PA = PB = PAB,PWT 103 asynthetic

PA,PB = PAB,PWT 38 epistatic

PAB,PWT = PA = PB 33 synthetic

PWT = PA,PB = PAB 32 non-interactive

PA,PB,PWT = PAB 14 double-nonmonotonic

PA = PB,PWT = PAB 13 double-nonmonotonic

PWT = PA,PB,PAB 11 conditional

PWT,PA = PAB,PB 8 epistatic

PWT,PAB,PA,PB 2 double-nonmonotonic

PA = PB,PAB,PWT 1 double-nonmonotonic

4 356 PA,PWT,PAB,PB 176 additive

PA,PWT = PAB,PB 105 additive

PWT = PA,PAB,PB 67 conditional

PA = PB,PWT,PAB 8 double-nonmonotonic

5 418 PWT = PA = PB = PAB 268 non-interactive

PA,PAB,PWT = PB 72 conditional

PA,PAB,PWT,PB 40 additive

PAB,PA = PB,PWT 19 additive

PA,PWT,PB,PAB 11 single-nonmonotonic

PAB,PA,PB,PWT 5 additive

PWT,PA,PB,PAB 1 additive

PA,PB,PWT,PAB 1 double-nonmonotonic

PWT = PAB,PA = PB 1 double-nonmonotonic

Frequencies refer to the number of occurrences of the rule in the full network of 1809 interactions, and classical interpretations follow Drees et al. [5].
doi:10.1371/journal.pcbi.1000347.t003

Information from Genetic Interactions

PLoS Computational Biology | www.ploscompbiol.org 6 April 2009 | Volume 5 | Issue 4 | e1000347



interactions of another. This pair-wise property is quantified by

the mutual information scores used to compute the context-

dependent complexity metric, Y (Materials and Methods, Eqn. 2).

We identified pairs of alleles with statistically significant mutual

information (Materials and Methods). These pairs were mapped in

mutual information networks (Figure 4). Clusters or cliques of

genes in a mutual information network identify genes with similar

effects on biological processes, often corresponding to specific

modules [5]. Therefore a larger number of mutually informative

pairs corresponds to more comprehensive module mapping.

Table 4. Biological statements extracted from the maximally complex MMS-growth network.

Deletion of gene interacts via with deletions of genes with GO annotation P

SGS1 Rule 5 error-free DNA repair 7.91E-05

SWC5 Rule 2 error-free DNA repair 0.00040

RAD51 Rule 4 heteroduplex formation 0.00043

CLA4 Rule 3 developmental process 0.00047

PSY3 Rule 1 meiosis I 0.00047

CLA4 Rule 3 DNA recombination 0.00098

CSM2 Rule 1 meiosis I 0.0012

PSY3 Rule 3 negative regulation of transposition, RNA-mediated 0.0017

MPH1 Rule 4 error-free DNA repair 0.0017

CSM2 Rule 4 error-free DNA repair 0.0017

SHU2 Rule 4 error-free DNA repair 0.0020

HPR5 Rule 1 mitotic recombination 0.0022

CLA4 Rule 3 reproductive developmental process 0.0024

PSY3 Rule 1 reproductive developmental process 0.0024

SHU1 Rule 1 reproductive developmental process 0.0024

MAG1 Rule 3 reproductive developmental process 0.0024

RAD52 Rule 1 double-strand break repair via single-strand annealing 0.0026

HPR5 Rule 1 cellular component organization and biogenesis 0.0026

MPH1 Rule 1 heteroduplex formation 0.0028

CLA4 Rule 3 mitotic recombination 0.0029

MAG1 Rule 3 mitotic recombination 0.0029

SHU2 Rule 1 meiosis I 0.0030

HPR5 Rule 3 negative regulation of transposition, RNA-mediated 0.0043

SHU1 Rule 4 error-free DNA repair 0.0043

RAD59 Rule 1 postreplication repair 0.0043

RAD52 Rule 1 non-recombinational repair 0.0044

CSM2 Rule 1 reproductive developmental process 0.0047

HPR5 Rule 1 reproductive developmental process 0.0055

HPR5 Rule 4 error-free DNA repair 0.0067

RTT101 Rule 2 heteroduplex formation 0.0067

MPH1 Rule 3 DNA recombination 0.0071

MMS1 Rule 2 telomere maintenance via recombination 0.0087

HPR5 Rule 1 meiotic DNA recombinase assembly 0.0087

RAD51 Rule 4 double-strand break repair via single-strand annealing 0.0087

MMS4 Rule 3 reproductive developmental process 0.0087

RTT107 Rule 2 DNA recombination 0.0097

CLA4 Rule 3 heteroduplex formation 0.0100

CSM3 Rule 1 heteroduplex formation 0.0100

PSY3 Rule 1 heteroduplex formation 0.0100

SHU1 Rule 1 heteroduplex formation 0.0100

MAG1 Rule 3 heteroduplex formation 0.0100

MUS81 Rule 3 heteroduplex formation 0.0100

MUS81 Rule 1 error-free DNA repair 0.0100

doi:10.1371/journal.pcbi.1000347.t004

Information from Genetic Interactions
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We analyzed the yeast invasion network for significant mutual

information (Materials and Methods). We were unable to similarly

randomize the MMS sensitivity network due to a limited diversity

of interaction types. Drees, et al identified 23 allele pairs with

significant (P,0.001) mutual information using their edge

classification scheme (Figure 4A) [5]. Our maximally complex

classification scheme allowed a more stringent P-value cutoff. We

identified 159 allele pairs with significant (P,0.0001) mutual

information (Figure 4B and Table S1), compared to 15 allele pairs

of this higher significance in the Drees network. Inspection of

classification schemes with intermediate complexity scores showed

that the number of mutually informative alleles generally increases

with Y (data not shown), similar to the trend observed for

biological statements (Figure 2).

The mutual information network arising from the maximally

complex classification scheme reveals two major subnetworks, or

modules, of connected components (Figure 4B). The first,

containing 17 alleles, is statistically enriched in invasive growth

and cell-surface receptor linked signal transduction genes (Table

S2). The majority of these genes are components of the MAP

kinase signaling pathway that promotes invasive filamentous-form

growth (fMAPK pathway) [18]. The second, larger module

comprises 66 alleles and has no homolog in the mutual

information network obtained from the Drees classification

scheme (Figure 4A). It is enriched in DNA-dependent transcrip-

tion and cAMP-mediated signaling genes (Table S2). The fMAPK

and cAMP signaling modules are known to be major determinants

of the cellular switch to filamentous-form growth [19].

Discussion

Set Complexity and Biological Information
In deriving networks automatically based on maximal set

complexity we were able to both recover previous insights and

discover new biological information. The sub-networks in Figure 3

illustrate examples of biological statements from the maximally

complex MMS-growth network (Table 4). Although detailed

interpretations of the molecular biology underlying this is beyond

the scope of this study, we find that the network derived from

maximization of set complexity reflects novel and diverse

biological relationships between genes in the network. Figure 3A

shows that the gene PSY3 interacts functionally via Rule 1 with six

meiotic recombination genes, a conclusion not obtained in the

supervised analysis published previously. The sub-network in

Figure 3B illustrates a set of relationships involving the DNA

repair genes CSM2, SHU1, SHU2, and PSY3, which generated four

significant biological statements (Table 4). SWC5 interacts with

these genes via Rule 2, whereas SGS1 interacts via Rule 5.

Furthermore, the DNA repair genes themselves form a clique of

Rule 4 interactions, which is statistically significant for CSM2 and

SHU2. The latter three statements were discussed in the original

analysis [6], to which our complexity-based analysis adds an

additional piece of information. Finally, we show in Figure 3C that

HPR5 interacts specifically via Rule 3 with genes determining the

negative regulation of DNA transposition, MMS1, RTT101, and

RTT107, and via Rule 1 (epistasis) to four genes involved in gene

conversion at mating-type locus. This sub-network also illustrates

the Rule-2 interactions between RTT101 and three hetero-duplex

formation genes. These relationships were not obtained in the

Figure 2. Biological information as a function of set complexity
Y in the MMS-growth networks. Average number of biological
statements (significance P,0.01) for binned complexity calculated from
all possible networks. Error bars denote the standard deviation of
binned data points.
doi:10.1371/journal.pcbi.1000347.g002

Figure 3. Examples of biological information extracted from the maximally complex MMS-growth network. (A) Deletion of PSY3
interacts via Rule 1 (red edges) with meiotic recombination gene deletions. (B) Deletion of SGS1 interacts via Rule 5 (green edges) with four error-free
DNA repair gene deletions. Deletion of SWC5 interacts with the same genes via Rule 2 (orange edges). These four genes interact via Rule 4 (violet
edges), significantly for CSM2 and SHU2 deletions. (C) Deletion of HPR5 interacts via Rule 3 (blue edges) with genes involved in negative regulation of
DNA transposition and via Rule 1 (red edges) to genes involved in gene conversion at mating-type locus. Deletion of RTT101 interacts via Rule 2
(orange edges) with heteroduplex formation genes.
doi:10.1371/journal.pcbi.1000347.g003
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previous analysis and are a result of deriving the network based on

maximization of set complexity.

Unsupervised classification of the invasion network generated a

network of highest complexity score with five rules of genetic

interaction. Because interaction data were generated for a larger

number of gene pairs (1809 interactions tested between 133 gene

mutations) than in the MMS-growth data, many more inequalities

were observed (41 compared to ten in MMS-growth). These

inequalities were grouped into five rules, comprising between five

and 11 inequalities each. These rules are listed and are directly

compared with the original classifications of Drees, et al. [5] in

Table 3. In Drees, et al. many of the inequalities were assigned

rules based on classical genetics; some were unfamiliar and

grouped based on mathematical relationships. For example, ten of

the 41 inequalities were grouped together as double-nonmonotonic, an

interaction rule without an established biological interpretation.

Our complexity-based analysis distributed these ten inequalities

across all five rules, grouping some of them with primarily additive

interactions (Rule 5) while others share a rule with epistatic and

suppressive interactions (Rule 1).

Overall, the rules derived for the invasion data often do not

correspond to those in pathway-oriented analysis [5]. Interpreta-

tion of these rules therefore requires further analysis, keeping in

mind that more than one mutation type was used to generate the

invasion data (gene deletions, gains-of-function, etc.). However,

the results might seem less perplexing in light of the fact that

varying the allele forms of the same two genes can result in

different genetic interaction inequalities. Furthermore, genes

playing different roles (activation, inhibition, etc.) in the same

functional module might interact in different modes with

perturbations of genes in a different module. The grouping of

interactions into rules that maximize set complexity apparently

groups the interactions into coherent rules relating genes in

different modules, rather than basing interaction rules on each

pair of genes individually. This concept is illustrated in Figure 5. In

this light, the classifications derived from the complexity metric are

interpreted as the rules that govern how genes are organized into

functional groups, taking into account the full content (and

limitations) of the analyzed data set. This can be contrasted with

the pathway analysis of genetic interactions, in which the rules are

interpreted in terms of information flow through individual gene

pairs.

Network analysis results support this interpretation. As with the

MMS-growth network, the invasion network resulting from this

classification scheme resulted in a marked increase in biological

statements obtained from the network (Table 1). Thus the network is

a promising candidate for analysis with computational tools that

search for patterns and motifs in complex data [20]. The

statements listed in Tables 4 and 5 and the corresponding

example sub-networks in Figure 3 involve network motifs and

architecture that can be systematically interpreted for biological

meaning by higher level, unsupervised analyses [20–23]. The

quality of such tools is critically dependent on the global network

used as input, and our results strongly suggest that networks

derived from maximization of set complexity are the optimal

inputs for information-based network analyses.

The demonstrated correlation between set complexity, Y, and

the number of network-generated biological statements is strong

evidence that the former is a sound basis for analyzing genetic

interaction data sets. Furthermore, we found that classification

schemes that produce networks of greater complexity also generate

larger and more informative mutual information networks. Yeast

invasion network alleles were separated into two clusters

corresponding to genes in the Kss1-based MAP-kinase and

cAMP-mediated signaling modules (Figure 4B) [18,24]. Co-

activation of these two signaling modules is known to play a

major role in initiating yeast invasive growth, however many genes

with invasive-growth phenotypes have not yet been associated with

these (or other invasion-related) modules. Placement in the mutual

information network suggests module associations for some of

these genes. For example, high throughput assays have found that

deletion of the gene VPS25 causes diminished pseudohyphal [25]

and invasive growth [5] but its relevant function is unclear. Due to

its position in the largest mutual information cluster, our analysis

suggests the defects are due to Vps25 affecting cAMP signaling

during invasive growth. Furthermore, although we did not detect

any in this data set, additional large mutual information clusters

might implicate other modules affecting a phenotype.

Figure 4. Networks of mutual information for yeast invasion data. Nodes represent alleles and edges represent significant mutual
information between the connected alleles. (A) Mutual information network obtained using the classification scheme of Drees, et al, showing all pairs
of significance p,0.001 [5]. (B) Mutual information network obtained using the maximally complex classification scheme on the same data, showing
all pairs of significance p,0.0001. The maximally complex classification scheme produces more pairs and higher significance.
doi:10.1371/journal.pcbi.1000347.g004
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We note that although the complexity maximization procedure

favors schemes that increase pair-wise mutual information, the

procedure does not formally maximize this quantity. An

overabundance of mutual information can hide systematic

distinctions between allele pairs and thus corresponds to a loss of

complexity in the network. Instead, the procedure attempts to find

the classification scheme which best distributes the mutual

information in a given data set, effectively determining the

optimal resolution of pair-wise mutual information. This is evident

in the invasion network analysis (Figure 4B), in which over half of

the tested alleles (87 out of 133) were found to have at least one

mutually informative partner and MAPK and cAMP signaling

module elements were accurately separated.

We stress that the interaction classifications (rules) were selected

only by maximizing the complexity measure, Y – based on the

data alone, and without using any prior knowledge of the biology

under study. Gene annotations and mutual information networks

were used subsequent to the rule choice to validate the biological

relevance of the optimized networks.

The Set Complexity Metric Y
Examining the genetic interaction networks generated by each

classification scheme reveals some general properties of the set

complexity measure Y. While a greater number of interaction rules

in a given classification scheme tended to generate a larger Y
(Pearson r = 0.18), this association was weak and a large range of

complexity values were found for every number of rules (Figure 6).

A stronger association was found between uniformity in the

frequencies of each interaction rule in the network and complexity

Y. This was quantified by computing the frequency of each

interaction rule in a given network, then taking the standard

deviation sF of the list of frequencies. Thus a network with a wide

variation in number of occurrences for different interaction modes

will have a large sF. We computed sF for every possible

classification of the MMS-growth data and found a very strong

anti-correlation between sF and Y (Pearson r = 20.85). This is

shown in Figure 7, which plots the average Y complexity for

networks with specified ranges in sF. This association originates in

the context dependence of the complexity measure, which generates

scores based not only on the information content of each node, but

the sum content of all mutual information in the network (Materials

and Methods, Eqn. 3). In general, interaction rules that are

infrequent (relative to other rules in the network) cannot be

associated with a functional role, since extraction of biological

statements or other conclusions is often statistically insignificant.

This property of our complexity measure explains the reduction

in complexity when the MMS-growth network based on the tri-

modal classification scheme (aggravating, neutral, alleviating) is

sub-classified into six modes (aggravating, neutral, and four classes

of alleviating) based on MMS-sensitivity (Table 1) [6]. Three of the

alleviating subclasses of interaction appear fewer than 10 times

each in the global network, out of 323 total edges. Although prior

information could be used to interpret these interactions [6], it is

unclear how any meaning can be ascribed to them from the data

alone. Similar difficulties were seen in the invasion network, in

which the greatest complexity scores occurred for five or six

interaction rules, suggesting the original classification scheme into

9 rules over-specified the network. On the other hand, interaction

rules that occur too commonly fail to clearly attribute any

biological meaning to a specific rule, since they are weakly

associated with many different functions. For example, simply

classifying the invasion network into two classes – ‘‘interacting’’

and ‘‘non-interacting’’ – generated a set complexity score of 0.26

and relatively few biological statements. Similarly classifying the

MMS-growth network into ‘‘neutral’’ and ‘‘non-neutral’’ interac-

tion rules generated a complexity of 0.22 and only five biological

statements. These findings demonstrate the importance of analyzing

complexity in a context-dependent way, by determining the

meaning of any single interaction from how it relates to all other

interactions in the network. It appears that maximizing Y
inherently avoids over-fitting, and balances the two effects.

However, we also note that uniformity in rule frequencies (low

sF) is an indirectly contributing factor in complexity. Our

definition of complexity (Materials and Methods, Eqn. 3)

fundamentally depends on the amount and distribution of mutual

information in the network [17]. Thus uniformity in rule

frequencies can be viewed as a necessary condition of mutual

information generation, but it alone is not sufficient. Mutual

information must be inherent in the data itself in order to obtain

networks with high complexity. Thus, although the maximally

Figure 5. Network modularity of genetic interactions. (A) A simple, hypothetical genetic interaction network of seven genes with three
biological functions. (B) An example biological statement inferred from the genetic interaction network, establishing a coherent interaction rule
between gene perturbation F and Function 1. (C) Inferred mutual information network that exhibits the functional modularity of the genetic network.
doi:10.1371/journal.pcbi.1000347.g005
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Table 5. Biological statements extracted from the high-complexity invasion network.

Mutation of interacts via with mutations of genes with GO annotation P

HOG1 Rule 4 invasive growth in response to glucose limitation 0.00027

TEC1 Rule 2 regulation of cellular process 0.00031

STE11 Rule 3 organelle organization and biogenesis 0.00053

HOG1 Rule 4 positive regulation of biological process 0.00064

XBP1 Rule 5 reproduction 0.00070

ROX1 Rule 5 conjugation with cellular fusion 0.0010

HOG1 Rule 4 positive regulation of transcription from RNA polymerase II promoter 0.0011

RAS2 Rule 2 positive regulation of biological process 0.0011

SPO12 Rule 5 reproduction 0.0012

MSN1 Rule 1 cell surface receptor linked signal transduction 0.0014

KSS1 Rule 2 positive regulation of catalytic activity 0.0014

KSS1 Rule 4 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 0.0014

HSL1 Rule 1 cell wall organization and biogenesis 0.0014

HOG1 Rule 4 conjugation with cellular fusion 0.0015

CDC42 Rule 4 positive regulation of metabolic process 0.0015

SRL1 Rule 3 conjugation with cellular fusion 0.0015

MSN1 Rule 1 positive regulation of catalytic activity 0.0018

COD4 Rule 5 reproduction 0.0019

RAS2 Rule 4 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 0.0019

HOG1 Rule 4 response to pheromone 0.0021

HOG1 Rule 4 pheromone-dependent signal transduction during conjugation with cellular fusion 0.0021

RAS2 Rule 2 response to pheromone 0.0022

GLN3 Rule 2 protein targeting 0.0023

KSS1 Rule 2 intracellular signaling cascade 0.0023

URE2 Rule 3 reproduction 0.0025

URE2 Rule 3 response to pheromone 0.0025

YPS1 Rule 3 G-protein coupled receptor protein signaling pathway 0.0025

KTR2 Rule 3 G-protein coupled receptor protein signaling pathway 0.0025

TEC1 Rule 2 positive regulation of biological process 0.0025

DIG2 Rule 2 osmosensory signaling pathway 0.0027

PBS2 Rule 4 replicative cell aging 0.0031

XBP1 Rule 5 cell communication 0.0031

XBP1 Rule 5 response to chemical stimulus 0.0031

CDC42 Rule 4 regulation of transcription, DNA-dependent 0.0032

YPS1 Rule 3 filamentous growth 0.0038

STE12 Rule 4 positive regulation of metabolic process 0.0038

STE20 Rule 4 positive regulation of metabolic process 0.0038

DSE1 Rule 5 cellular component organization and biogenesis 0.0039

TEC1 Rule 4 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 0.0039

HSL1 Rule 5 pheromone-dependent signal transduction during conjugation with cellular fusion 0.0040

STE12 Rule 3 cell wall organization and biogenesis 0.0040

STE20 Rule 3 cell wall organization and biogenesis 0.0040

PRY2 Rule 2 osmosensory signaling pathway 0.0041

IPK1 Rule 4 invasive growth in response to glucose limitation 0.0043

KSS1 Rule 2 protein amino acid phosphorylation 0.0043

YPL114W Rule 5 developmental process 0.0045

HOG1 Rule 5 protein targeting 0.0048

PDE2 Rule 3 intracellular signaling cascade 0.0048

DIG2 Rule 2 response to chemical stimulus 0.0048

ROX1 Rule 5 response to pheromone during conjugation with cellular fusion 0.0048
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complex MMS-growth network (sF = 40.6) could be made more

uniform in rule frequencies by merging the less frequent rules into

a single rule (e.g. Rules 2, 4, and 5 in Table 2), such classification

schemes have a lower complexity for this data set. Similarly,

although the rules in the invasion network occur with fairly

uniform frequencies, none of the many schemes with greater

uniformity was found to generate a higher complexity score. The

results suggest that the higher-complexity schemes of lesser

uniformity detect the modular organization of the underlying

molecular network.

It is important to keep in mind that the specific mathematical

form of Y is somewhat arbitrary, being selected as the simplest

Mutation of interacts via with mutations of genes with GO annotation P

TPK1 Rule 2 cell surface receptor linked signal transduction 0.0049

YJL017W Rule 5 establishment of cell polarity 0.0049

YJL017W Rule 1 positive regulation of catalytic activity 0.0049

MIH1 Rule 5 cell communication 0.0051

STE20 Rule 2 growth 0.0052

RSR1 Rule 1 sporulation 0.0054

STE20 Rule 2 filamentous growth 0.0055

MSN1 Rule 2 M phase of mitotic cell cycle 0.0055

MSN1 Rule 2 conjugation with cellular fusion 0.0055

RSR1 Rule 3 cellular metabolic process 0.0057

DBR1 Rule 2 mitotic cell cycle 0.0059

TEC1 Rule 4 negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 0.0060

MSN1 Rule 2 invasive growth in response to glucose limitation 0.0062

SRL1 Rule 3 response to pheromone during conjugation with cellular fusion 0.0065

MSN1 Rule 3 cell communication 0.0068

TEC1 Rule 2 positive regulation of metabolic process 0.0071

CTS1 Rule 2 osmosensory signaling pathway 0.0071

PHD1 Rule 5 protein localization 0.0073

RIM13 Rule 5 conjugation with cellular fusion 0.0076

RIM13 Rule 5 invasive growth in response to glucose limitation 0.0076

CLN3 Rule 3 response to pheromone 0.0076

DIA3 Rule 5 response to pheromone 0.0076

BUD4 Rule 1 regulation of molecular function 0.0077

IME2 Rule 3 G-protein coupled receptor protein signaling pathway 0.0077

PAM1 Rule 3 cell morphogenesis 0.0077

KSS1 Rule 1 biopolymer metabolic process 0.0081

GPR1 Rule 1 response to pheromone 0.0082

BEM1 Rule 1 nitrogen utilization 0.0085

STE12 Rule 1 intracellular signaling cascade 0.0087

STE12 Rule 3 nitrogen utilization 0.0090

IPK1 Rule 4 conjugation with cellular fusion 0.0090

CDC42 Rule 3 cell wall organization and biogenesis 0.0090

URE2 Rule 3 signal transduction 0.0090

YPS1 Rule 3 reproduction 0.0090

YPS1 Rule 3 invasive growth in response to glucose limitation 0.0090

YPS1 Rule 3 pseudohyphal growth 0.0090

KTR2 Rule 3 reproduction 0.0090

MSN1 Rule 1 G-protein coupled receptor protein signaling pathway 0.0092

RSR1 Rule 3 cellular macromolecule metabolic process 0.0093

CDC42 Rule 4 regulation of transcription from RNA polymerase II promoter 0.0093

FLO8 Rule 5 filamentous growth 0.0094

GLN3 Rule 2 macromolecule metabolic process 0.0095

IPK1 Rule 3 cell communication 0.0095

doi:10.1371/journal.pcbi.1000347.t005

Table 5. Cont.
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function of the ‘‘universal information distance’’ [26] that has

zeros at 0 and 1. Other functions with this property will have

maxima at different values, and we expect they can affect the

classifications at a maximum of the modified Y. These alternatives

need to be explored, but the important point for the present work

is that Y works well using the simple function.

Prospects
The results of Table 1 demonstrate that although the published

classification schemes generate invasion and MMS-growth net-

works with substantial complexity, in both cases the interaction

data could be reclassified to produce more informative networks.

This is true both in terms of the context-dependent complexity Y
and the number of biological statements extracted. We note that

the original classifications of the invasion network [5] scored quite

highly, which is probably due to the classifications being carefully

based on rules of genetic interaction that geneticists have

determined by experience to be biologically informative. None-

theless, the interaction rules derived from the maximization of set

complexity seem to bear little resemblance to these. We propose

that the classical genetics rules discover molecular information

flow sequences, or pathways, whereas Y-based rules detect higher-

level relationships between functional network modules. A further

implication of this interpretation is that one should not expect that

there is any universal classification of genetic interactions into

rules. Rather, one should expect that optimal rules will depend on

the genes, alleles, modules, networks, organisms, environmental

conditions, and phenotypes under examination. This is all the

more reason for an unsupervised computable approach to the

problem without the need for extensive prior knowledge. In

analyzing complex traits in mammals the number and complexity

of interactions are likely to increase and gene function annotations

are less complete. An automated classification is likely to be the

only feasible way of approaching the problem. Additional

computational and network analysis will be needed to interpret

interaction rules in terms of biological activity.

In this work, we have used only genetic interaction data,

processed into phenotype inequalities, as input for the optimiza-

tion problem. The interactions were therefore groups of

inequalities that were classified into sets of interactions called

rules. This procedure, however, can be easily expanded to include

additional data. Any additional information characterizing the

relationship between two genes (including annotation and

experimental data) can be appended to the inequality, creating a

more complex set of interactions, and the classification can then be

redone by maximizing the modified set complexity. For example,

measuring a second phenotype will change each gene-pair

relationship from one inequality constructed on a linear axis

(relating the points PWT, PA, etc.) to a two-dimensional relationship

in which the values of each mutant strain are plotted relative to an

axis for each phenotype (relating the points {P1
WT, P2

WT}, {P1
A,

P2
A}, etc.). Each additional measurement, such as gene expression

data, would add another phenotypic dimension to the relationship.

Continued data integration will rapidly render individual gene-

pair relationships conceptually intractable, but the relationships

would still be amenable to analysis with our complexity measure.

Such extensions of the present work are currently being explored

with the expectation that the more accurate data (and data types)

that are added to the characterization of gene (and gene product)

interactions, the more significant biological information can be

extracted using a set complexity maximization approach.

Materials and Methods

Data Sources
The invasion network was taken directly from Drees et al. [5].

The MMS-growth interactions were derived from data published

by St. Onge et al. [6]. Since growth mutations are expected to

combine multiplicatively, we log-transformed the fitness values for

our linear comparisons. An error model was necessary to order the

log-fitness data into phenotype inequalities. From the original

analysis we noted that values of WXY2WX6WY greater than 0.078

were uniformly significant, independent of the magnitudes of

fitness values. Thus, we assumed an error range of d = 0.039 for

each fitness value WS, where the subscript refers to any strain. We

then computed each log-transformed fitness value pS = log(WS),

and estimated the error to be the mean of adding or subtracting

the error and log-transforming, which is DS = 0.5 log((WS+d)/

(WS2d)). Following the analysis of Drees, et al. [5], we defined

Figure 6. Set complexity Y as a function of the number of
interaction rules in the MMS-growth networks. Average com-
plexity as a function of number of rules for all possible networks. Error
bars denote the standard deviation of binned data points.
doi:10.1371/journal.pcbi.1000347.g006

Figure 7. Set complexity Y as a function of the standard
deviation of interaction rule frequencies in the MMS-growth
networks. Average complexity for binned standard deviations of rule
frequencies calculated from all possible networks. Error bars denote the
standard deviation of binned data points.
doi:10.1371/journal.pcbi.1000347.g007
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each phenotype on the interval PS = [pS2DS, pS+DS] and assumed

any two phenotypes to be equivalent if there was any overlap in

their intervals [5]. By comparing phenotype intervals we

constructed the phenotype inequalities like those shown in

Table 2, such as PWT,PAB = PA,PB.

Calculation of Context-Dependent Complexity
While the measure was originally defined in terms of

Kolmogorov-Chaitin-Solomonoff complexity [17] it is clear that

if the sample space is well defined, as it is here, we can use the

Shannon approach of calculating complexities with probabilities

[27]. We define the context-dependent, set complexity for a

network as follows. For the i-th node in a network, we first

compute the Shannon information, Ki, based on its interactions

with all other nodes. These interactions will fall into different

classes, depending on the classification scheme being used. For the

i-th node, we compute the fraction of nearest neighbors with each

class of interaction, denoted pi(a) for the a-th interaction class.

Summing over all interactions types yields the single-node

complexity:

Ki~{
1

ln Mð Þ
XM
a~1

pi að Þln pi að Þ ð1Þ

where M is the number of interaction classes and the sum is over

all interaction classes. The normalization ensures that this quantity

is always between 0 and 1. Directionality of interactions was

retained where relevant, so that outgoing edges were considered a

different interaction type than incoming edges. We next compute

the mutual information for every pair of nodes in the network

using the Shannon approach. This can be written

mij~{
1

ln Mð Þ
XM
a~1

XM
b~1

pij a,bð Þln pij a,bð Þ
pi að Þpj bð Þ

� �
ð2Þ

where pij(a,b) is the joint probability of node i interacting with a

third node with rule a and node j interacting with the same third

node with rule b. This expression is also normalized to the interval

[0,1].

With these normalized quantities we compute the context-

dependent complexity of a network with N nodes by summing over

all node pairs as:

Y~
4

N N{1ð Þ
XN

i~1

XN

j~1

Max Ki,Kj

� �
mij 1{mij

� �
ð3Þ

This complexity measure, which has been normalized to yield

values between 0 and 1, was derived in Galas, et al. [17]. It is

based on the normalized information distance function between

two strings as derived by Li, et al. [26], which is a metric satisfying

the three criteria of identity, symmetry, and the triangle inequality.

This metric is universal in that it discovers all computable

similarities between strings [26]. As shown by Galas, et al. [17], a

simple relationship between the universal information distance

and pair-wise mutual information allows Y to be computed with

mutual information (Eqn. 2). Although the metric function

mij(12mij) in the pair-wise sum does not uniquely define a set-

dependent complexity measure, it is the simplest form that

discounts both redundant (high mij) and unrelated (low mij)

information [17]. In practice, calculations with real data are

generally insensitive to the precise form of this metric function.

Each genetic interaction network was scored with the set

complexity Y (Eqn. 3). Different classification schemes of genetic

interactions generated variations in the single-node entropy (Ki)

and mutual information between node pairs (mij), leading to

variation in Y.

Bootstrap Algorithm for Unsupervised Classification of
the Invasion Network

We first selected six inequalities and constructed the sub-

network involving these interactions only. We tested all possible

classifications of these six seed interactions (there were 202) and

determined the sub-network with maximal Y. The classifications

in this sub-network were used as a seed. We then built up the full

network adding one interaction inequality at a time, assigning it to

one of the seed rules or allowing it to start a new rule, with the

decision determined by the choice that generated the maximal-

complexity network. Once all 41 interaction inequalities were

assigned a rule and the full network was determined, we randomly

perturbed the classifications in search of a gain in set complexity,

Y. The perturbations were randomly chosen by: randomly re-

assigning rules for one, two, three, or four inequalities; splitting a

randomly chosen rule into two rules, with new rule assignments

chosen randomly; or merging two randomly selected rules. At least

1000 random perturbations were carried out for roughly 100

bootstrap-generated classifications.

Genetic Interaction with Biological Processes
In order to measure the biological information that can be

extracted from a genetic interaction network, we identified

statistically significant correlations between a given gene muta-

tion’s interaction rules and mutations of genes involved in a

common biological process. The neighbors of every node (gene

mutation) in the network were queried for interaction class and

Gene Ontology Consortium Database annotations [28]. Likeli-

hood values were computed to find over-represented class-

annotation pairings within each set of nearest neighbors, and P-

values were calculated relative to a cumulative hypergeometric

distribution.

Since GO annotations are not independently assigned to genes,

we did not choose an arbitrary significance cut and apply a

Bonferroni correction. Instead, we empirically determined the

maximum P-value for a significant biological statement. For the

invasion network, we followed the analysis in Drees et al. [5] and

applied a significance cut of P,0.01 (more stringent than the

P,0.05 in that work). For the MMS-growth network, we

randomly permuted the names of every gene and recomputed

the biological statements for networks for sample classifications.

This strategy: (i) retains the same genes and gene annotations, thus

maintaining the same number of annotations and interdepen-

dences between annotations; and (ii) retains the network’s topology

and edge types (and hence the complexity score) for each

classification scheme. Re-computing every classification scheme

for each randomization was computationally infeasible, so 1150

classification schemes were computed for each randomized

network (every tenth scheme). This produced a representative set

of schemes in terms of number and frequency of rules in the

network. From 100 such randomizations we determined that a

significance cut of P,0.01 has a false-positive rate of 8% (eight of

every 100 biological statements with P,0.01 are probably

background noise). We note that our primary use of these

statements was to assess the relationship between complexity and

biological information rather than their biological content per se,

and thus we accepted a fairly high error rate in order to have a

large sample size.
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Mutual Information Networks
In order to detect global similarity between the interaction

patterns of two alleles, we detected nodes with mutual information

(Eq. 2) significantly higher than expectation. Significance of

mutual information was tested independently for each allele pair

by computing the likelihood of obtaining the observed score in

randomly permuted data, following the procedure in Drees, et al

[5]. To remove bias due to our selection of mutant alleles,

randomized data were constrained by keeping the wild-type and

two single-mutant phenotypes fixed and replacing interaction

modes only with modes that are consistent with the observed

single-mutant phenotypes. The choice among possible replace-

ment modes was weighted by observed frequency in the entire

network. Five thousand randomizations were carried out to

determine a mean and standard deviation to characterize the

distribution for each tested allele pair. P-values were then

calculated as the probability of finding a mutual information

score at or above the observed score. In Figure 4A we reproduce

the results of Drees et al, which used a P-value cutoff of 0.001 [5].

For the maximally complex classification scheme (Figure 4B), we

chose a more stringent cutoff of P,0.0001. The false discovery

rate for the maximally complex classification scheme was

estimated empirically from the number of mutually informative

gene pairs in 200 randomized networks. For the P-value cutoff of

P,0.0001, we found a mean number of 3.5 allele pairs (false

positives), compared with 159 found in the actual data.

Enrichments of Gene Ontology terms in the two major connected

components of this network were computed following the method

described above in Genetic Interaction with Biological Processes.

We were unable to perform the randomization procedure (and

hence the analysis) on the MMS sensitivity network due to the

frequent occurrence of a unique double-mutant phenotype for a

given pair of single-mutant phenotypes, which precluded random

permutation of the double-mutant values.

Supporting Information

Table S1 Supplemental Table S1

Found at: doi:10.1371/journal.pcbi.1000347.s001 (0.03 MB XLS)

Table S2 Supplemental Table S2

Found at: doi:10.1371/journal.pcbi.1000347.s002 (0.02 MB XLS)
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