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Abstract

Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question
whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose
time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli
while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of
spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These
parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory
populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of
the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth
stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally
sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending
on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list
of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and
show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the
oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff
between the resolution of the neural representation of the stimulus and robustness to time-warp.
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Introduction

General background
In recent years, there has been a growing interest in

understanding how temporal information of sensory stimuli is

encoded by sensory corticies (see, e.g., [1–8]). It has been shown

that information about the features of the external stimulus is

encoded in the fine temporal structure of the neural response (see,

e.g., [8–15]). We are especially interested here in stimuli that have

a natural hierarchy of temporal scales, such as speech and its

components, including phones, diphones, words etc. Sensory

processing has also been shown to be associated with the

appearance of gamma oscillations in various sensory corticies

(see, e.g., [16–20]). This raises the question whether the gamma

oscillations can be directly involved in the representation of time-

varying stimuli, including stimuli whose time scale is larger than

that of a gamma cycle.

Such a model was suggested by Hopfield [5], and later was

studied in the contex of diphone discrimination [21]. In this model

subthreshold oscillatory input acts to coordinate the firing of cells

so that a downstream neuron can read out a population code

based on synchrony of firing. The implementation of this idea had

a memory of about 200 ms, in a way that varied along a given

stream of speech; the time scale of the memory depended on a

dynamically changing ‘‘Lyapunov exponent’’; the more negative

this quantity, the shorter the memory and the more stable the

representation. Thus, the longer memory was also associated with

a less stable and less transparent representation. Here we build on

the ideas in that paper about the synchronizing effects of gamma

oscillations. However, to represent a signal having a natural time

scale of more than one gamma period, we use multiple periods

explicitly in the representation.

The aim of this paper is to show that this idea can be

implemented robustly in the context of biophysically reasonable

networks of neurons. The gamma oscillations are a product of the

network, rather than an external input, and correspond to spiking

events in the network, not subthreshold oscillations. We use a

dynamical model of a network of spiking cells [22] that responds to

a one-dimensional time-varying input in the shape of a sawtooth.

Such a signal models the response of one cochlear frequency-band

to a short speech stimulus, such as a diphone, that lasts several

gamma cycles. We show that the oscillations produced by the

network tend to discretize the neural response to the sawtooth.

From this, we get a binary response of the population, based on

which cells fire in which cycles. Using a simple measure of

discriminability, we examine the reliability of the representation,

and show that reliability requires an onset signal, something that is

well known for sensory signals (see, e.g., [14,23,24,25]). We also
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show that the representation is robust to moderate noise and time

warp. In the Discussion, we compare the ideas of this paper with

other work on coding (or recognition) of temporal patterns. We

also discuss how hierarchies of oscillations in the nervous system

may relate to the natural hierarchy of timescales in speech (phone,

diphone, syllable, word, and sentence) and possible mechanisms

for reading out the kind of code we suggest.

Model stimulus
Ultimately, we would like to study the representation of a

diphone. A diphone is a speech segment, roughly from the middle

of a phoneme to the middle of the phoneme following it. In a

single cochlear frequency-band, the temporal fluctuations of the

sound energy of a diphone can be represented in caricature by a

single sawtooth waveform that mimics the dynamics of energy as it

enters and leaves the frequency band. In this study we focus on the

representation of sawtooth-shaped signals. Different sawtooths will

be represented by a single shape parameter, 0ƒaƒ1, that

specifies the time of the energy peak in the sawtooth from the

beginning of the sawtooth, in units of the sawtooth period T (see

Figure 1). Unless otherwise stated we use a typical duration of

50 ms for the sawtooth stimulus, although we have tested the

network response for slightly shorter and longer stimulus durations

40–100 ms. The advantage of using a simplistic abstract model for

the input stimulus, instead of, for example, a real intensity profile

taken from speech, is that it allows for systematic investigation of

the representation which, in turn, facilitates the clear understand-

ing of the properties of the representation.

Model system: Response to sawtooth waveforms
The functional architecture of the network is depicted in

Figure 1. The excitatory-inhibitory interactions are sufficient to

generate and sustain oscillations in the gamma frequency range.

Specifically, oscillation period was about 18 ms. Hence, the

duration of the external stimulus (typically 50 ms) is about three

network cycles. The oscillations are generated via a mechanism

known as PING (Pyramidal-Interneuronal Network Gamma).

Essentially, input from the excitatory cells cause the inhibitory

population to fire and generate a volley of inhibition that

synchronizes the network activity (see [22] for a fuller description).

Excitatory cells are further divided into three functional

subpopulations according to their different inputs. The back-

ground subpopulation receives high DC current and is responsible

for generating the intrinsic gamma oscillations. The onset

subpopulation receives an onset signal and is responsible for

resetting the oscillation phase to synchronize it with the stimulus

onset. The last subpopulation is the coding population that

receives the time dependent sawtooth input current. A more

detailed description of the network and its dynamics appears in the

Materials and Methods section below.

Results

Intrinsic oscillations discretize neural response
Figure 2 shows three examples of the population response to the

external stimuli, in the absence of internal noise. The x-axis is time

and every line shows the spiking events of a different cell in the

population during the same trial. The cells are ordered according

to their functional subpopulation. At the bottom (cells 1–30) is the

excitatory background population that, together with the inhib-

itory population (top - cells 71–80), generate the intrinsic gamma

oscillations. The onset-response population (cells 31–45) are

responsible for resetting the phase of the intrinsic oscillations,

thus, synchronizing them to the onset of the external stimulus.

Cells in the coding population (25 cells, no. 46–70) are plotted in

an increasing order of their ‘sensitivity’ from bottom (cell 46 - least

sensitive) to top (cell 70 - most sensitive).

The three Figures 2A, 2B, and 2C show the population response

to stimuli with three different shape parameter values a~0, a~0:5
and a~1, respectively. For a very fast-rising stimulus (Figure 2A,

a~0), cells in the coding population will tend to fire in the first cycle

immediately after the onset. For a slower-rising stimulus (Figure 2B,

a~0:5), few cells will fire in the first cycle and most cells will fire in

the second cycle after the onset. For a stimulus that rises even slower

(Figure 2C, a~1), few cells will fire in the second cycle and most cells

will fire in the third cycle after the onset.

Thus, intrinsic oscillations discretize the coding population

response in the following sense: the external stimulus overlaps

approximately three gamma cycles. Every cell can fire at most a

single spike during every cycle. The specific spike pattern of every

cell depends on its identity (i.e., different cells in the coding

population have different sensitivity due to different DC input

levels) as well as on the stimulus shape. Hence, the list of which cell

fired during what cycle contains information about the stimulus

shape. Below we define a binary representation of the neural

response that will be used to quantify the information content of

the response.

Binary representation of population response
We represent the neural response by a binary matrix of size:

[number of coding cells]6[three gamma cycles] (2563 in our model).

Matrix element (i,t) indicates whether cell i in the coding

population fired (1) or did not fire (0) in the t~1, 2, 3 cycles

following the stimulus onset. This choice of binary representation

ignores information that may exist on a time scale finer than the

gamma cycle.

Figure 3 demonstrates the binning procedure (complete

description of the procedure appears in Materials and Methods

section, below). The mean firing time of the onset population (plus

4.5 ms) defines the start of the first bin. The boundaries of the bins

are defined by the mean spike times of the inhibitory cell

population plus 4.5 ms (vertical dotted lines in Figure 3A).

Figure 3B shows the binary representation of the network response

in Figure 3A. The activity of every cell in the coding population

during the three gamma cycles in which stimulus is presented is

shown by a single row. Every row is divided into three columns

that show the firing of the cell during each cycle in black (fired)

and white (did not fire).

Author Summary

Sensory processing of time-varying stimuli, such as speech,
is associated with high-frequency oscillatory cortical
activity, the functional significance of which is still
unknown. One possibility is that the oscillations are part
of a stimulus-encoding mechanism. Here, we investigate a
computational model of such a mechanism, a spiking
neuronal network whose intrinsic oscillations interact with
external input (waveforms simulating short speech seg-
ments in a single acoustic frequency band) to encode
stimuli that extend over a time interval longer than the
oscillation’s period. The network implements a temporally
sparse encoding, whose robustness to time warping and
neuronal noise we quantify. To our knowledge, this study
is the first to demonstrate that a biophysically plausible
model of oscillations occurring in the processing of
auditory input may generate a representation of signals
that span multiple oscillation cycles.

Representation of Time-Varying Stimuli
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Quantifying the discriminability of population response
The information content can be quantified by measuring the

discriminability of the binary representation of stimuli with

different shapes. We chose a very simple readout mechanism,

based on template matching. Every stimulus is associated with an

internal binary template (see Materials and Methods). For a given

response, the estimated sawtooth shape parameter is defined as the

one associated with the closest template. Hamming distance was

used as the distance measure between templates and input

response. These choices were made due to their simplicity and

the fact that they emphasize the binary nature of the neural

responses. Neither the template nor the distance measure was

chosen to optimize the estimation accuracy. We do not mean to

suggest that the central nervous system uses this particular readout

mechanism. Nevertheless, this readout is an appropriate metric for

assessing the accuracy of population response in representing

sawtooth-shape waveforms.

A convenient description of the readout discrimination power is

the confusion matrix, CM (see Materials and Methods). Figure 4

shows the confusion matrix for A three alternative shape

parameter values: a~0, 1=2, 1 and B nine alternative shape

parameter values: a~0, 1=8, . . . 1. The probability of a correct

classification provides a scalar summary of the of the confusion

matrix. In the three alternative tasks, A, the system is always

correct, the probability of correct classification is Pc~1 (chance

level is 1/3). In the more difficult nine alternative task B
performance decreases, Pc~0:6 (chance level 1/9). However,

errors in estimating the shape parameter, a, have a magnitude:

Da~ a{âaj j (where âa is the estimated shape parameter; see

Materials and Methods equation 7). As can be seen from the

confusion matrix, although the error rate increases, the errors are

small, typically Da&1=9 (the first off-diagonal elements in the

confusion matrix).

Figure 5A shows the the percent correct classification in an n

alternative (a~0, 1=n, 2=n, . . . 1) forced choice task, as a function

of 1=n. For large n, the percent correct decays to zero inversely

with the number of alternatives, Pc!1=n. This results from a finite

resolution in the representation of the shape parameter a. The

confusion matrix in the case of n~32 alternatives is shown in

Figure 5B. As in Figure 4B, we observe that the confusion matrix

has relatively large elements mainly close to the diagonal. Hence,

although there is considerable probability of error, the magnitude

Figure 1. Network architecture. Neural population is composed of two large subpopulations: excitatory (E) and inhibitory (I). The E-to-I, I-to-E and
I-to-I connectivity is all-to-all and are sufficient to generate and sustain oscillations in the gamma frequency range. Specifically, oscillation period was
about 18 ms. Excitatory cells are further divided into three functional subpopulations according to their different inputs. The background
subpopulation receives high DC current and is responsible for generating the intrinsic gamma oscillations. The onset subpopulation receives an onset
signal and is responsible for resetting the oscillation phase to synchronize it with the stimulus onset. The last subpopulation is the coding population
that receives the time dependent sawtooth input current.
doi:10.1371/journal.pcbi.1000370.g001

Representation of Time-Varying Stimuli
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of the error is typically small. This finite resolution can be

quantified by the root mean square (RMS) of the estimation error,

Da~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S a{âað Þ2T

q
, where SXT denotes average of X over

different trials and phase relations. Here we obtain Da&0:1. In

order to obtain this resolution a reliable representation is required.

Below we show the necessity of the phase resetting mechanism by

the onset population for obtaining a reliable representation of the

shape parameter.

Reliable representation requires an onset signal
Since network oscillations are intrinsic and the stimulus is

external, the oscillation phase at the time of stimulus onset is

arbitrary. In the absence of a phase resetting (synchronizing)

mechanism, the same stimulus may elicit very different

responses, depending on exact phase relation. This added

variability of the neural responses to the stimulus increases the

dispersion of the responses to the same stimulus around the

template and can be thought of as added noise. Hence, the

templates become less representative and the readout perfor-

mance decreases. Figure 6 shows the confusion matrix in the

three alternative task, a~0, 1=2, 1, in the absence of the onset

signal (see Figure 4A for comparison). As can be seen from the

figure, the probability of correct classification decreased

dramatically: Pc~0:6, relative to Pc~1, in the case with the

onset signal. Nevertheless, performance is still above chance

(chance level is 1/3).

It is important to note that the onset signal does not need to

precede the stimulus. The requirement is that the onset signal

activates the onset population before the coding population

responds to the stimulus. In a diphone, typically, onset is shared

among all frequency bands; hence, it provides a clear and robust

signal. In a recent work Chase and Young [25] have demonstrated

how an onset signal can be accurately reconstructed from the

response of a population of inferior colliculus cells of the cat and

then used to estimate the external stimulus.

Thus the onset response assists in stabilizing a reliable

representation of the stimulus shape by the neural responses.

However, it does not erase all traces of the past. Even with the

presence of the onset signal, the neural response to the stimulus

depends on the phase relation, but to a smaller extent. This

variability in the neural responses to the same stimulus is, in part,

responsible for the finite resolution of the representation Da~0:1
in the absence of intrinsic noise. Yet another factor that limits

the resolution with which the network can represent the stimulus

shape is our choice of binary representation. For example, one

may imagine two close but different stimuli which elicit neural

responses that differ by their exact spike times but fire during the

Figure 2. Network response to stimulus. Population response to three different stimulus shape parameters a~0, 0:5 and 1 in A, B and C,
respectively, are shown in a raster format. The x-axis is time. The stimulus is presented to the coding population at time t~0 (onset signal is at
t = 26.5 ms). Every line shows the spiking activity of a single cell in the population. The cells are ordered according to their functional subpopulation.
At the bottom, lines 1–30, show spiking activity of cells in the excitatory background subpopulation. Lines 31–45 show the onset-response cells firing.
Firing of cells in the coding population are plotted in lines 46–70. Cells in the coding population (cells 46–70) are plotted in an increasing order of
their ‘sensitivity’ from bottom (cell 46 - least sensitive) to top (cell 70 - most sensitive). The spiking activity of cells in the inhibitory population appear
in lines 71–80.
doi:10.1371/journal.pcbi.1000370.g002

Representation of Time-Varying Stimuli
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same gamma cycle; these will be indistinguishable in our binary

representation. Below we show that this insensitivity to exact

spike timing is advantageous in representing time-warped

stimuli.

The representation is robust to moderate time-warp
perturbations

Time warp is a very common perturbation in speech signal. A

desired property of speech representation is robustness to such

perturbations. In order to study the robustness of our represen-

tation we modified the stimulus duration and measured our

Figure 3. The binning procedure. A Population response to
stimulus with shape parameter a~0:9 starting at time t~0 is shown
in a raster format, similar to Figure 2. In our binary representation of the
response, firing of cells in the coding population were binned to time
intervals of single gamma cycles. The boundaries of the bins were
defined by the mean spike times of the inhibitory cell population plus a
4.5 ms - shown by the vertical dotted lines. B Binary representation of
the network response in A. The activity of every cell in the coding
population during the three gamma cycles in which stimulus is
presented is shown by a single row in the matrix. Every row is divided
into three columns that show the firing of the cell during each gamma
cycle in black (fired) and white (did not fire).
doi:10.1371/journal.pcbi.1000370.g003

Figure 4. Confusion matrices in the absence of internal noise.
The confusion matrix for discriminating A three alternatives:
a~0, 1=2, 1 and B nine alternatives: a~0, 1=8, . . . 1 is shown in a
color code. Element (i, j) of the confusion matrix is defined as the
conditional probability that the estimator takes the value aj j~1, . . . nð Þ,
given the stimulus was ai i~1, . . . nð Þ. Every row of the confusion matrix
was estimated by averaging over the different phase relations.
Probability of correct classification is given by the mean of the diagonal
of each confusion matrix is Pc~1 and Pc~0:6 for the three and nine
alternatives, respectively.
doi:10.1371/journal.pcbi.1000370.g004

Figure 5. Discrimination at fine temporal resolution. A Effect of readout resolution on discrimination accuracy. The probability of correct
discrimination Pc in the n alternative forced choice is shown as a function of 1=n. For each n, the probability of correct classification, PC , was
estimated by averaging over the different phase relations. B Confusion matrix in the absence of internal noise for discriminating 33 alternatives:
a~0, 1=32, . . . 1. Every row of the confusion matrix was estimated by averaging over the different phase relations.
doi:10.1371/journal.pcbi.1000370.g005

Representation of Time-Varying Stimuli
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readout performance, keeping the same templates. Figure 7A

shows the quality of representation, in terms of percent correct

classification in the three alternative task, as a function of the

stimulus duration. All network parameters remained unchanged.

The templates were obtained from the network response to 50 ms

stimulus duration, as in previous sections. As can be seen from the

figure, probability of correct discrimination is maximal when the

stimulus duration is 50 ms and decreases as the stimulus duration

is changed. Nevertheless, there exists a large range of durations

45–75 ms in which probability of correct discrimination is well

above chance level.

The type of errors caused by time warping of the stimulus

depends on the specific time stretch. To see this, it is convenient to

further classify errors into three groups: immediate-up, immediate-

down and other. In the n alternative forced choice task, errors in

which stimulus a was estimated to be az1=n a{1=nð Þ were

classified as immediate-up (down). Figure 7B shows the error type

distribution as a function of stimulus duration. As in Figure 7A, all

network parameters remained unchanged and the templates were

obtained from the network response to 50 ms stimulus duration.

From the figure, one can see that immediate-down error rate (blue)

increases when the stimulus duration is increased, whereas

immediate-up error rate (red) increases when stimulus duration

is decreased in the n~3 alternative forced choice task. Thus, error

type follows the direction of time warping.

Figures 7C and 7D show the percent correct and error type

distribution as in Figures 7A and 7B, respectively, in the n~9
alternative forced choice task. Results in the n~9 case are similar

to the n~3. Probability of correct discrimination, Pc, peaks at the

duration used to obtain the templates, 50 ms, as the stimulus

duration is changed, Pc decreases. The immediate-down error rate

is increased when stimulus duration is increased and vice versa for

immediate-up error rate. Similarly, there exists a range of stimulus

durations (of about 45–65 ms) for which probability of correct

classification is well above chance level. However, this range is

smaller for the n~9 case than it is for the n~3 case. This

difference is discussed below.

Figure 6. Confusion matrix without onset signal. The confusion
matrix for discriminating three alternatives: a~0, 1=2, 1 in the absence
of an onset signal is shown in a color code. Every row of the confusion
matrix was estimated by averaging over the different phase relations. It
was estimated by averaging over the different phase relations.
Probability of correct classification is Pc~0:6, compare with Pc~0:97
with onset signal (Figure 4A), chance level is 1/3.
doi:10.1371/journal.pcbi.1000370.g006

Figure 7. Robustness to time warping. A,C Probability of correct classification as a function of stimulus duration is shown for the three and nine
alternative forced choice tasks in A and C, respectively. All network parameters remained unchanged. The templates were obtained from the network
response to 50 ms stimulus duration. B,D Error type distribution for the three and nine alternative forced choice task in B and D, respectively.
Probability of immediate up (down) error is shown in red (blue). Parameters used for the simulations in B,D are the same as in A,C respectively.
doi:10.1371/journal.pcbi.1000370.g007

Representation of Time-Varying Stimuli
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Tradeoff: Resolution of representation and robustness to
time-warp

Robustness to time warp comes at the expense of the resolution

of the representation. This can be seen by comparing Figures 7A

and 7B. When a higher resolution (n~9 alternatives) is required,

the range of durations in which the readout is robust to time warp

is decreased, relative to the lower resolution case (n~3
alternatives), see above. This notion can be further quantified by

studying the RMS estimation error as a function of the amount of

time warp of the stimulus. Figure 8 shows the RMS estimation

error, Da, as a function of the amount of time warp of the stimulus

duration. As can be seen from the figure, for stimulus durations of

50–70 ms the resolution fluctuates around its maximum (Da is

minimal). The resolution decreases (Da increases) as the amount of

time warp increases in its magnitude, both above 70 ms and below

50 ms.

The representation is robust to moderate intrinsic noise
levels

All of the above numerical simulations quantifying the network

ability to represent time varying stimuli were done in a

deterministic model, in the absence of intrinsic noise to the neural

dynamics. For example, every inhibitory cell fired during every

gamma cycle and every excitatory cell in the gamma generating

population fired every other cycle. In a more realistic model

[22,26,27] firing will be sparse and noisy, with oscillations that

appear only on the network level. Thus, one should think of every

cell in our deterministic model as an ‘‘effective cell’’, representing

the firing of a group of sparsely firing neurons. However, intrinsic

noise that may cause spike time jitter, addition or deletion of spikes

can have drastic detrimental effect on the quality of a temporal

code [28,29]. It is therefore important to test the sensitivity of this

representation to intrinsic noise. Figure 9 shows the percent

correct classification as a function of the input noise level for three,

five and nine alternatives (top to bottom). As expected, the

probability of correct discrimination is a monotonically decreasing

function of noise level. Nevertheless, good performance levels are

retained for moderate noise levels. Note, PC for three alternatives

decreased by less than 5%, PC for five alternatives decreased by

23% and for nine alternatives decreased by 33%. This corresponds

to a natural tradeoff of the representation resolution and

robustness to intrinsic noise fluctuations.

Figure 8. Tradeoff: sensitivity verses robustness to time warp.
The RMS error of estimating the shape parameter in the n~32
alternative forced choice is shown as a function of the band of stimuli
durations.
doi:10.1371/journal.pcbi.1000370.g008

Figure 9. Probability of correct classification as function of the noise level for 3, 5 and 9 alternative forced choice, top to bottom.
Noise level is shown as the independent random Poisson noise mean rate (per second) added to every cell’s input. For every stimulus and every noise
level neural responses were simulated for 20 different onset times and for every onset time for 10 different noise realizations. Neural responses were
then divided, half for the training set to define the templates and half to test the generalization error. Results were further averaged over 100
divisions of training and generalization sets.
doi:10.1371/journal.pcbi.1000370.g009

Representation of Time-Varying Stimuli
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Discussion

Oscillations in the brain have been suggested to play a central

role in various cognitive tasks, including attention [17,18],

navigation [30], memory [31] and motor planning [32]. In the

context of speech processing, oscillations appear naturally, as

almost all models of speech processing use oscillations, a clock

signal or a pacemaker either explicitly or implicitly to take

advantage of the natural hierarchy of timescales in the speech

signal. Empirical findings suggest that oscillations in the auditory

system may play an important role in spoken-language compre-

hension [20,33]. The gamma frequency range (40–90 Hz), in

particular, is widely found in the context of sensory processing

[16–20].

The aim of this paper is to explore the use of oscillations in

creating a representation of a time varying signal whose length is

longer than the oscillation period. Using a family of signals, each in

the shape of a sawtooth, but with different slopes, we have

constructed a code using several gamma oscillations, with a total

time interval about that of the signal. The gamma oscillations

discretize the firing of a population of neurons, leading to a 3-bit

binary representation. The representation of the shape parameter

consists of a list of which cells in the coding population fired during

what gamma cycle.

Typically, cells will fire at most once during the entire

presentation of the stimulus. Hence, stimulus identity can be

estimated by measuring the time interval between the firing of the

onset cells and the firing of the coding cells. Every cell in the

coding population is characterized by its sensitivity to the external

stimulus, e.g., in Figure 2 cells 46–70 in the coding population are

arranged in increasing order of sensitivity. This sensitivity dictates

the firing order of cells in the coding population. Thus, the neural

representation of the shape parameter is not arbitrary, but consists

of natural firing order.

Our representation is sensitive to spike times with a resolution of

a single gamma cycle (Figure 3). This finite temporal resolution

limits the sensitivity with which temporal aspects of external

stimuli can be coded (Figure 4). On the other hand, it provides

robustness to fluctuations that affect the exact spike times. Those

fluctuations include: stimulus variability, e.g., time warping

(Figure 7), as well as intrinsic noise (Figure 9). There exists a

natural tradeoff between the resolution of the representation and

the robustness to fluctuations (Figure 8).

Generality of our findings
In our numerical simulations we made certain choices that are

required to define the system but are not essential for our

qualitative results. We chose to represent the external stimulus by

neural responses that extend over n~3 internal gamma cycles.

The specific choice of n~3 gamma cycles is arbitrary and our

approach could be easily generalized to n~4, 5, . . . cycles. Larger

n values imply that the stimulus can be represented to a finer

resolution. However, finer resolution comes at the expense of

robustness to noise and time-warping perturbations. The neurons

in our simulations follow Hodgkin-Huxley dynamics (see Materials

and Methods below). This choice is also not essential to our main

conclusions. Other choices for the neural dynamics, such as

integrate and fire, may generate representations that are different

in their fine details but still preserve the central qualitative features

reported here. Namely: the oscillations discretize the output,

forming a binary representation that is robust to moderate levels of

noise and time warping perturbations of the external stimulus and

is characterized by a tradeoff of sensitivity and robustness. The

essential features of our network are the architecture of a PING

mechanism for generating the gamma oscillations and the manner

in which the external stimulus interacts with the internal

oscillations.

Speech and hierarchy of nested oscillations
Speech is an important example of a time-varying signal. There

is a natural hierarchy of timescales in speech: phone, diphone,

syllable, word, and sentence. The time duration of phones and

diphones is on the order of a few gamma cycles, while the duration

of a word is roughly that of a theta cycles. Oscillations on different

timescales in the auditory cortex have been shown to be organized

hierarchically: delta modulates theta, theta modulates gamma

[34]. These data support a view of a network with nested

oscillations on different timescales [35–39]. Though a diphone can

be correlated with a beta frequency period or multiple gamma

frequency periods, we chose to explore the role of gamma

frequency oscillations, since gamma oscillations are known to be

prominent in early sensory processing (see, e.g., [16–20]), and to

help produce cell assemblies [40].

The nesting of oscillations has a potential relationship to

robustness to time warping. Empirical studies of speech [41,42] as

well as of birdsong [43] have shown positive correlations in time

warping fluctuations of short speech and birdsong segments. For

example, the degree of time warping of a specific syllable in Zebra

finch song can be predicted, to a large extent, by the degree of

time warping of previous syllables. Similarly, in speech, time

warping fluctuations of nearby short speech segments are

correlated. The correlated time stretch can be predicated by

estimating a ‘tempo variable’, such as the prosody, that varies on a

longer timescale. Such a tempo variable can be used by an

oscillatory network to modulate its oscillation frequency to

compensate for the time warp of the stimulus. The mechanism

that we suggest for the time encoding lends itself naturally to such

a tempo variable, since the PING gamma has increasing frequency

with increased drive; any mechanism that can increase drive with

faster prosody will produce more robustness to time warp

variability of the auditory stimulus. The frequency of a slower

but correlated rhythm, such as theta [44], could act as such a

tempo variable. We note that theta rhythms and gamma rhythms

sometimes covary in their frequencies [45]. The beta frequency

may be associated with the onset signals.

Relation to models of spoken-word recognition and
other temporal patterns

In mainstream models of spoken-word recognition the speech

waveform is processed by a front-end, providing a representation

from which a phonetic transcription is generated. The sequence of

phones recognized is then integrated into a form that results in a

‘pointer’ to a specific item in the lexicon. Phonetic transcription is

usually accomplished by a search within a vocabulary of acoustic

models of the phones. These models are statistical in nature, and

the probabilistic model is acquired by training [46,47]. While such

Hidden Markov Models (HMMs) have shown themselves to be

highly effective, it is reasonable to question certain properties of

their basic structure as a model for biological systems of speech

processing. The conditional independence assumption imposed by

HMMs is a poor model for the dynamics in the speech signal [48].

It is also extremely difficult to model long-range dependencies with

an HMM [49]. Thus, methods which can better model temporal-

spectral dynamics inherent in speech are highly desirable.

Our long-term goal is to use the physiological aspects of speech

processing to improve our understanding of speech representation.

In the work discussed here, a first step in this endeavor, we

quantify how our model represents a cartoon signal mimicking the
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response of one cochlear frequency-band to speech input. Many

difficult questions have to be answered before we can implement

this model as a front-end to a speech recognition system. For

example, what is the discrimination power of the model for more

realistic signals at the input of a single cochlear channel, e.g., for a

set of signals that are different in shape, in duration, in amplitude?

Can our model provide a stable representation with respect to time

scale variations that conform with realistic phonemic variation

(usually not a uniform time warp in nature)? How to synchronize

an onset signal with the signals across several cochlear channels

(with relative time alignment dictated by the speech source)? How

to integrate across all cochlear channels? A system based on the

principles of neuronal processing that answers these questions also

has the potential to create a paradigm shift in the way that speech

is processed by machines.

A closely related model was suggested by Hopfield [5]. The

focus of this model was on readout of the activity of multiple

integrate-and-fire neurons, each of which integrates over time the

time-varying signal for a single ‘‘channel’’. From the perspective of

representing speech, the Hopfield model is complete; it suggests an

architecture, with a subthreshold gamma oscillator at the core, in

which all frequency bands are integrated via a well defined

readout mechanism. Although we do not have a complete system

yet, a comparison can be made between our model and Hopfield’s

for a single frequency-band signal. Hopfield used subthreshold

oscillations to synchronize the firing across channels, forcing the

cells to fire in a ‘‘window of opportunity’’. Though the equations

that embody the model have some memory beyond one cycle, the

memory corresponds to a small negative Lyapunov exponent,

which is also associated with lack of robustness. Thus, it is unclear

how well this performs for a longer time-varying signal. In

contrast, our model is not focused on readout, but on

representation. The oscillations are used to discretize the signal

across several periods, rather than to synchronize many channels.

Spike times are determined by both the endogenous gamma

rhythm and the external input. This mechanism allows the

external stimulus to modulate the frequency of the intrinsic

oscillation, unlike the fixed period in the Hopfield model.

The idea that a stimulus may be coded by a sequence of firings

in discrete epochs has been discussed in the context of olfaction by

Bazehnov et al. [50,51]. There are two central differences between

their work and ours: First, the Bazhenov et al. papers deal with a

set of signals that all have the same temporal properties: they have

a rise time of 100 ms and a decay time of 200 ms, unlike the

sawtooth signals of the current work. Second, in [50,51], the

different signals excite different (possibly overlapping) sets of cells

in the coding population, unlike the signals in the current paper,

which all excite the same set of cells, but have different effects on

them. Thus, the information in the signals is different from that of

the Bazhenov papers and the coding strategy is different, even

though both result in discretization. The differences in strategy are

appropriate for the differences in the kinds of signals to be

encoded: the energy in a given auditory frequency band has a

varying temporal structure across the set of signals, for which a

sawtooth of different shapes provides a characterization. There is

no such structure in olfactory signals.

Possible readout mechanisms
In the current work we did not simulate a neural network

implementation of our readout mechanism. How can our readout

be implemented? The approach taken by Hopfield lends itself to a

simple readout mechanism based on simultaneity. Since our code

has more than one ‘‘bit’’, a more complex readout mechanism is

necessary. There are many suggestions in the literature that might

be modified to work for this example [14,52].

Stimulus identity, in our model, can be estimated by measuring

the time from the firing of the onset cells to the firing of the coding

cell. This could be achieved, for example, by an integrator that

starts integrating time at the onset response and stops integration

at the response of the coding population neurons. Thus, a class of

potential readout mechanisms is that of neuronal integrators. Of

particular interest is a single cell integrator model of Loewenstein

et al. [53] based on slow calcium dynamics in a dendrite of a single

cell. In their model [53], calcium level along the dendrite

transitions from high to low and the location of the transition

point along the dendrite is determined by integration over time of

dendritic inputs. Thus, the firing rate of the cell corresponds to the

time integral of the cells’ dendritic inputs. Readout of a multiple-

bit code might make use of input to multiple dendritic branches.

Other ways to estimate such times use long-term potentiation and

depression [54] and physiological slow conductances [55]. The

above are more appropriate to the current model than the

Tempotron [56], which can distinguish arbitrary time varying

inputs, but is unable to discriminate well temporal features that

extend beyond its integration time.

Directions for future work
In this work we studied a very simplified stimulus model. The

envelope amplitude of a diphone stimulus in a single frequency

channel was approximated by a sawtooth. Incorporating a wider

range of envelope repertoire as well as ranges of amplitude and

several frequency bands will result in a much richer temporal code

and will, most likely, require a larger neural population. However,

this richness of detail may impair the clarity of our results.

Moreover, meaningful theoretical investigation along these lines

requires a better empirical understanding of cortical oscillations

during speech perception to yield the essential constraints for

theory. For example, when studying a model of several frequency

channels we must choose whether or not the onset stimulus and

the oscillations are shared among the different channels. Different

choices may lead to different results, without reason to choose one

over another. The question of whether oscillations are shared is an

empirical question. To pursue in a meaningful manner the

theoretical framework begun in the current work requires

empirical effort to characterize the interaction of neural

oscillations with time varying stimuli across several frequency

channels. The current framework motivates such empirical work

by suggesting ways in which an external stimulus can interact with

the dynamics that encodes the signal.

Materials and Methods

The model system
Model neurons. The neural model for the excitatory (E-cells)

and the inhibitory (I-cells), as well as the gamma-generating

mechanism (see below), used in this study, have been adopted from

the work of Börgers, Epstein and Kopell [22]. Börgers et al. have

used the neuronal model of Ermentrout and Kopell [57], which is

a one-compartment reduction of the Traub and Miles [58] model.

The basic structure of the model is the same for both E- and I-

cells. In the absence of synaptic currents, the equations governing

the membrane potential V takes the form of the classical Hodgkin-

Huxley equation:

C
dV

dt
~ILzIKzINazIozIsyn ð1Þ
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IL~gL VL{Vð Þ ð2Þ

IK~gK n4 VK{Vð Þ ð3Þ

INa~gNam3h VNa{Vð Þ ð4Þ

The terms IL, IK and INa are standard leak, Potassium and

Sodium currents, respectively. Following Börgers et al. (2005) we

have used, m~m? Vð Þ~am Vð Þ= am Vð Þzbm Vð Þ½ � with

am Vð Þ~0:32 54zVð Þ= 1{exp {0:25 Vz54ð Þ½ �f g and bm(V ) =

0:28 27zVð Þ= exp 0:2 Vz27ð Þ½ �{1f g, h~max 1{1:25n,0ð Þ,
and the equation for n is dn=dt~an Vð Þ 1{nð Þ{bn Vð Þn
with an Vð Þ~0:032 52zVð Þ= 1{exp {0:2 Vz52ð Þ½ �f g and

bn Vð Þ~0:5exp {0:025 57zVð Þ½ �. The letters C, V , t, g, and I
denote capacitance density, voltage, time, conductance density, and

current density, respectively. The units used for these quantities are F/

cm2, mV, ms, mS/cm2, and A/cm2, respectively. For brevity, units will

often be omitted from here on. The parameter values of the model are

C~1, gNa~100, VNa~50, gK~80, VK~{100, gL~0:1, and

VL~{67. The term Io represents the baseline DC input current and

the stimulus dependent time-varying current discussed below. The

synaptic input to the cell, Isyn, is discussed below.

In addition to the above mentioned currents, we have

incorporated an M current in the E-cells, by adding the term

Im~gMw VK{Vð Þ ð5Þ

to the right-hand side of Eq. (1), with dw=dt~ w? Vð Þ{w½ �=tM Vð Þ,
w? Vð Þ~1= 1zexp { Vz35ð Þ=10½ �f g, and tM Vð Þ~400/

3:3exp Vz35ð Þ=20½ �zexp { Vz35ð Þ=20½ �f g. For the gamma

and onset populations we have used gm~1, for the coding

population we gm~0:5 was used.

Model synapses. We model the excitatory synaptic

connections to be mediated by AMPA (a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid) receptors (E?E and E?I ),

and the inhibitory by GABAA receptors (I?E and I?I ).

GABAA synapses are modeled by a term of the form

g=NIð Þ
P

sij tð Þ VI{Vj

� �
on the right-hand side of the equation

governing the membrane potential of cell j, where VI~{80,

g~gIE if cell j is excitatory, g~gII if cell j is inhibitory, and the

sum extends over the indices i of the I-cells. The gating variables

s~sij satisfy

ds

dt
~

1ztanh Vpre

�
10

� �
2

1{s

tR

{
s

tD

ð6Þ

with tR~0:5, tD~10, and Vpre equal to the membrane potential

of the presynaptic (i{th) cell. Similarly, AMPA synapses are

modeled by a term of the form g=NEð Þ
P

sij tð Þ VE{Vj

� �
on the

right-hand side of the equation governing the membrane potential

of cell j, where VE~0, g~gEE if cell j is excitatory, g~gEI if cell j

is inhibitory, and the sum extends over the indices i of the E-cells.

The sij satisfy Eq. (6), with tR~0:2 and tD~2.

Model networks. We consider networks of NE E-cells and

NI I-cells. The network architecture is depicted in Figure 1. In all

simulation results, shown in this article, we have used NE~70
E-cells and NI~10 I-cells. Synaptic connectivity is all-to-all with

gII~1, gIE~0:5, gEI~1 and gEE~0. Note that for simplicity we

omitted the E?E interactions. Note that the synaptic strengths

are scaled by NE and NI , as described above in ‘Model synapse’.

The population of E-cells is further divided into three

subpopulations according to their functional role. The functional

role of a cell is determined by its inputs, see Figure 1. Each cell in

the gamma-generating subpopulation (NEgamma~30) receives a strong

baseline current input, IDC~4:5, that is constant in time. Each

onset cell (NEonset~15) receives a constant input current input,

IDC~2:2, in addition to the onset signal, see ‘Model external

stimulus’ below. Cells in the coding population (NEcode~25) receive

an array of constant currents ranging from maximal value of

IDC~2, for the most sensitive cell down by steps of 1=NEcode, in

addition to the external stimulus, see below.

Noise: In some of our simulations, each cell receives an

independent Poisson stream of excitatory postsynaptic potentials

(EPSPs) with a mean frequency of 0–20 Hz, see Figure 9. The

associated synaptic conductance jumps to a maximal value

instantaneously when the presynaptic spike arrives, then decays

exponentially, with a time constant of 2 ms. The rate of the

Poisson noise, v, is constant across cells and in time and serves as a

parameter that characterizes the noise strength.

Model external stimulus. The external stimulus input to the

coding population is modeled by a sawtooth with a peak current of

Ipeak~2 and duration time of T~50 ms. This represents in a

simplified manner the increase and decrease of energy in a single

frequency band during the pronunciation of a diphone. The

sawtooth is further characterized by a single parameter, a[ 0, 1½ �
that measures the time of peak location from the beginning of the

sawtooth, in units of the sawtooth period T . We shall term this

parameter the asymmetry of the sawtooth hereafter. Different

diphones are modeled by different values of a.

The onset signal is modeled by a short rectangular current of

amplitude Ionset~20 and duration of 1 ms that precedes the initial

rise of the sawtooth by 6.5 ms, see Figure 1.

The readout mechanism. The readout used throughout this

paper is based on template matching. Every stimulus was

associated with a binary template of the network response, as in

Figure 3. For a given response, the estimated shape parameter, âa,

was determined by minimizing the distance between the response

and the different templates

âa~arg min
a

D templatea, responseð Þf g ð7Þ

when minimum is not unique, the estimator, âa, is chosen from the

different minima randomly with equal probabilities. The templates

were chosen in the following way. First the population binary

response to the stimulus was averaged. In the absence of intrinsic

noise, response was averaged over different phase relations

between the stimulus onset and the intrinsic oscillation, for every

1 ms. In the presence of noise, response was averaged over 100

trials with different noise realizations and different phases. Then

the the averaged response was clipped to obtain a binary template.

For the distance measure, D, we used the Hamming distance. The

Hamming distance was chosen for its simplicity. Neither the

choice of template nor the choice of the distance measure were

made to optimize the estimation accuracy.

The confusion matrix. Element (i, j) of the confusion

matrix, CM, is defined as the conditional probability that the

estimator takes the value aj j~1, . . . nð Þ, given the stimulus was

ai i~1, . . . nð Þ. Every row of the confusion matrix was estimated by

averaging over different phase relations in the absence of noise, or

over 100 trials with different noise realizations and different phases

in the case of intrinsic noise. Note that the probability of a correct
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classification, Pc, provides a scalar summary of the confusion

matrix: Pc~
1
n

Tr CMf g, where n is the number of alternatives and

Tr{X} denotes the trace of the matrix X.

Numerics. We solve the differential equations using the

Matlab ode23 solver which implements the midpoint method with

with adapting time-step. Initial conditions for neurons in the

gamma-generating population are set to be uniformly spaced on

their limit cycle in the absence of external stimulus. All other cells

are initialized close to their resting point.
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