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Abstract

Biological systems often display modularity, in the sense that they can be decomposed into nearly independent subsystems.
Recent studies have suggested that modular structure can spontaneously emerge if goals (environments) change over time,
such that each new goal shares the same set of sub-problems with previous goals. Such modularly varying goals can also
dramatically speed up evolution, relative to evolution under a constant goal. These studies were based on simulations of
model systems, such as logic circuits and RNA structure, which are generally not easy to treat analytically. We present, here,
a simple model for evolution under modularly varying goals that can be solved analytically. This model helps to understand
some of the fundamental mechanisms that lead to rapid emergence of modular structure under modularly varying goals. In
particular, the model suggests a mechanism for the dramatic speedup in evolution observed under such temporally varying
goals.

Citation: Kashtan N, Mayo AE, Kalisky T, Alon U (2009) An Analytically Solvable Model for Rapid Evolution of Modular Structure. PLoS Comput Biol 5(4): e1000355.
doi:10.1371/journal.pcbi.1000355

Editor: Carl T. Bergstrom, University of Washington, United States of America

Received June 23, 2008; Accepted March 10, 2009; Published April 10, 2009

Copyright: � 2009 Kashtan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: NIH, Kahn Family foundation, Center of Complexity Science. The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: urialon@weizmann.ac.il

. These authors contributed equally to this work

Introduction

Biological systems often display modularity, defined as the

seperability of the design into units that perform independently, at

least to a first approximation [1–5]. Modularity can be seen in the

design of organisms (organs, limbs, sensory systems), in the design

of regulatory networks in the cell (signaling pathways, transcription

modules) and even in the design of many bio-molecules (protein

domains).

The evolution of modularity has been a puzzle because

computer simulations of evolution are well-known to lead to

non-modular solutions. This tendency of simulations to evolve

non-modular structures is familiar in fields such as evolution of

neural networks, evolution of hardware and evolution of software.

In almost all cases, the evolved systems cannot be decomposed into

sub-systems, and are difficult to understand intuitively [6]. Non-

modular solutions are found because they are far more numerous

than modular designs, and are usually more optimal. Even if a

modular solution is provided as an initial condition, evolution in

simulations rapidly moves towards non-modular solutions. This

loss of modularity occurs because there are so many changes that

reduce modularity, by forming connections between modules, that

almost always a change is found that increases fitness.

Several suggestions have been made to address the origin of

modularity in biological evolution [5,7–16], recently reviewed by

Wagner et al [17]. Here we focus on a recent series of studies that

demonstrated the spontaneous evolution of modular structure

when goals vary over time. These studies used computer

simulations of a range of systems including logic circuits, neural

networks and RNA secondary structure. They showed that

modular structures spontaneously arise if goals vary over time,

such that each new goal shares the same set of sub-problems with

previous goals [18]. This scenario is called modularly varying goals, or

MVG. Under MVG, modules spontaneously evolve. Each module

corresponds to one of the sub-goals shared by the different varying

goals. When goals change, mutations that rewire these modules

are rapidly fixed in the population to adapt to the new goal

(Figure 1 A,B).

In addition to promoting modularity, MVG was also found to

dramatically speed evolution relative to evolution under a constant

goal [19]. MVG speeds evolution in the sense that it reduces the

number of generations needed to achieve the goal, starting from

initial random genomes. Despite the fact that goals change over

time, a situation that might be thought to confuse the evolutionary

search, the convergence to the solution is much faster than in the

case of a constant goal (Figure 2 A,B). Intriguingly, the harder the

goal, the faster the speedup afforded by MVG evolution.

To summarize the main findings of [18,19]:

(i) A constant goal (that does not change over time) leads to

non-modular structures.

(ii) Modularly varying goals lead to modular structures.

(iii) Evolution converges under MVG much faster than under a

constant goal.

(iv) The harder the goals, the faster the speedup observed in

MVG relative to constant goal evolution.

(v) Random (non-modular) goals that vary over time usually

lead to evolutionary confusion without generating modular

structure, and rarely lead to speedup.
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Since these findings were based on simulations, it is of interest to

try to find a model that can be solved analytically so that the

reasons for the emergence of modular structure, and for the

speedup of evolution, can be more fully understood. Here we

present such a simple, exactly solvable model. The model allows

one to understand some of the mechanisms that lead to modularity

and speedup in evolution.

Model

Definition of the system
The guiding principle in building the model was to find the

simplest system that shows the salient features described in the

introduction. It turns out that many of these features can be

studied using a linear system, similar to those used in previous

theoretical work on evolution [8,20–23]. Consider a system that

provides an output for each given input. The input is a vector of N

numbers. For example, the input can represent the abundance of

N different resources in the environment. The output is also a

vector of N numbers, for example the expression of the genes that

utilize the resources. The structure that evolves is represented by

an N6N matrix, A, that transforms the input vector v to a desired

output vector u such that:

Figure 1. Evolution under Fixed Goals (FG) and Modularly Varying Goals (MVG). Examples of data from a series of studies [18,19] that
suggest that modularity spontaneously evolves when goals change over time in a modular fashion (modularly varying goals or MVG). (A) Logic
circuits made of NAND gates evolved under a constant goal (fixed goal, abbreviated FG) that does not vary over time, G1 = (x XOR y) AND (w XOR z).
The circuit is composed of 10 NAND gates. Evolution under a constant goal typically yields compact non-modular circuits. (B) Circuits evolved under
MVG evolution, varying every 20 generations between goal G1 and goal G2 = (x XOR y) OR (w XOR z). Note that these two goals share the same sub-
goals, namely two XOR functions. Connections that are rewired when the goal switches are marked in red. Evolution under MVG typically yields
modular circuits that are less compact, composed in this case of 11 gates. The circuits are composed of three modules: two XOR modules and a third
module that implements an AND/OR function, depending on the goal.
doi:10.1371/journal.pcbi.1000355.g001

Author Summary

Biological systems often display modularity, in the sense
that they can be decomposed into nearly independent
subsystems. The evolutionary origin of modularity has
recently been the focus of renewed attention. A series of
studies suggested that modularity can spontaneously
emerge in environments that vary over time in a modular
fashion—goals composed of the same set of subgoals but
each time in a different combination. In addition to
spontaneous generation of modularity, evolution was
found to be dramatically accelerated under such varying
environments. The time to achieve a given goal was much
shorter under varying environments in comparison to
constant conditions. These studies were based on
computer simulations of simple model systems such as
logic circuits and RNA secondary structure. Here, we take
this a step forward. We present a simple mathematical
model that can be solved analytically and suggests
mechanisms that lead to the rapid emergence of modular
structure.

A Simple Model for Rapid Evolution of Modularity
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Av~u: ð1Þ

The matrix A can be thought of, quite generally, as the

linearized response of a biological regulatory system that maps

inputs to outputs, taken near a steady-state of the system. In this

case the vectors u and v represent perturbations around a mean

level, and can have negative or positive elements.

Goals are desired input-output relations
An evolutionary goal in the present study is that an input vector

v gives a certain output vector u. We will generally consider goals

G that are composed of k such input-output vector pairs.

The fitness is the benefit minus the cost of matrix
elements

To evaluate the fitness of the system, we follow experimental

studies in bacteria, that suggest that biological circuits can be

assigned benefit and cost [24]. The benefit is the increase in fitness

due to the proper function of the circuit, and the cost is the

decrease in fitness due to the burden of producing and maintaining

the circuit elements. In this framework, fitness is the benefit minus

the cost of a given structure A.

We begin with the cost of the system, related to the magnitude

of the elements of A. We use a cost proportional to the sum over

the squares of all the elements of A:c~e Ak k2
~e
P
ij

aij
2. This cost

represents the reduction in fitness due to the need to produce

the system elements. A quadratic cost function resembles the

cost of protein production in E. coli [24–26]. The cost tends to

make the elements of A as small as possible. Other forms for the

cost function, including sum of absolute values of aij and

saturating functions of aij, are found to give similar conclusions

as the quadratic cost function (see Text S1).

In addition to the cost, each structure has a benefit. The benefit

b of a structure A is higher the closer the actual output is to the

desired output: b~F0{ Av{uk k2
(where Fo represents the

maximal benefit). In the case where the goal includes k input-

output pairs, one can arrange all input vectors in a matrix V, and

all output vectors in a matrix U, and the benefit is the sum over the

distances between the actual outputs and the desired outputs

b~F0{ AV{Uk k2
. In total, the fitness of A is the benefit minus

the cost:

F Að Þ{F0~{e Ak k2{ AV{Uk k2 ð2Þ

The first term on the right hand side represents the cost of the

elements of A, and the second term is the benefit based on the

distance between the actual output, AV, and the desired output, U.

The parameter e sets the relative importance of the first term

relative to the second.

In realistic situations, the parameter e is relatively small, because

getting the correct output is more important for fitness than

minimizing the elements of A. Thus, throughout, we will work in

the limit of e much smaller than the typical values of the elements

of the input-output vectors.

Now that we have defined the fitness function, we turn to the

definition of modularity in structures and in goals.

Definition of modularity
A modular structure, which corresponds to a modular matrix A,

is simply a matrix with a block diagonal form (Figure 3). Such

matrices have non-zero elements in blocks around the diagonal,

and zero elements everywhere else. Each block on the diagonal

maps a group of input vector components to the corresponding

group of output vector components. An example of a modular

structure is

Figure 2. Speedup of evolution under MVG. (A) A schematic view of fitness as a function of generations in evolution under MVG and fixed
(constant) goal (FG). Evolution time (TMVG and TFG) is defined as the median number of generations it takes to achieve the goal (i.e. reach a perfect
solution) starting from random initial genomes. (B) Speedup of evolution under MVG based on simulations of logic circuits with goals of increasing
complexity (see [19]). The speedup is defined as evolution time under a fixed goal, divided by evolution time under MVG that switches between the
same goal and other modularly related goals: S = TFG/TMVG. Shown is the speedup S versus the evolution time under fixed goal (TFG). Speedup scales
approximately as a power law S,(TFG) a with an exponent a= 0.760.1. Thus, the harder the goal the larger the speedup.
doi:10.1371/journal.pcbi.1000355.g002

A Simple Model for Rapid Evolution of Modularity
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A~

1 0 0

0 0:5 0:5

0 {0:5 0:5

0
B@

1
CA

In addition to the modularity of the structure A, one needs to

define the modularity of varying goals. In the present study,

modularity of a goal is defined as the ability to separate the input

and output components of u and v into two or more groups, such

that the outputs in each groups are a function only of the inputs in

that group, and not on the inputs in other groups. Thus, the inputs

and outputs in a modular goal are separable into modules, which

can be considered independently (Figure 3). In the present linear

model we require that the outputs in each group are a linear

function of the inputs in that group. For example, consider the

following goal Go that is made of two input-output pairs:

v1~ 1, 1, {1ð Þ u1~ 1, 0, {1ð Þ

and

v2~ {1, 1, 3ð Þ u2~ {1, 2, 1ð Þ:

Here the first component of each output vector is a linear function

of the first component of the corresponding input vectors, namely the

identity function. The next two components of each output vector

are equal to a linear 262 matrix, L = [(0.5,0.5);(20.5, 0.5)], times the

same two components of the input vector. In fact, the modular

matrix A given above satisfies this goal, since Av1 = u1 and Av2 = u2.

Thus, the input-output vectors in Go can be decomposed into

independent groups of components, using the same linear functions.

Hence, the goal Go is modular. Note that most goals (most input-

output vector sets with N.2) cannot be so decomposed, and are thus

non-modular.

To quantify the modularity of a structure A we used the

modularity measure Qm based on the Newman and Girvan

measure [18,27], described in [18] and also in the Text S1. Under

this measure, diagonal matrices have high modularity, block

modular matrices show intermediate modularity and matrices with

non-zero elements that are uniformly spread over the matrix have

modularity close to zero (Figure 3).

Results

In the following sections we analyze the dynamics and

convergence of evolution under both fixed goal conditions and

under MVG conditions. For clarity we first present a two–

dimensional system (N = 2), and then move to present the general

case of high-dimension systems. Each of the sections is

accompanied by detailed examples that are given to help to

understand the system behavior. The third section describes full

analytic solutions and proofs.

Evolution dynamics and convergence in two-dimensions
A constant goal generally leads to a non-modular

structure. We begin with two-dimensional system (N = 2), so

that A is a two by two matrix. We note that the two-dimensional

case is a degenerate case of MVG, but has the advantage of easy

visualization. It thus can serves as an introduction to the more

general case of higher dimensions, to which we will turn later.

Consider the goal G1 defined by the input vector v = (1, 1) and

its desired output u = (1, 1). Note that in the case of N = 2 all goals

are modular according to the above definition (because there exists

Figure 3. Modularity of matrices and their corresponding networks. The NxN matrix A can be represented as a directed network of
weighted interactions between the inputs and the outputs (with 2N nodes). Modularity is measured using normalized measure of community
structure of the interaction network, Qm (see Text S1) [18]. (A) Examples of two modular matrices and their corresponding modularity measure Qm.
Modular matrices typically show Qm.0.2, with a maximal value of Qm = 1 for a diagonal matrix. (B) An example of a non-modular matrix. Non-modular
matrices have Qm around 0.
doi:10.1371/journal.pcbi.1000355.g003

A Simple Model for Rapid Evolution of Modularity
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a diagonal matrix that satisfies Av = u). In the case of goal G1, the

identity matrix A = [(1, 0), (0, 1)] satisfies the goal.

Let us find the most fit structure A, given the goal G1. To find

the structure A that maximizes the fitness F(A), we ask when the

matrix elements of A, aij, satisfy LF
�
Laij~0. From Eq. 2, this leads

to the following 4 equations, one for each of the 4 elements of A:

LF

Laij

~{2eaij{2vj

X
k

aikvk{ui

 !
ð3Þ

Solving these equations, we find that the highest fitness structure

is aij~ v2
1zv2

2ze
� �{1

uivj . Upon substituting v and u we get:

A�~

1

2ze

1

2ze
1

2ze

1

2ze

0
BB@

1
CCA,

and when the cost is small (e?0) one has

A�~
1=2 1=2

1=2 1=2

� �
:

Note that indeed, A?v = u, so that the goal is satisfied. Thus, the

optimal solution is non modular. This non-modular matrix satisfies the

goal and also keeps the elements of the matrix small to minimize

the cost (see section Full analytic solutions (A)). The modular solution,

Am~
1 0

0 1

� �

is less fit because of the higher cost of its elements: the cost is

proportional to the sum of the squares of the elements, so that the

cost for the modular matrix Am, c = 2e , is higher than the cost for

the highest-fitness matrix A*, c = e.

It is also helpful to graphically display this solution. Figure 4A

shows the two-dimensional space defined by the first row of A, the

elements a11 and a12. The matrices A that satisfy the goal (give

Av = u) correspond to a line, a11+a12 = 1. The modular solution is

the point that intersects the axes at a11 = 1,a12 = 0. The optimal

solution A* is at the point (a11, a12) = (1/2, 1/2).

A non-modular solution is the general solution for this type of

goal (proof in section Full analytic solutions (A)). For the benefit of the

next section, we consider briefly a second example, the goal G2,

v = (1, 21), u = (1, 21). As in the case of G1, the highest-fitness

structure for G2 is non-modular, (Figure 4C)

A�~
1=2 {1=2

{1=2 1=2

� �
:

Convergence is slow under a constant goal. We now turn

to discuss the dynamics of the evolutionary process. We ask how

long it takes to reach the maximum-fitness structure starting from

a random initial structure. For this purpose, one needs to define

the dynamics of evolutionary change and selection. For simplicity,

we consider a Hill-climbing picture, in which the rate of change of

the structure A is proportional to the slope of the fitness function.

The rate of change is high along directions with high fitness

gradients and slow along directions with small gradients. Thus

daij

�
dt~rLF=Laij where r is the ‘rate’ of evolution, based on the

rate at which mutations that change aij occur and are fixed in the

population. We note that similar results are found when using

genetic algorithms with more realistic mutation and selection

strategies (see Text S1).

The Hill-climbing dynamical model is simple enough to

analytically solve for the dynamics of the matrix elements aij. For

a constant goal, one has (with time rescaled to take the evolution

rate into account, t?r:t):

daij

dt
~{2eaij{2vj

X
k

aikvk{ui

 !
: ð4Þ

These are linear ordinary differential equations, and hence the

solution for aij is of the form:

aij~
XN

n

Kijne{lntzaij
� ð5Þ

where {ln} are the eigenvalues of Eq. 4. The prefactors {Kn} are

determined by the eigenvectors corresponding to {ln}, and the

initial conditions. The structures converge to aij
�, which is the

value of the matrix elements aij in the optimal solution.

The convergence times are thus governed by the eignevalues ln.

In particular, the smallest eigenvalue corresponds to the longest

convergence time. We find that in the case of a constant goal that

does not vary with time, the smallest eigenvalue is always equal to

2e (for a proof see results section Full analytic solutions (B)).

For example, for the goal G1, the four eigenvalues of Eq. 4 are

l1 = l2 = 2e and l3 = l4 = 2(2+e). The large eigenvalues l3 and l4

correspond to rapid evolution to the line shown in Figure 4B. The

small eigenvalues l1 = l2 = 2e correspond to motion along the line,

converging as exp(2l1 t) to the optimal solution. Thus, the

convergence time for small e is very long, TFG,1/l1,1/e (‘FG’

stands for fixed goal). The same applies to the goal G2, in which

the two small eigenvalues l1 = l2 = 2e govern the slow motion

along the line on Figure 4C. The lines in Figure 4B and Figure 4C

along which evolution moves slowly are analogous to the fitness

plateaus or neutral networks observed in the evolution of more

complex systems [28–31].

Varying between modular goals leads to modular

structure. We next consider the case where the environment

changes over time, switching between the two modular goals

mentioned above. For example, the structure A evolves towards

goal G1, defined by v1 = (1, 1) and u1 = (1, 1). Then, the goal

changes to a different goal G2, defined by v2 = (1, 21) and u2 = (1,

21). After some time, the goal returns to the first goal, and so on.

The goals thus switch from time to time from G1 to G2 and back.

Looking at these two goals, it is seen that each component of the

output vectors can be determined only by the corresponding

component in the input vector. Another way to say this is that the

same modular matrix A = [(1,0),(0,1)], satisfies both G1 and G2.

This is thus an example of modularly varying goals, or MVG for

short.

What is the structure that evolves under MVG? We use the

dynamical equations (Eq. 4) to describe the MVG process which

switches between the goals.

daij

dt
~{2eaij{2v1 j

X
k

aikv1k{u1i

 !
ð6aÞ

A Simple Model for Rapid Evolution of Modularity
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daij

dt
~{2eaij{2v2j

X
k

aikv2k{u2i

 !
ð6bÞ

Here Eqs. 6a and 6b are valid for times when the goals are G1

and G2 respectively. One finds that the structure A evolves towards

the modular solution A = [(1, 0);(0, 1)]. As shown in Figure 5, when

the goal is equal to G1, the elements of A move towards the line of

G1 solutions, and when the goal changes to G2, the elements of A
move towards the line of G2 solutions. Together, these two motions

move A towards the modular solution at which the two lines

intersect (Figure 5).

To analyze this scenario, consider the limiting case where

switches between the two goals occur very rapidly. In this case, one

can average the fitness over time, and ask which structure

maximizes the average fitness. If the environment spends, say, half

of the time with goal G1, and half of the time with goal G2, then the

average fitness is

F Að Þ{F0~{e Ak k2
{1=2 Av1{u1k k2

{1=2 Av2{u2k k2 ð7Þ

One can then solve the equations for the elements aij of the

matrix A that maximize fitness. The result is that the structure that

optimizes fitness is the modular matrix A = [(1,0),(0,1)] (see section

Full analytic solutions (A) for the general proof). This modular

solution is found regardless of the fraction of time spent in each of

the goals (as long as this fraction is not close to 1/e, in which case

one returns to a constant-goal scenario).

Figure 4. Dynamics of evolution under a constant goal. (A) Matrix elements are portrayed in a two dimensional space defined by a11 and a12,
the first row elements of the matrix A. The goal is G1 = [v = (1,1), u = (1,1)], empty circle: optimal non-modular solution (0.5, 0.5). Full circle: modular
solution (1,0). The line a12 = 12a11 represents all configurations that satisfy the goal (satisfy Av = u). (B) A typical trajectory under the constant goal G1.
Black dots display the dynamics at 100/r time unit resolution, where r is the rate in Eq. 4. (C) Same as (B) for the goal G2 = [v = (1,21), u = (1,21)].
doi:10.1371/journal.pcbi.1000355.g004

A Simple Model for Rapid Evolution of Modularity
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Intuitively, supplying two modular goals provides ‘extra

information’ that helps evolution find the unique structure that

satisfies both goals – even though the different goals do not appear

at the same time. If one stops varying the goals and presents a

constant goal G1 or G2, the structure evolves to the non-modular

structures mentioned in previous sections. Thus, when the goals

vary in time, the system ‘remembers’ the previous goal. This

memory guides it towards the modular solution, even though at

each time point, the current goal does not contain sufficient

information to specify that solution.

Varying between modular goals speeds convergence to

solution. We have seen that MVG leads to a modular structure.

Let us now analyze the time that it takes the evolutionary process

to approach this modular solution, starting from a random initial

condition. In contrast to the small eigenvalues (long convergence

time) found under a constant goal, a different situation is found

under MVG. Here, evolution converges rapidly to the modular

solution, with convergence time of order one TMVG,1. In MVG,

the small, order-e eigenvalues are eliminated and all eigenvalues

are generally large resulting in fast dynamics (see proof for the

general case in the section Full analytic solutions (B)).

To understand why dynamics are rapid, consider the view

depicted in Figure 5, showing the trajectories of A as the goal

varies over time. One sees a rapid convergence to the line

representing the current goal, and then, once the goal changes, a

rapid move to the line representing the new goal. Thus, provided

that switching is not very slow (that is when the switching time E

are shorter than the time to solve under a constant goal: E,TFG

,1/e), it is the large eigenvalues that governs the dynamics and

lead to rapid convergence. Modularly varying goals cause

evolution to converge rapidly on the modular solution. Similar

results are found using genetic algorithms instead of Hill-climbing

evolutionary equations (see Text S1).

It is also helpful to visually examine the fitness landscapes that

govern the dynamics of MVG. One can get a feeling for the shape

of the landscape by looking at the fitness function averaged over

both goals. The rapid convergence to a modular solution is due to

the formation of a steep peak in the ‘effective’ combined fitness

landscape, as opposed to a flat ridge in the case of evolution under

a constant goal (Figure 6).

Evolution dynamics, convergence and modularity in
higher dimensions

In higher dimensions, MVG also leads to a modular

structure and speedup. The two dimensional case we have

discussed is relatively easy to visualize. Let us now consider higher

dimensions. We will consider a three-dimensional problem (N = 3),

bearing in mind that the conclusions turn out to be valid for all

dimensions N§3. Here, each goal will be composed of k input-

output pairs. In general evolutionary problems, involving systems

such as logic gates, neuronal networks or RNA molecules, there are

numerous different solutions to each goal. To mimic this, we keep

the number of input-output pairs in each goal not too large,

specifically k = N21. This assures an infinite number of solutions to

the goal (if k§N, at most a single solution exists since the number of

unknown matrix elements is smaller than the number of equations

given by the k input-output pairs). In our N = 3 example, each goal is

thus be made of k = 2 input-output vector pairs.

Let us begin with the goal G1 which consists of the following

pairs

v11~ 1,{1,{1:4ð Þ u11~ 1,{2:4,0:4ð Þ,
v12~ 0:5,1:2,{1:9ð Þ u12~ 0:5,{0:7,3:1ð Þ,

Note that G1 is modular: the input-output vectors in G1 can be

decomposed into independent groups: the first component in the

input is simply equal to the first component in the output, and the

next two components are related to the output components by a

linear transformation L = [(1,1);(1,21)]. Hence, there exists a

block-modular matrix A = [(1,0,0);(0,1,1);(0,1,21)] that satisfies

this goal. However, when G1 is applied as a constant goal, the

optimal solution (assuming e?0) is non-modular (fitness = 23.7e)

A�~

0:25 {0:25 {0:35

{0:61 0:8 0:7

0:1 1:03 {0:95

0
B@

1
CA

The dynamical equations have a small eigenvalue l = 2e.

Hence, convergence is slow, and takes TFG,1/e. The evolutionary

Figure 5. Evolutionary dynamics under modularly varying
goals (MVG) converges to the modular solution. Goals are
switched between G1 = [v = (1,1), u = (1,1)] and G2 = [v = (1,21),
u = (1,21)] every t = 100/r time units. A typical trajectory of the matrix
elements is shown, where small black dots represent the dynamics of
the system in 100/r time steps resolution. Empty and full circles
represent the optimal and modular solutions respectively.
doi:10.1371/journal.pcbi.1000355.g005

A Simple Model for Rapid Evolution of Modularity

PLoS Computational Biology | www.ploscompbiol.org 7 April 2009 | Volume 5 | Issue 4 | e1000355



process converges slowly along the line shown in Figure 7A,

reaching the non-modular optimal structure.

In contrast, if MVG is applied, switching between G1 and a

second goal G2, which share the same modular structure, say

v21~ 1, 1:7, {0:7ð Þ u21~ 1, 1, 2:4ð Þ

v22~ {0:7, {2:3, {1:1ð Þ u22~ {0:7, {3:4, {1:2ð Þ:

one finds a rapid convergence to a modular structure (Figure 7B;

with fitness = 25e):

Am~

1 0 0

0 1 1

0 1 {1

0
B@

1
CA:

Modularity increases rapidly as shown in Figure 8A. These

results are similar to the ones discussed in the N = 2 case of the

previous section. Generalizing the results shows that MVG

produces modular structures in any dimension, as shown below

in the section Full analytic solutions (A).

MVG with nearly identical modules. Up to now, the

varying goals shared the same modular solution. Let us consider a

more general case where the varying goals G1 and G2 have similar,

but different, modular solutions. Specifically, the two goals share

the same general modular structure but with slightly different

modules. They can thus be solved by the same block matrix except

for corrections on the order of a small parameter g. This situation

is more similar, in a sense, to our previous simulations on complex

model systems where each of the varying goals was solved by a

different modular structure.

As an example, which represents the typical case, let G1 = { [ (1,

1.7, 20.7), (1, 1, 2.4) ]; [ (20.7, 22.3, 21.1), (20.7, 23.4, 21.2) ] }

which can be satisfied by the modular matrix

1 0 0

0 1 1

0 1 {1

0
B@

1
CA

and G2 = { [ (1, 21, 21.4), (1+g, 22.4, 0.4) ]; [ (0.5, 1.2, 21.9),

(0.5(1+g), 20.7, 3.1) ] } which can be satisfied by the slightly

different modular matrix

1zg 0 0

0 1 1

0 1 {1

0
B@

1
CA

We find that evolution under varying goals in such cases rapidly

leads to a structure that is modular. Once the modular structure

Figure 6. Fitness landscape illustration (a two dimensional system). Goals G1, G2 are as described in Figures 4,5. The fitness landscapes are
presented as a projection on the hyper-surfaces (a21, a22) of the optimal solution [i.e. (0.5,0.5) for G1, (20.5, 0.5) for G2, and (0, 1) for MVG]. A typical
trajectory is shown under MVG, switching between G1 and G2 as described in Figure 5. red/blue: dynamics under fitness landscape G1 and G2

respectively. Fitness is presented in log scale. Full/empty circle represents the modular/non-modular solutions. The fitness landscapes under constant
goals are characterized by a single ridge (with slow dynamics as shown in Figures 4B and 4C). Under MVG the effective fitness landscape forms a
steep peak where a solution that solves both goals resides (the modular solution). To ease comprehension, we chose a different viewing angle from
the one of Figures 4,5. Switching time is E = 100/r.
doi:10.1371/journal.pcbi.1000355.g006
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was established, the system moves between the two similar

modular matrices every time the goal switches (Figure 7C). The

degree of adaptation depends on the switching time between the

goals: nearly perfect adaptation occurs when the switching time is

large enough to allow the matrix elements to reach the modular

matrix relevant for the current goal (roughly, switching that is

slower than g/r, the ratio between distance between matrices g
and the evolution rate r) (Figure 9A). Such cases suggest that

evolved modular structure, although sub-optimal, is selected for

the ability to adapt rapidly when the goal switches.

What is the effect of switching time (rate at which goals are

switched) on the speedup? We find that speedup is high over a

wide range of switching times. Speedup occurs provided that the

switching times E are shorter than the time to solve under a

constant goal (that is Ev1=e). When switching times are long,

the system behaves as if under a constant goal (for details see

Text S1).

In the case of nearly-modular varying goals, speedup occurs

provided that epoch times E are also long enough to allow

evolution to adapt to the close-by modular solutions of the two

Figure 7. Dynamics on a 3-dimensional system (A = 363 matrix). Presented is the three dimensional space defined by a11, a12, and a13, the first
row elements of the matrix A. The goal is defined by two pairs of input-output vectors. Empty circle: optimal non-modular solutions. Full circle:
modular solutions. A typical trajectory is shown for a number of different cases. Lines represent all configurations that achieve the goal (satisfy
Av1 = u1 and Av2 = u2). (A) A Constant goal G1 = { [v11 = (1,21,21.4), u11 = (1,22.4,0.4)]; [v12 = (0.5,1.2,21.9), u12 = (0.5,20.7,3.1) ] }. (B) Modularly
varying goals. G1 as above, and G2 = { [ v11 = (1,1.7,20.7), u11 = (1,1,2.4) ]; [ v12 = (20.7,22.3,21.1), u12 = (20.7,23.4,21.2) ] }. Switching rate is E = 100/r
time steps. (C) Modularly varying goals with nearly identical modules: G1 = { [ (1,1.7,20.7), (1,1,2.4) ]; [ (20.7,22.3,21.1), (20.7,23.4,21.2) ] } and G2 =
{ [ (1,21,21.4), (1+g,22.4,0.4) ]; [ (0.5,1.2,21.9), (0.5+0.5g,20.7,3.1) ] }. The distance between the two modular solutions for each of the goals is g = 0.1.
Zoom in: adaptation dynamics between the modular solutions. (D) Random non-modular varying goals: G1 = { [ (22.5,1,1), (0,1,1) ]; [ (5.4,21,1),
(3,21,1) ] }, G2 = { [ (1.1,1,1), (1.1,1,1) ]; [ (0.6,21,1), (0.6,21,1) ] }. E = 100/r time steps. There is no solution that solves both goals well, and therefore the
dynamics lead to ‘confusion’, a situation where none of the goals are achieved.
doi:10.1371/journal.pcbi.1000355.g007
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goals (Ewg=r where r is the rate of evolution), but not too long, to

avoid a crawl to the optimal solution (Ev1=e) (Figure 9A).

Evolution of block-modular structures in higher dimen-

sions. We briefly consider also a higher dimensional example

with N = 6 and two goals, each composed of two input-output

vectors as follows (values are rounded): G1 is

v11~ 0:3, 0:5, 0:5, 0:6, 0:7, 0:6ð Þ, u11~ 0:3, 0:4, 0:7, 0:9, 0:8, 1:4ð Þ;

v12~ 0:6, 0:5, 0:6, 0:9, 0:6, 0:7ð Þ, u12~ 0:6, 0:5, 0:7, 0:9, 1:0, 1:6ð Þ,

and G2 is

v21~ 0:6, 0:4, 0:7, 0:4, 0:1, 0:7ð Þ, u21~ 0:6, 0:5, 0:7, 0:3, 0:5, 0:8ð Þ;

v22~ 0:1, 0:9, 0:3, 0:5, 0:3, 0:2ð Þ, u22~ 0:1, 0:5, 0:9, 0:5, 0:5, 0:7ð Þ;

Figure 8. Modularity rises under MVG, and drops when goals stop varying over time. Modularity of the system measured by normalized
community structure Qm (see Text S1). (A) MVG and FG scenarios. Mean6SE is of 20 different goals each with 20 different random initial conditions;
E = 10/r (B) Starting from initial modular matrix A = [(1,0,0);(0,1,1);(0,1,21)] evolved under MVG, at time t = 0 the goals stopped changing (i.e. evolution
under FG conditions from time t = 0). Mean6SE is of 20 different goals.
doi:10.1371/journal.pcbi.1000355.g008

Figure 9. Evolution Speedup. (A) Speedup as a function of goal switching times E. Speedup is presented for the goal G1 with MVG between the
nearly modular pair of goals G1 and G2 : G1 = { [ (20.4,21.6,0.7), (20.4,21,22.3) ]; [ (0,0.9,20.3), (0,0.7,1.2) ] }, G2 = { [ (2,21.9,1.7), (2.9,20.3,23.6) ];
[ (0.3,0.3,0.3), (0.4,0.6,20.1) ] }, e~0:001. High speedup S is found for a wide range of goal switching times. (B) Speedup under MVG is greater the
harder the goal (the more time it takes to solve the goal in FG evolution starting from random initial conditions). The Speedup S = TFG / TMVG as a
function of goal complexity, defined as the time to solve the goal under fixed goal evolution, TFG. The speedup scales linearly with TFG. Goals are as in
(a). e~0:001 and E = 10/r.
doi:10.1371/journal.pcbi.1000355.g009
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MVG evolution with these two goals converges to a block-

modular structure

A~

1 0 0 0 0 0

0 0:4 0:5 0 0 0

0 0:8 0:5 0 0 0

0 0 0 0:4 0:8 0:1

0 0 0 0:7 0:3 0:2

0 0 0 0:7 0:9 0:6

0
BBBBBBBB@

1
CCCCCCCCA

At this point, it is interesting to note that, in all dimensions, the

block structure of the evolved matrix relates to the correlations

within the goal input and output vectors. In fact, the block

structure of A (the size and position of the blocks, not the value of

each element) is the same as the block structure of the pair-wise

linear correlation matrix between the goal inputs and outputs pairs

(e.g. the correlation between the ‘input’ matrix whose rows are

v11, v12, v21, v22 to the ‘output’ matrix whose rows are u11, u12,
u21, u22 in the present example). A general proof is given in Text

S1.

Modularity declines if goals become constant. What

happens to modularity under a constant goal if one begins with a

modular solution as an initial condition? We find that modularity

decays over time (Figure 8B) with a typical time constant of 1/e.
Generally, this decay corresponds to motion along the low-

gradient ridge towards the non-modular fixed point. (For a proof

in N = 2 see Text S1). Thus, goals need to keep varying over time

in order to maintain the modular structure.

Varying between random goals typically leads to

evolutionary confusion. So far, we have considered

modularly varying goals - that is goals that have a special

feature: their components can be decomposed into modules, with

the same (or nearly the same) modules for all goals. Thus, there

exists a modular matrix A that satisfies (or nearly satisfies) all of the

varying goals. What about randomly chosen goals, which are not

modular in this sense?

Pairs of randomly chosen goals (with N.2, k = N21) do not

generally have a matrix A that satisfies both goals. Solving the

dynamics in this case shows that temporally switching between the

goals leads to confusion, where evolution does not find a good

solution to either goal (Figure 7D).

It is easy to understand this using a geometrical picture. One

can represent the set of solutions for each goal as a line (or hyper-

plane) in the space of matrix elements. The solution lines of two

random goals in the high dimension space have very low

probability to cross or even to come close to each other. Switching

between goals generally leads to a motion around the point where

the lines come closest, which is generally a rather poor solution for

each of the goals (Figure 7D).

Such confusion is avoided in the case of MVG, because goals

share the same (or nearly the same) modular structure. Such a set

of modular goals is special: it ensures that the corresponding lines

intersect (or nearly intersect), and in particular that they intersect

on one of the axes. One can prove (see section Full analytic solutions

(B)), that all eigenvalues are of order one in the case of g modular

goals each made of k input-output vectors (with gk$N , so that

sufficient information is available in the goals to specify a unique

solution). Thus, in any dimension, a modular structure is rapidly

found under MVG evolution.

There are special cases in which the goals are non-modular but

still afford a speedup in evolution. This happens when the goal

vectors happen to be linearly dependent such that a non-modular

structure A exists that satisfies all goals. Here, rapid convergence

under varying goals is found towards a non-modular structure.

Geometrically, the hyper-planes corresponding to the goals

happen to intersect at a point which is off the axes. This may

correspond to the finding that randomly varying goals sometimes

show mild speedup in simulations of complex models [19].

Speedup is greater the harder the goal. One can define

the speedup of MVG compared to a constant goal, as the ratio of the

convergence time under a constant goal to the convergence time in

an MVG scenario [19],

S~TFG=TMVG: ð8Þ

As pointed out above, the convergence time in a fixed goal (with

dynamics mostly along the low-gradient lines) is determined by the

small eigenvalues on the order of e. Hence, TFG,1/e. In contrast,

the convergence time in a modularly varying goal is determined by

the larger eigenvalues l which are order 1. Hence, TMVG,1/l,

and

S~TFG=TMVG!l=e: ð9Þ

Thus, the ‘harder’ the fixed goal problem is (that is, the smaller e
and hence the longer TFG), the greater the speedup afforded by

MVG (Figure 9B). A similar finding was made by simulations of

the complex models such as logic circuits and RNA structures,

which displayed S/(TFG)a with a between 0.7 and 1.0 (Figure 2B)

[19].

Full analytic solutions
(A) The optimal solution in a fixed goal (FG) and in

modularly varying goals (MVG). Here we calculate the

optimal solution in a problem in which the goal is fixed (FG),

and in a problem with modularly varying goals (MVG). We show

that the fitness of the optimal solution in a FG problem is higher

than the fitness of the solution in a MVG problem.

We begin by considering the fitness function of Eq. 2 written in

matrix form.

F Að Þ{F0~{eTr ATA
� �

{Tr AV{Uð ÞT AV{Uð Þ
� �

: ðA1Þ

Here A is an N6N matrix. V and U are both N6k matrices

whose columns corresponds to the goal input vectors and output

vectors G. The goal G is modular if there exists a block diagonal

matrix M such that MV = U (up to permutations of the columns of

V and U). We assume that the k columns of V are linearly

independent. Note that if k = N then V is invertible and so

M~UV{1. In the present study k,N so that there exist infinite

number of matrices M’ such that M’V~U.

The equation of motion for A in matrix notation (Eq. 3) is

dA

dt
~

LF

LA
~{2A VVTzeIN

� �
z2UVT ðA2Þ

where IN is the N6N identity matrix. VVT and UVT are both

N6N matrices.

The optimum of F (Eq. A1) can be calculated from the equation

of motion (Eq. A2) by setting the left hand side to zero and solving
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for A:

A�~UVT VVTzeIN

� �{1 ðA3Þ

Taking the limit e?0 reduces Eq. (A3) to

A�~UVz, Vz~ lim
e?0

VT VVTzeIN

� �{1 ðA4Þ

where V+ is the pseudo-inverse of V satisfying VzV~IK. Using

the fact that U = MV we obtain A* = MVV+.

The solution in an MVG problem with g goals each with k

input-output pairs can be calculated by taking the limit of

vanishing small switching time. In this case the MVG problem is

equivalent to the average problem

F Að Þ{F0~{eTr ATA
� �

{

1

g

Xg

i~1

Tr AVi{Uið ÞT AVi{Uið Þ
� � ðA5Þ

with the equation of motion

dA

dt
~{2A

1

g

Xg

i~1

ViVi
TzeIN

 !
z

2

g

Xg

i~1

UiVi
T ðA6Þ

Here we assume that equal amounts of time are spent in each

goal. If this is not the case then the average over goals should be

replaced by a weighted mean. Eq. (A6) can be further simplified by

noting that

1

g

Xg

i~1

ViVi
T~vvT , v~

1ffiffiffi
g
p V1 V2 . . . Vgð Þ

1

g

Xg

i~1

UiVi
T~uvT , u~

1ffiffiffi
g
p U1 U2 . . . Ugð Þ

u~Mv

ðA7Þ

Here v, and u are both N6(gk) matrices in which all the input-

output pairs are concatenated: the input vectors in a matrix v, and

the output vectors in a matrix u.

With this, the equation of motion reads

dA

dt
~{2A vvTzeIN

� �
z2uvT ðA8Þ

with the optimal solution

Am~uvT vvTzeIN

� �{1 ðA9Þ

We assume that N out of the g6k columns of v are linearly

independent. Accordingly the rank of the rows is N. Thus vvz~IN

with vz~ lim
e?0

vT vvTzeINð Þ{1
and so

Am~uvz~Mvvz~M ðA10Þ

The fitness, F, in the MVG problem is then

Fm~{eTr(Am
TAm)~{eTr MTM

� �
ðA11Þ

and similarly for a FG (fixed goal, in which the goal is constant

over time) problem

F�~{eTr A�T A�
� �

~{eTr MVVzð ÞT MVVz
� �

~{eTr VVzð ÞT MT M VVzð Þ
� �

~

~{eTr MT MVVz VVzð ÞT
� �

§{eTr MT M
� �

Tr VVz VVzð ÞT
� �

~FmTr VT V VT V
� �z� �

~

~FmTr Ikð Þ~Fmk~kFmwFm

ðA12Þ

Here we used the inequality Tr ABð ÞƒTr Að ÞTr Bð Þ. The

conclusion is that Fm,F*, that is the optimal fitness in an FG

problem is higher than the fitness in an MVG problem.

(B) Eigenvalues of FG and MVG problems in N

dimensional space. First we show that goals with k input-

output pairs in N dimensions leads to evolutionary dynamics with

N2k eigenvalues equal to 2e. Thus convergence (whose time goes

as the inverse of the smallest eigenvalue) is slow. Then we show

that in an MVG problem with g goals each with k input output

pairs in N dimensions generically leads to evolutionary dynamics

with effectively no eigenvalues equal to 2e. Thus convergence is

faster.

We begin by writing the solution of Eq. (A2):

A tð Þ~Cz A 0ð Þ{Cð Þe{Bt

B~2 VVTzeIN

� �
, C~2UVT B{1

ðB1Þ

where A(0) is the initial condition. B is the coefficients matrix in

Eq. (A2). Its eigensystem determine the dynamics described by Eq.

(A2) and the solution (B1):

Bvi~livi ðB2Þ

where vif g are the eigenvectors and lif g are their corresponding

eigenvalues. The lif g are the roots of the characteristic

polynomial

p lð Þ~ 2VVTz 2e{lð ÞIN

		 		, p lið Þ~0: ðB3Þ

We will show now that N2k of the roots of the characteristic

polynomial p(l) equal to 2e. Using the formula for modified deter-

minants WSTzH
		 		~ Hj j ST H{1WzI

		 		 with H~ 2e{lð ÞIN,

and W~S~V, we can write:

p lð Þ~ 2e{lð ÞINj j 2e{lð Þ{1
2VT VzIk

			 			: ðB4Þ

Here Ik and the k6k identity matrix, and VTV is a k6k Gram

matrix – a symmetric semi-positive definite matrix whose

eigenvalues are all nonnegative. Since we further assume that
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the columns of V are linearly independent then VTV is actually a

positive definite matrix of rank k, whose eigenvalues are all

positive. After factoring we find

p lð Þ~ 2e{lð ÞN
		 		 2e{lð Þ{1

2VT Vz 2e{lð ÞIk

�			 			: ðB5Þ

Using the rule aHj j~adim Qð Þ Hj j we find:

p lð Þ~ 2e{lð ÞN{k
q lð Þ: ðB6Þ

where q lð Þ~ 2VT Vz 2e{lð ÞIk

		 		 is a polynomial of degree k. In

the limit e?0, q lð Þ is the characteristic polynomial of the matrix

VT V, which is a full rank matrix. Thus, it has k non-vanishing

eigenvalues. Accordingly the characteristic polynomial p lð Þ has

N2k roots equal to 2e and k roots of O(1).

Geometrically, this means that the dynamics in the N

dimensional space can be separated into two regimes: fast

dynamics on a k dimensional hyperplane (characterized by k large

eigenvalues), and slow dynamics on the complementary N2k

hyperplane (characterized by N2k eigenvalues equal each to 2e).

For completeness we write the solution (B1) in terms of the

eigensystem of the coefficient matrix:

A tð Þ~Cz A 0ð Þ{Cð ÞWe{LtW{1

B~2 VVTzeIN

� �
, C~2UVT B{1, BW~LW

L~diagonal 2e,:::,2e|fflfflfflffl{zfflfflfflffl}
N{k

,l1,:::,lk

0
@

1
A lif gi~1,:::k~O 1ð Þ

ðB7Þ

Note that this solution holds for MVG problems. At the

beginning of each epoch (after a goal switch) we update the initial

conditions (equal to the value of the matrix A at the end of the

previous epoch), and change the goal and corresponding

eigensystem (update V and U for the next epoch).

Now we show that in an MVG problem with g goals each with k

input-output pairs in N dimension generically leads to evolutionary

dynamics with only large eignevalues, and no eigenvalues on the

order of e. Thus convergence is fast.

We approach this problem by taking the limit of vanishing small

switching time. In this case the MVG problem is equivalent to the

average problem with the equation of motion Eq. (A8). Thus the

eigensystem in this case is determined by the characteristic

polynomial of the average problem:

p lð Þ~ 2vvTz 2e{lð ÞIN

		 		; p lið Þ~0 ðB8Þ

In the generic case N out of the g6k columns of v are linearly

independent. Accordingly the rank of the rows is N and

rank vT v
� �

~ N . So that in the limit e?0, p lð Þ has N non-

vanishing eigenvalues.

Geometrically, this means that unlike the dynamics in a FG

problem, the dynamics in an MVG problem in N dimensional

space is fast and generally characterized by N large eigenvalues.

Note that if the epoch time is finite, then one can define a critical

epoch time for which this result still holds (see Text S1).

For completeness we write the solution for the equation of

motion (A8)

A tð Þ~Cz A 0ð Þ{Cð ÞwE{Ltw{1

B~2 vvTzeINð Þ, C~2uvT B{1, Bw~Lw

L~diagonal l1, . . . ,lkð Þ lif gi~1,...,N~O 1ð Þ

ðB9Þ

Discussion

We studied a model for evolution under temporally varying

goals that can be exactly solved. This model captures some of the

features previously observed with simulations of more complex

systems [18,19]: MVG leads to evolution of modular structures.

The modules correspond to the correlations in the goals.

Furthermore, evolution is speeded up under MVG relative to

constant goals. The harder the goal is, the faster the speedup of

MVG relative to evolution under a constant goal. Most random

non-modular goals do not generally lead to speedup or evolution

of modularity, but rather to evolutionary confusion. Although the

modular solution is sub-optimal, it is selected for its ability to adapt

to the different varying goals.

The speedup of evolution under MVG is a phenomenon that

was previously found using simulations, but lacked an analytical

understanding. The present model offers an analytical explanation

for the speedup observed under MVG. The speedup in the model

is related to small eigenvalues that correspond to motion along

fitness plateaus when the goal is constant in time. These

eigenvalues become large when the goal changes over time,

because in MVG, the plateaus of one goal become a high-slope

fitness region for the other goal. Switching between goals guides

evolution along a ‘ramp’ that leads to the modular solution. This

analytical solution of the dynamics agrees with the qualitative

analysis based on sampling of the fitness landscape during the

evolutionary simulations of complex models [19].

One limitation in comparing the present model to more

complex simulations is that the present model lacks a complex

fitness landscape with many plateaus and local maxima. Such

plateaus and local fitness maxima make constant-goal evolution

even more difficult, and are expected to further augment the speed

of MVG relative to constant goal conditions. A second limitation

of the present linear model is that it can solve different MVG goals

when presented simultaneously - a feature not possible for

nonlinear systems. This linearity of the model, however, provides

a clue to how MVG evolution works: whereas each goal supplies

only partial information, all goals together specify the unique

modular solution. Under MVG evolution, the system effectively

remembers previous goals, supplying the information needed to

guide evolution to the modular solution, even though at each time

point the current goal provides insufficient information. This

memory effect is likely to occur in the nonlinear systems as well.

The series of studies on MVG, including the present theory,

predict that organisms or molecules whose environment does not

change over time should gradually lose their modular structure

and approach a non-modular (but more optimal) structure. This

suggestion was supported by a study that showed that bacteria that

live in relatively constant niches such as obligate parasites that live

inside cells, seem to have a less modular metabolic network than

organisms in varying environments such as the soil [32,33].

Another study considered modularity in proteins, which corre-

sponds to distinct functional domains within the protein. It was

found that proteins whose function is relatively constant over

evolutionary time, such as the ribosomal proteins present in all

cells, are typically less modular in structure than proteins that are
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specific to a few cell types and that repeatedly duplicate and

specialize over evolution [34]. Thus, one might envisage a tradeoff

in biological design between modularity and optimality. Modu-

larity is favored by varying goals, and non-modular optimality

tends to occur under more constant goals.

In summary, the present model provides an analytical

explanation for the evolution of modular structures and for the

speedup of evolution under MVG, previously found by means of

simulations. In the present view, the modularity of evolved

structures is an internal representation of the modularity found in

the world [32]. The modularity in the environmental goals is

learned by the evolving structures when conditions vary

systematically (as opposed to randomly) over time. Conditions

that vary, but which preserve the same modular correlations

between inputs and outputs, promote the corresponding modules

in the internal structure of the organism. The present model may

be extended to study additional features of the interplay between

spatio-temporal changes in environment and the design of evolved

molecules and organisms.

Supporting Information

Text S1 A Simple Model for Rapid Evolution of Modularity

Found at: doi:10.1371/journal.pcbi.1000355.s001 (0.42 MB PDF)
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