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Introduction

Proteomics aims at a large-scale charac-

terization of localization, abundance,

post-translational modifications, and bio-

molecular interactions of the proteins in

an organism, with the goal of understand-

ing their function. An extensive insight can

be obtained by identifying and quantifying

the components of biological mixtures. For

example, a) In studies of biomolecular

networks, partners interacting with a

protein can help determine its function.

It is possible to experimentally isolate

protein complexes, e.g., using tag affinity

purification. Identification of the compo-

nents of this mixture helps determine

potential interactors [1]. b) Post-transla-

tional modifications such as phosphoryla-

tion play an important role in regulating

biological processes, e.g., cellular growth

and signaling. Identification and quantifi-

cation of phosphorylated proteins and

their substrates helps elucidate complex

signaling pathway phosphorylation events

[2]. c) Molecular biomarkers, i.e., proteins

for which changes in abundance are

indicative of an early onset of a disease

or a therapy response, are of interest in

clinical research. Identifying and quanti-

fying components of a biofluid such as

serum helps detect proteins with such

discriminative ability [3]. d) A goal of

genome annotation is the discovery and

validation of protein-coding regions. Iden-

tifying peptides and proteins in a cell helps

confirm and improve the annotations at

the translational level, e.g., by confirming

the presence of intron boundaries or

alternative splicings [4].

Mass spectrometry is a method of choice

for protein identification and quantifica-

tion due to its sensitivity and to the

versatility of the instrumentation [5,6]. A

typical ‘‘bottom-up’’ workflow experimen-

tally digests the proteins into a mixture of

peptides with an enzyme such as trypsin.

This is necessary, in part, because the

sensitivity of the mass spectrometer is

much higher for peptides than for pro-

teins. The peptides are then injected onto

a liquid chromatography (LC) column

from which they elute sequentially. The

eluted peptides are ionized and separated

by the mass spectrometer according to

their ratio of mass to charge (m/z) in a

mass spectrum (MS).

The collection of mass spectra obtained

at different elution times forms an LC-MS

run shown in Figure 1A. Peaks in the run

correspond to peptide ions; however, the

sequence of amino acids underlying each

peak is unknown. For identification, the

mass spectrometer isolates the biological

material from a peak (called precursor ion

in this context), and subjects it to a high-

collision energy. The energy breaks the

peptide at different amide bonds, and the

resulting fragments are separated accord-

ing to their m/z in a secondary spectrum

(called MS2, MS/MS, or tandem MS),

shown in Figure 1B. Distances between

peaks in the MS/MS spectrum are used to

infer the peptide sequence of the parent

LC-MS peak.

Peak intensity is related to the abun-

dances of peptides, and can be used for

relative quantification. With the label-free

approach, a separate LC-MS run is

obtained for each biological sample, and

peaks are quantified and compared across

runs. In stable isotopic labeling workflow,

samples from different groups are labeled

metabolically (e.g., in SILAC, where stable

isotopes are included in the growth

medium of an organism), or chemically

(e.g., in ICAT or iTRAQ, where reacting

chemical labels are applied after tryptic

digestion). Several samples (e.g., one from

each group) are then mixed, and their

peaks are identified and quantified within

the same run. Finally, a targeted workflow

based, for example, on selected reaction

monitoring (SRM) [7], increases sensitivity

and specificity by monitoring signals from

a list of predefined peptides.

The design of proteomic experiments,

and subsequent analysis of the spectra,

involves extensive computation and re-

quires expertise at the intersection of

computer science, engineering, and statis-

tics. It presents exciting opportunities for

both methodological and applied compu-

tational research.

Experimental Design

Experimental design specifies how bio-

logical samples are selected and allocated

in space and time during spectral acquisi-

tion. For example, a biomarker discovery

project can produce biased conclusions if

patients from different groups have differ-

ent characteristics (such as prior medica-

tion), or their spectra are acquired under

different conditions. Moreover, sample

selection and allocation can be inefficient,

and can undermine the ability to uncover

the true differences between groups.

Statistical experimental design avoids

bias and optimizes efficiency by using

replication, randomization, and blocking,

and by choosing an appropriate type and

number of replicates [8]. The need for a

statistical design of proteomic experiments

is increasingly emphasized [9]. Specific

choices require a statistical model that

describes the spectra, and development of

such models is an important area of

research.
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Open Data Formats

After spectral acquisition, the first

computational task is to extract and store

peak information. Unfortunately, most

mass spectrometer vendors have their

own proprietary formats. An advance has

been made by implementing open XML-

based formats (such as mzXML), and the

associated converters and validators, to

store this information and to make the

subsequent analysis vendor-neutral [10].

These tools are available from http://

www.proteomecommons.org. Efforts are

invested, for example, by the Proteomics

Standards Initiative (http://www.psidev.

info), in further developments of XML

formats.

Identification of Peptides and
Proteins

An MS/MS spectrum such as in

Figure 1A is generated by a series of

peptide fragments. Thus, mass differences

between neighboring MS/MS peaks are

used to determine the underlying amino

acid sequence. Typical approaches involve

searches of an a priori–defined database,

de novo identifications, and combinations

of the two [11]. Here we focus on the

database-based approach which compares

each observed spectrum against entries in

a database (Figure 2A). Several aspects of

the procedure require consideration.

Database of Candidate Peptides
Protein sequence databases now exist

for many organisms. One can digest the

sequences in silico into peptides, and

construct a theoretical spectrum for each

peptide. Alternatively, one can use a

library of peptides with associated consen-

sus experimental spectra derived from

previous identifications [12]. In both cases,

the number of candidate peptides increas-

es exponentially when we allow nonspe-

cific enzymes and/or post-translational

modifications (PTM) that alter a theoret-

ical mass.

Scoring Function
Scoring functions quantify the similarity

of a candidate peptide-spectrum match

(PSM). A typical two-stage procedure

filters out PSMs with incompatible peptide

and precursor ion masses, and scores

plausible PSMs using counts of shared

MS/MS peaks. Newer scores incorporate

additional characteristics, e.g., peak inten-

sity (for spectral libraries) and empi-

rical peptide detectability [13], and learn

the scores dynamically from the data

[14,15].

Search Algorithm
For each observed spectrum, the algo-

rithm scores its similarity to every candi-

date peptide and returns the best-scoring

PSM. Since typical experiments produce

hundreds of thousands of MS/MS spectra,

development of efficient search algorithms

is an active area of research. Improve-

ments include clustering the observed

spectra using a similarity metric, and only

searching the resulting consensus spectra

[16]. Another approach aligns the ob-

served spectra in a procedure similar to

genomic sequence alignment, and creates

meta-spectra that cover longer protein

segments [17]. Finally, a de novo identi-

fication of short sequence tags (e.g., three

amino acids long) combined with a

subsequent database search also allows

one to reduce the space [18].

False Discovery Rate (FDR) of
Spectral Identification

Due to the stochastic variation in the

spectra, deficiencies of the scoring

schemes, and possible incompleteness of

the database, only a fraction of best-

scoring PSMs are typically correct. There

is thus a need for a statistical measure of

‘‘confidence’’ in a reported list of PSMs,

and for an inferential procedure that

Figure 1. Example of spectral data. (A) LC-MS run. Features in the LC-MS space are peptide ions; their intensity is related to peptide abundance.
(B) MS/MS spectrum. The spectrum is obtained by fragmenting the peptide ion isolated from an LC-MS peak. The peaks are fragment ions; distances
between peaks are used for peptide sequence determination.
doi:10.1371/journal.pcbi.1000366.g001
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distinguishes ‘‘confident’’ PSMs from

noise.

An accepted statistical measure is FDR,

defined as the expected proportion of

incorrect identifications in a list of PSMs

with scores above a cutoff. To determine

FDR-controlled lists of PSMs, the target–

decoy strategy [19] appends a randomized

version of the theoretical database (decoy) to

the actual database (target), and estimates

the FDR as twice the proportion of decoy

matches among all the matches in the list.

Alternatively, Peptide Prophet [20] fits an

Empirical Bayes two-group mixture model

to scores of correct and incorrect identifi-

cations, and estimates the FDR as the fitted

probability of correct identifications for

scores above a cutoff. Numerous extensions

are continually proposed (see, e.g., http://

pubs.acs.org/toc/jprobs/7/1), and in the

future the focus will likely broaden to the

FDR of peptides, proteins, and protein sites.

Protein Inference
Confidently identified peptides can be

grouped to infer the protein components

of the mixture. This is nontrivial due to

ambiguous mappings of peptides to pro-

teins, and to the insufficient discrimination

of some proteins by the identified peptides

[21]. Current approaches use characteris-

tics such as the number of mapped

peptides, protein length, and peptide

detectability [22] to identify proteins.

More research is needed to control the

FDR in the protein list.

Resources
Extensive spectral databases are public-

ly available, e.g., the Peptide Atlas at

http://www.peptideatlas.org, containing

millions of spectra from biological exper-

iments, and http://regis-web.systemsbiol-

ogy.net/PublicDatasets, containing spec-

tra from controlled protein mixtures.

Quantification

Quantitative proteomics monitors pep-

tide and protein abundance across samples

of multiple types. The goals are similar to

other high-throughput experiments such

as gene expression microarrays [23,24]. A

typical workflow (Figure 2) involves mul-

tiple steps [25].

Signal Processing
Quantitative workflows require signal

processing beyond spectral identification.

Features in the spectra must be located

and quantified, annotated when possible

with peptide sequences information, and

aligned across runs. A variety of tools have

been implemented [26]; they are specific

to label-free or labeling workflows, but all

output a list of detected features and their

abundances across samples.

Transformation, Normalization, and
Summarization

The biological effects are multiplicative

in nature, and a logarithm transform of

intensities is frequently recommended.

Feature intensities are further normalized

across runs, e.g., using quantile normali-

zation [27]. When multiple features are

observed within a sample for a same

peptide or protein, they are often summa-

rized in one number.

Learning
Statistical and machine learning tools

are then applied for (1) class comparison, e.g.,

determination of proteins that change in

abundance between healthy individuals

and individuals with disease; (2) class

discovery, e.g., unsupervised detection of

sample subgroups with homogeneous

Figure 2. Example of a proteomic workflow using database-based identification and label-free quantification. (A) Identification of MS/
MS spectra. Experimental spectra are compared to peptides in a database, and the best-scoring PSMs are reported while controlling the FDR. Protein
sequences are identified from the peptides. (B) Label-free quantification. Features in LC-MS runs (shown with circles) are located, quantified, and
aligned across runs. (C) LC-MS features are annotated with peptide sequences when identifications are available (shown with filled circles). The
annotations are used to optimize the alignment of features across runs. The list of quantified, identified, and aligned features is then subjected to
transformation, normalization, and summarization. (D) The list of features is used as input to machine learning, functional annotation, and data
integration steps.
doi:10.1371/journal.pcbi.1000366.g002
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quantitative protein profiles; and (3) class

prediction, e.g., a supervised prediction of

a disease status of a new sample based

on its protein abundance. Here analysis

issues are similar to, e.g., gene expression

microarrays, in that the features are

interdependent, and their number exceeds

the number of samples. An example from

this area of research is [28].

Functional Annotation
Database technologies connect the pro-

teins to their annotations, e.g., from Gene

Ontology, or from databases of disease.

The annotations can confirm the plausi-

bility of the identifications, and can enable

tests for over-represented functional cate-

gories in the protein list [29].

Data Integration
Recent studies combine proteomic mea-

surements with gene expression and me-

tabolomic profiles, and/or known bio-

chemical networks, with the general goal

of protein function determination [30]. A

number of tools facilitate these tasks,

which include proprietary databases Gen-

eGo and Ingenuity, and open-source

Cytoscape at http://www.cytoscape.org

and Bioconductor at http://www.biocon-

ductor.org.
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