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Abstract

Characterizing infectivity as a function of pathogen dose is integral to microbial risk assessment. Dose-response
experiments usually administer doses to subjects at one time. Phenomenological models of the resulting data, such as the
exponential and the Beta-Poisson models, ignore dose timing and assume independent risks from each pathogen. Real
world exposure to pathogens, however, is a sequence of discrete events where concurrent or prior pathogen arrival affects
the capacity of immune effectors to engage and kill newly arriving pathogens. We model immune effector and pathogen
interactions during the period before infection becomes established in order to capture the dynamics generating dose
timing effects. Model analysis reveals an inverse relationship between the time over which exposures accumulate and the
risk of infection. Data from one time dose experiments will thus overestimate per pathogen infection risks of real world
exposures. For instance, fitting our model to one time dosing data reveals a risk of 0.66 from 313 Cryptosporidium parvum
pathogens. When the temporal exposure window is increased 100-fold using the same parameters fitted by our model to
the one time dose data, the risk of infection is reduced to 0.09. Confirmation of this risk prediction requires data from
experiments administering doses with different timings. Our model demonstrates that dose timing could markedly alter the
risks generated by airborne versus fomite transmitted pathogens.
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Introduction

Microbial risk assessment models are valuable tools for

estimating the risks associated with exposures to pathogens in

the environment pathogens [1]. Central to this estimate is a dose-

response model that predicts the probability of infection given a

dose exposure magnitude. In current microbial risk assessment

models dose accumulates over time and the probability of infection

is based on the total accumulated dose over that period of time [2–

4]. This assumes that each pathogen particle carries a risk of

infection that is independent of when other pathogens have

arrived to a host; i.e., three exposures to dose X generate the same

total risk as one exposure to a 36dose. We put forth an alternative

dose response model that assumes the current capacity of immune

effectors to control an arriving pathogen should be affected by 1)

how many effectors are occupied fighting previously or simulta-

neously arriving pathogens, 2) how many effectors have been

depleted in fighting previously arriving pathogens, and 3) how

many effector reinforcements have arrived due to usual effector

turnover rates or due to a stimulus from prior pathogen exposure.

If dose-timing effects arise from such immune effector dynamics,

then infection-risk calculations that do not take these dose-timing

effects into account could lead to errors. For example, errors could

arise in models of influenza transmission as follows. Pathogens

arriving to a host via aerosols do so more frequently but at lower

doses than pathogens arriving via hand or fomite mediated

inoculations. Models of influenza transmission that do not account

for dose-timing effects, such as the model by Atkinson and Wien

[4], might misdirect influenza control resources to masks from

hand hygiene. Models that assume independent single dose effects

will require more extreme cleaning to reduce risks to acceptable

levels than models capturing immune effects on dose timing.

Evaluating the potential importance of such dose-timing effects

is difficult for two reasons. First, immune control of pathogens is

complex; not enough detailed knowledge regarding that complex-

ity is available to provide a high degree of confidence in a-priori

causal model predictions. Second, there is almost no direct

observational data documenting the presence or absence of dose-

timing effects. Although various studies have given pathogen

exposure doses over time [5–10], only Brachman et al. [11], has

been conducted in a manner that allows one to calculate risks for

comparable doses administered over different temporal windows.

In this paper we have taken an approach intended to stimulate

science that will address both of these issues. We develop a simple

model that illustrates the need to generate new data that can

describe dose-timing effects while at the same time providing a

base upon which to build more realistic models that incorporate

more data and theory on immunity. Our model addresses

immune control of pathogens between the time pathogens arrive

at a host and the time they are either eliminated or have

multiplied enough so that an acquired immune response will be

needed for control.
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We make our model general enough to capture dynamics of

pathogen control that might arise from established antibodies and

T-cells, macrophages, polymorphonuclear leukocytes, plasma

cells, dendritic cells, complement cascades, chemokines, interleu-

kins, interferons, toll like receptors, and other diverse elements

affecting immunity. But we lump all these mediators of pathogen

control into a highly abstract entity we label as immune effectors.

We assume that the dynamic effects of limited immune effector

numbers are similar whether the limitation arises from immune

effectors being occupied with previously arrived pathogens or from

prior consumption of immune effectors in their process of killing

pathogens. Therefore we only model the latter source of immune

effector limitations. The resulting model is one where any single

pathogen always has some chance of initiating an infection but the

risk of infection associated with each additional pathogen exposure

can markedly increase at higher pathogen doses given over short

temporal windows. The exact dynamics of our model will vary as

realistic details are added to it. Our goal here is simply to illustrate

the importance and inevitability of immune mediated dose-timing

effects so as to stimulate further empirical and theoretical work.

The structure of the paper is as follows: in the methods section

we describe the Cumulative Dose model and analyze its dynamics.

In the results section we use the Cumulative Dose model to fit

experimental data assuming a fixed temporal exposure window to

simulate the archetypical single dose experiment of dose-response

trials. Using the estimated model we show the effect of changing

the length of the temporal exposure window. Finally, the

conclusions and future research are presented in the discussion

section.

Methods

Cumulative Dose Model
The model is based on a stochastic population of individual

pathogens and immune effectors. Since the focus of our analysis is

how small populations of pathogens either die out or lead to

infection initiation, we cannot rely on the mean-field solution

provided by the deterministic framework [12–14].

The state of the system is defined by the pair (I , P) representing

the number of immune effectors and the number of pathogens, in

any single host, respectively. The system is defined by the following

set of state transitions:

I ,Pð Þ DCCA
aI zPlI

Iz1,Pð Þ ð1Þ

I ,Pð Þ DCCA
IcI zPIdI

I{1,Pð Þ ð2Þ

I ,Pð Þ DCCA
aPzPhP

I ,Pz1ð Þ ð3Þ

I ,Pð Þ DCCA
PIdP

I ,P{1ð Þ ð4Þ

The number of immune effectors I can increase at: 1) a rate aI ,

which models the constant arrival of immune effectors regardless of

the current state of the immunological system; and 2) a rate PlI ,

which models the recruitment of immune effectors in the presence

of pathogens. This term is intended to reflect cytokine induced

recruitment of remote immune effectors to a pathogen invasion site

and not acquired immunity. We assume that the relative endpoints

of infection takeoff or pathogen elimination are reached before an

acquired immune effect comes into play. Immune effectors decrease

either at a natural death rate cI , or at a mass-action deactivation

rate due to the encounter with pathogens PIdI .

The number of pathogens P can increase by reproduction at a

rate PhP or by arrival during the inoculation period at a rate aP.

Here hP represents the net reproduction rate that aggregates birth

and death rates. Pathogen numbers decrease due to interaction

with immune effectors as a mass-action deactivation process at the

rate PIdP.

Dynamics of the Cumulative Dose Model
The initial state of the system is set to I ,Pð Þt~0~

aI

cI

,0

� �
. No

chronic low-level exposures or remaining pathogens from prior

exposures are considered. The system starts from the clean state:

no pathogens and the stationary number of immune effectors in

the absence of pathogens. The inoculation process is characterized

by the dose of exposure De and the temporal exposure length Te;

i.e., the dose that is composed by De pathogens is inoculated into

the host during a period of Te time units. Therefore, the arrival of

external pathogens is modeled as the rate aP~
De

Te

during the

inoculation period. Once inoculation has finished the pathogen

arrival rate becomes zero. Thus, the rate aP depends on time and

is defined as

aP~
De

Te
tƒTe

0 twTe

(

During tvTe, the pathogens, De arrive over a continuous time

in the presence of the immunological response to those pathogens.

Once the inoculation has finished, only the immunological

response remains. We set the unit of time to an hour. That keeps

us in the range where we think exposure fluctuations are making a

difference and out of the range where adaptive immune system

feedbacks come into play.

Due to stochastic effects and the fate of a relatively small

population of pathogens and immune effectors, the same

Author Summary

We model the relationship between the temporal patterns
of pathogen exposure and infection take off within people.
Since different routes of transmission (e.g., airborne versus
surface transfer routes) may result in different temporal
patterns of exposure, this model helps to better compare
the risks of transmission from one person to another
through these different routes. Previous models assumed
that the risk of infection is the same whether pathogens
are inoculated all at once or over one day. Our model, in
contrast, captures how one pathogen affects the potential
of immunity to keep concurrently or subsequently arriving
particles from initiating an infection. Since the pattern of
timing of airborne and surface spread pathogen arrivals
differ, our model shows that each airborne pathogen could
carry less risk than each surface transmitted pathogen.
Unfortunately, data to fully fit our model are not currently
available. Therefore new experiments will have to be
conducted where doses are given across different tempo-
ral windows.

Infectious Dose Timing Effects
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inoculation dose De administered in the same time frame Te does

not necessarily have the same outcome. Each replication (i.e. run)

of the model corresponds to a dose trial on a new subject. All the

numerical results are the average of 104 runs of the Cumulative

Dose model implemented with the Gillespie algorithm [15] using

C. The criteria to stop the simulation is either extinction of

pathogens after the inoculation period (P~0, twTe) or pathogens

diverging to a very large number, Pwmax 204, 5|De

� �
&I~0,

corresponding to no infection and infection respectively. The

probability of infection for a pair De, Tef g is the proportion of

simulations that diverge to a large number as opposed to

equilibrating to the state of no pathogens.

Figure 1 illustrates the stochastic process effects on pathogen

dynamics given a fixed time of exposure for different inoculation

doses. The main plot in this figure is the time course of the number

of pathogens for 100 independent dose trials given a dose of 60

pathogens administered over one unit of time. The number of

pathogens steadily grow during the inoculation period, from 0 to

1, since the rate of arrival of pathogens (aP~
De

Te

) is much faster

than immunological killing of pathogens. Once the entire dose has

been inoculated at time = 1, the external arrival of pathogens stop

(aP~0) and the immunological response dominates the rest of the

dynamics. In this particular case, the population of pathogens

becomes extinct in 33 cases out of 100, thus, the probability of

infection given a dose of 60 pathogens over 1 unit of time is 0.67.

Analogously, for a dose of 25 the probability of infection is 0.02

and for a dose of 90 the probability of infection is 0.98 (insets of

Figure 1).

Temporal Exposure Length
Figure 1 illustrates how the Cumulative Dose model yields

higher probability of infection when the inoculated dose is

increased. The length of time over which the dose is administered,

Te, also plays a crucial role in the probability of infection. At one

extreme where all the pathogens were inoculated at once (Te?0),

the immune system has no time to react, and the initial state of the

system is I , Pð Þ~ aI

cI

, De

� �
. From this initial state, the immuno-

logical response dynamics determines the fate of the pathogens:

either extinction or unbounded growth of pathogens diverging

towards infinity.

For Tew0, however, the initial state after all pathogens have

been inoculated (t~~Te) is not the expected I , Pð Þ~ aI

cI

, De

� �
,

but rather a distribution of probabilities over the space of possible

Figure 1. Evolution of the number of pathogens over time for a characteristic parameter set hP, dP, aI, ªI, dI, lIf gf g~
f0:15, 0:01, 0:4, 0:01, 0:005, 0:05f gg. Each line represents an individual replicate with the same parameter set (100 in total). The fraction of replicates
in which the number of pathogens diverge towards infinity, as opposed to going extinct, is equivalent to the probability of infection (pinf) for the
dose De~60 (main graph, De~25 and De~90 for the insets a) and b) respectively). Temporal exposure length is fixed at Te = 1 hour. Probability of
infection is 0.67, 0.02 and 0.98 for the main graph, the inset a), and the inset b) respectively.
doi:10.1371/journal.pcbi.1000399.g001
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states. Figure 2 shows the stochastically determined distribution of

system states at the point in Figure 1 where the exposure time has

just ended. It illustrates the effect of different temporal exposure

lengths, ranging from Te~0:1 (six minutes) to Te = 50 hours.

Panel B shows this point of time for the settings in Figure 1. The

longer the exposure length, the larger will be the variance in the

distribution of probabilities. Furthermore, a longer exposure

length also affects the average state after inoculation. Both the

pathogen levels and the immune effector levels decrease from the

instantaneous inoculation values as the exposure window length

increases. But the balance between these increasingly favors the

immune effectors. Longer temporal exposure lengths dilute the

arrival rate of external pathogens, aP~
De

Te

. Consequently the

immunological response has more time to neutralize the existing

pathogens before the arrival of new pathogens. On the other hand,

as the temporal exposure lengths decrease, an increased number of

immune effectors are consumed in killing pathogens, leading to a

higher probability of unbounded growth of pathogens, and thus

infection.

For Te~0:1 and Te~1:0 the average state after inoculation is

very close to the ideal instantaneous inoculation, I , Pð Þ~ 40, 60ð Þ.

To better understand the dynamics once inoculation is over, we

included the numerically calculated separatrix as if the system

were deterministic (red-dashed line in Figure 2). Although this

separatrix is only truly valid for the analogous deterministic model,

it indicates the probable fate of different initial states. For the

deterministic system, the separatrix separates those states that go

to infection from those that do not (see subsection on Deterministic

Analysis). As temporal exposure length increases, the distribution

of probabilities gravitates towards the space of states that go to no-

infection (below the separatrix).

Deterministic Analysis
Further understanding of the stochastic dynamics of the

Cumulative Dose model can come from a deterministic descrip-

tion of the system that assumes a continuous large number of

immune effectors and pathogens. We focus our analysis on the

dynamics after the inoculation period, so aP is set to 0 and

removed from the equations. This analysis on the deterministic

version helps illustrate the interactions between pathogens and

immune effectors that result either in infection or extinction of

pathogens.

Figure 2. State probability distribution at the end of inoculation (t~Te) for a dose of De~60 and temporal exposure length of
Te~A) 0.1 h, B) 1.0 h, C) 10.0 h and D) 50.0 h. The distribution of probabilities if Te~0 would be I , Pð Þ~ 40, 60ð Þ given the parameters of the
system are hP, dP, aI , cI , dI , lIf g~ 0:15, 0:01, 0:4, 0:01, 0:005, 0:05f g. The dashed white line is the separatrix of the deterministic version of the
model (see subsection Deterministic Analysis); if the system were deterministic once inoculation has been completed, the states that fall below the
separatrix would end up in no infection, and the states above would end up in infection.
doi:10.1371/journal.pcbi.1000399.g002
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The stochastic system is fully described by a multivariate master

equation [16], which can be expanded in a deterministic

formulation known as macroscopic law. The deterministic version

of the cumulative dose model is as follows,

dI

dt
~aIzPlI{IcI{PIdI ð5Þ

dP

dt
~PhP{PIdP ð6Þ

where P and I are continuous variables of the population of

pathogens and immune effectors respectively. The fixed points of

the deterministic version of the cumulative dose model are

s�~
aI

cI

, 0

� �
where the pathogen has been eliminated and

immune effectors are in equilibrium and

r�~
hP

dP

,
hPcI{aI dP

lI dP{hPdP

� �
where the forces of pathogen growth

are balanced by immune dynamics affecting pathogen death. Note

that in the stochastic analyses of this model as in Figure 1, this

point is never reached. Instead simulations are terminated when

growth takes off toward this point. A simple analysis of the stability

of the fixed points reveals the space of parameters in which the

solution is well-defined.

The point s� is the equilibrium of no infection—the equilibrium

of the system in the absence of pathogens. When the system

gravitates towards s� the immunological system prevents patho-

gens from growing, resulting in pathogen extinction and therefore

no infection.

To evaluate the stability of the fixed point, we formulate the

Jacobian matrix of the system of equations on s�.

J~
{cI{PdI {IdIzlI

{PdP hP{IdP

� �
ð7Þ

For a stable equilibrium, both Eigenvalues of the Jacobian

matrix need to be negative, or equivalently, the matrix must have

a negative trace and a positive determinant. For the trace of the

Jacobian to be negative the condition
hP

dP

v

aI

cI

zcI must be true.

Since the positive determinant condition,
hP

dP

v

aI

cI

, is more

restrictive it subsumes the condition for a negative trace.

The second fixed point r� is only well-defined when both I and

P are positive, since negative number of pathogens and immune

effectors are impossible. The number of pathogens is only positive

when sign hPcI{aI dPð Þ~sign lI dP{hPdIð Þ. Given the condition

of a positive determinant,
hP

dP

v

aI

cI

, the sign can only be negative,

consequently
lI

dI

v

hP

dP

. Therefore, the system is well defined — i.e.

has a stable equilibrium at no infection and with both fixed points

in the positive quadrant — only when the following condition 8 is

met

li

di

v

hp

dp

v

ai

ci

ð8Þ

Once we determine the stability of s� we need to characterize

the second fixed point r�. After some basic algebra, the

determinant of the Jacobian matrix for r� can be expressed as

follows: {
hPcI{aI dP

lI dP{hPdI

� �
hPdI{dPlIð Þ. Given condition 8, both

terms are positive, which makes the determinant negative. As a

result the Eigenvalues of the Jacobian are real with different signs.

Therefore, r� is a saddle point as shown in Figure 3.

The vector field in Figure 3 illustrates the dynamics of the

cumulative dose after the inoculation period. The probability of

being in a given state after inoculation is shown in Figure 2. If the

system were deterministic then we could anticipate the probability

of infection by summing the probability of those states below the

separatrix. This does not hold for the stochastic Cumulative Dose

model. Nonetheless, the deterministic vector field, shown in

Figure 3, serves as an approximate description of what happens in

the stochastic model.

For instance, let us take the probability distribution of states when

centered at I , Pð Þ~ 40, 60ð Þ, i.e., De~60 and Te~1. The typical

dynamic results in the decrease in number of pathogens and immune

effectors, gravitating towards the saddle point r�, from which it will

bifurcate to the stable point of no-infection s�, or an unbounded

growth of pathogens. In the case of De~60 and Te~50, most of the

states are already very low in pathogens, and consequently the

number of immune effectors will eradicate the few pathogens still

existing and go to the stable equilibrium of no infection. However,

there is a non-zero probability, albeit small, of being in a state with a

large number of pathogens and a small number of immune effectors.

In this case, stochastic perturbations aside, the pathogens will keep

multiplying producing infection in the host.

Results

Analysis of Exposure Dose Risks
In this section, we fit empirical data on multiple pathogens for

the single event inoculation scenario. Next, we extend our analysis

to incorporate different temporal exposure windows and patterns

of inoculation.

Fitting experimental dose-response data. We selected

three different pathogen datasets: 1) poliovirus [17], 2)

Cryptosporidium parvum [18] and 3) rotavirus [19]. Analyses of

these three datasets are found elsewhere [20].

Several statistical models based on the empirical data have been

proposed to describe dose-response data. The most common

models are the Exponential model [1]:

Pinf ~1{e{mr ð9Þ

where m is the inoculation dose and r is the per pathogen risk, and

the Beta-Poisson model [21]:

Pinf &1{ 1z
m

b

� �{a

ð10Þ

where m is the inoculation dose and a and b are parameters of the

beta distribution that describes the host pathogen interaction.

Other models such as Log-Logistic and Weibull have been used,

but not as commonly.

For parameter estimation we used a classical genetic algorithm

[22]. The fitness function of the genetic algorithm was the mean

square error (MSE). We fixed the exposure time (Te) of our

inoculated dose (De) to 1.0 time units in order to emulate the

empirical dose-response experiments in which the dose is

inoculated in a single shot; i.e., a very short exposure. We present

the best fitting curves and discuss their limitations in the subsection

‘‘The Effect of Temporal Exposure Length’’. Then, given these

Infectious Dose Timing Effects
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best fitting parameter values, we present the effect of different

temporal exposure windows on the final probability of

infection.

Poliovirus
The first empirical dataset to which we apply the Cumulative

Dose model is Poliovirus type 1 [17]. The cohort for this

experiment was 32 2-month-old infants. Inoculation was oral.

Figure 4 and Table 1 show the fit alongside a fit to the Exponential

model (EM) according to [18].

Cryptosporidium
The cohort for the Cryptosporidium parvum study [18] was 35

healthy subjects (12 men and 17 women, age range between 20

and 45 years). The strain was an isolate from a calf and the

inoculums were orally administered via capsules. Figure 5 and

Table 2 show the fit alongside a fit to the Exponential model (EM)

according to [20].

Rotavirus
Finally, we tested the Cumulative Dose model against a dataset

for Rotavirus [19].

The cohort for rotavirus was 62 adult males, 18 to 45 years old.

The inoculation was oral. Unlike the previous dose-response

empirical datasets, neither the Cumulative Dose model nor the

Exponential model produce a good fit. The Beta-Poisson model

(BP) was statistically a better fit than the Exponential model [20].

Both the Exponential and the Cumulative Dose model increase

too rapidly in relation to the probability of infection of 1; i.e. these

models cannot maintain a non-zero or non-one probability of

infection for a dose range of several orders of magnitude.

Conversely, the Beta-Poisson model does not suffer from this

limitation since its convergence to 1 is slower, providing a wider

range of variance (Figure 6 and Table 3).

A possible explanation of the poor fit of the Cumulative Dose

model is the high degree of acquired immunity to Rotavirus and

the changing serotype profile circulating within populations [23].

Unlike the polio virus study, the rotavirus cohort consisting of

adults (18–45 years old), is likely to have been exposed multiple

times to various rotavirus serotypes [24]. Such heterogeneity in

susceptibility flattens out dose response curves beyond what can be

captured by exponential dose response models or this Cumulative

Dose response model.

The Effect of Temporal Exposure Length
In the previous subsections we fixed temporal exposure length,

Te, to 1 hour, and assume that this is the time corresponding to

the single shot inoculation, analogous to existing experimental

dose-response trials. In this section, we present simulations for a

range of different temporal exposure lengths, illustrating how

longer times affect the dose response curve. The model is set to the

parameters that provided an optimal fit for a temporal exposure

length of Te~1:0.

Figure 7 shows the dose-response curves for Poliovirus type 1 for

different lengths of exposure for the estimated parameters used in

Figure 4 to fit the experimental data for the condition

Te = 1.0: hP, dP, aI , cI , dI ,lIf g~ 1:0151,1:0431,16:8190,0:7831,f
1:7881, 1:4041g. As the exposure length increases, the probability of

Figure 3. Vector field plot of the deterministic cumulative dose model for a characteristic parameter set hP, dP, aI, ªI, dI, lIf gf g~
0:15, 0:01, 0:4, 0:01, 0:005, 0:05f gf g. To avoid overlaps of the vectors they have been normalized. The solid red lines are the nullclines, the

intersections of the nullclines are the fixed points s� (stable pathogen elimination equilibrium) and r� (unstable saddle point equilibrium). The dash
black line is the separatrix that separates those configurations that will go to non-infection equilibrium, s� , and those that will diverge in the number
of pathogens resulting on infection. The separatrix has been calculated numerically.
doi:10.1371/journal.pcbi.1000399.g003

Infectious Dose Timing Effects
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infection decreases dramatically. Therefore, assuming that the unit of

time is one hour, and this is the equivalent for a dose that is

administered in a single shot, the probability of infection generated

by the Cumulative Dose model for a dose of De of 90 pathogens

administered in one hour is 0.82. If the dose were administered not

in one hour, but uniformly over ten hours the probability of

infection would be 0.18. If the dose were administered over fifty

hours the probability of infection would be reduced to 0.0001. To

obtain the same probability of infection for a ten hours inoculation

period instead of one, we would require a dose of 139 pathogens

instead of 90.

Because data on the impact of temporal patterns of inoculation

are currently not available, a model with dose-time dependence

such as ours is not identifiable [25]; i.e., the model can be fit to

existing single dose empirical data with many different parameters

sets. For example, in Figure 8 we show model simulation results for

Cryptosporidium parvum for two different parameter sets. Both

parameters sets have a similar fit to the Cryptosporidium parvum

dataset when Te~1:0 (mean square error using S and R is

3.561023 and 9.761023 respectively). For values of Tew1,

however, the dose response relationships of the two parameter sets

diverge. Parameter set S is much less sensitive to exposure time

Figure 4. Dose-response curves based on the Exponential Model (EM) and the Cumulative Dose model (CD) compared to the
experimental dataset for Poliovirus type 1 (squares). The estimated parameters are r̂r~9:0|10{3 for the Exponential model [3] and
hP, dP, aI , cI , dI , lIf g~ 1:0151, 1:0431, 16:8190, 0:7831, 1:7881, 1:4041f g for the Cumulative Dose model.

doi:10.1371/journal.pcbi.1000399.g004

Table 1. Probability of infection from experimental data for Polivirus type 1 (Pinf ) compared to the probability of infection based
on the Exponential model (EM) and the Cumulative Dose model (CD).

Dose No. of subjects No. Infected Fraction Infected Pinf EM Pinf CD Pinf

7.0 1 0 0.0 0.0617 0.0

16.0 2 0 0.0 0.1355 0.0

27.0 2 0 0.0 0.2178 0.0062

42.0 1 0 0.0 0.3176 0.0831

50.0 6 3 0.50 0.3656 0.1840

55.0 3 1 0.333 0.3938 0.2582

65.0 6 0 0.0 0.4465 0.4523

80.0 1 1 1.0 0.5171 0.6992

90.0 4 3 0.75 0.5591 0.8189

160.0 3 3 1.0 0.7668 0.999

210.0 2 2 1.0 0.8521 1.0

280.0 1 1 1.0 0.9218 1.0

The estimated parameters are r̂r~9:0|10{3 for the Exponential model [3] and hP, dP, aI , cI , dI , lIf g~ 1:0151, 1:0431, 16:8190, 0:7831, 1:7881, 1:4041f g for the
Cumulative Dose model.
doi:10.1371/journal.pcbi.1000399.t001
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than R due its slower dynamics. Using parameter set R, pathogens

proliferate faster, are being eliminated by each immune effector

more quickly, are recruiting fewer immune effectors, and are

eliminating immune effectors at a slower rate. On the other hand,

using parameter set R, the natural rate of turnover of immune

effectors is more rapid. We cannot argue at this point which is the

most plausible configuration since identifiability cannot be

resolved without data from dosing trials for different exposure

lengths.

The Effect of Dosing Patterns over the Exposure Window
In this section we relax the assumption that pathogens are

inoculated at a fixed rate. We allow variation both in dose

magnitude and length of exposure time, in order to capture a more

realistic exposure scenario.

The temporal pattern of inoculation of pathogens within a host

depends both on the behavior of the host and the contamination of

the environment the host interacts with. For instance, a susceptible

host in a venue contaminated with influenza will be exposed to

pathogens from air and fomites. However, the temporal patterns of

exposure for these two modes of transmission are different. The host

is likely to receive a small dose with every breath when breathing

contaminated air. In fomite mediated transmission, however, the

touching of a mucous membrane with contaminated fingers, for

example, is likely to transmit a larger but less frequent dose.

To illustrate this effect we devised an experiment where both

the total inoculated dose De and the exposure time length Te are

fixed. The only parameter that varies is the number of inoculation

events, Fi, which ranges from 1 to the total dose De. Consequently,

once the number of inoculations events is determined, the dose

Figure 5. Dose-response curves based on the Exponential Model (EM) and the Cumulative Dose model (CD) compared to the
experimental dataset for Cryptosporidium parvum (squares). The estimated parameters are r̂r~4:005|10{3 for the Exponential model [30]
and hP, dP, aI , cI , dI , lIf g~ 2:1721, 1:7971, 2:8020, 0:9570, 2:2681, 2:7131f g for the Cumulative Dose model.
doi:10.1371/journal.pcbi.1000399.g005

Table 2. Probability of infection from experimental data for Cryptosporidium parvum (Pinf ) compared to the probability of
infection predicted by the Exponential model (EM) and the Cumulative Dose (CD) model.

Dose No. of subjects No. Infected Fraction Infected Pinf EM Pinf CD Pinf

34 5 1 0.2 0.1273 0.0848

108 8 3 0.375 0.3511 0.3173

313 3 2 0.6667 0.7145 0.7421

504 6 5 0.8333 0.8671 0.9065

1129 2 2 1.0 0.9891 0.9972

11460 3 3 1.0 1.0 1.0

113900 1 1 1.0 1.0 1.0

1139000 1 1 1.0 1.0 1.0

The estimated parameters are r̂r~4:005|10{3 for the Exponential model [30] and hP, dP, aI , cI , dI , lIf g~ 2:1721, 1:7971, 2:8020, 0:9570, 2:2681, 2:7131f g for the
Cumulative Dose model.
doi:10.1371/journal.pcbi.1000399.t002
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inoculated in each event is De

Fi
and the rate at which inoculation

occur is Fi

Te
.

Figure 9 shows the results of this experiment where the same

parameter sets are used as in Figure 8. The pathogen is

Cryptosporidium parvum, and the same two different parameters sets,

S and R, are used to inform the cumulative dose model. The total

dose inoculated is set to De~300 and the temporal exposure

length is set to Te = 120.0 hours.

For both parameter sets S and R we observe the same behavior:

infectivity decreases as the frequency or number of inoculations

events increases. The temporal pattern more likely to be associated

with fomite transmission (low frequency and high dose, Figure 9.B)

is more likely to produce infection than the patterns associated

with airborne transmission (high-frequency and low dose,

Figure 9.C) .

For parameter set R, the probability of infection if the dose is

inoculated with a single exposure (Figure 9.A) is 0.752. The same

dose inoculated over 4 events, where each event is one fourth of

the total dose (Figure 9.B), reduces the probability of infection to

0.443. In addition, if the dose is inoculated over 50 events

(Figure 9.C) the probability decreases to 0.111. For parameter set

S, the reduction of the infection probability is less pronounced:

0.740, 0.676 and 0.601 for 1, 4 and 50 inoculation events

respectively.

Figure 6. Dose-response curves based on the Exponential Model (EM), the Beta-Poisson model (BP) and the Cumulative Dose
model (CD) compared to the experimental dataset for Rotavirus (squares). The estimated parameters are r̂r~1:0|10{1 for the Exponential
model, âa, b̂b

n o
~ 0:253, 0:422f g for the Beta-Poisson model [31] and hP, dP, aI , cI , dI , lIf g~ 7:499, 2:811, 11:621, 3:490, 2:823, 7:512f g for the

Cumulative Dose model.
doi:10.1371/journal.pcbi.1000399.g006

Table 3. Probability of infection from experimental data for Rotavirus (Pinf ) compared to the the Exponential, Beta-Poisson and
Cumulative Dose models.

Dose No. of subjects No. Infected Fraction Infected Pinf EM Pinf BP Pinf CD Pinf

961023 5 0 0.0 0.0009 0.0053 ,0.001 (*)

961022 7 0 0.0 0.009 0.0477 0.0053

961021 7 1 0.1428 0.0861 0.2509 0.0740

9 11 8 0.7273 0.5934 0.5442 0.6175

96101 7 6 0.8571 0.9999 0.7428 0.9999

96102 8 7 0.875 1.0 0.8562 1.0

96103 7 5 0.7143 1.0 0.9197 1.0

96104 3 3 1.0 1.0 0.9551 1.0

The estimated parameters are r̂r~1:0|10{1 for the Exponential model, âa, b̂b
n o

~ 0:253, 0:422f g for the Beta-Poisson model [31] and
hP, dP, aI , cI , dI , lIf g~ 7:499, 2:811, 11:621, 3:490, 2:823, 7:512f g for the Cumulative Dose model. (*) The dose in the original trial was administered in concentrations,

to work with discrete pathogens as required by the Cumulative Dose model, we assumed that the concentration of 961022 is equivalent to 9 pathogens. As a
consequence the concentration of 961023 could not be tested since it is a fraction of a pathogen. The probability of infection for a single pathogen is 1023. This
assumption is only required by the Cumulative Dose model.
doi:10.1371/journal.pcbi.1000399.t003
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In previous sections we showed that longer temporal exposure

lengths decrease infectivity due to the action of the immune

system. In this section, we show that not only the duration of the

exposure matters, but also the way in which pathogens arrive

within that interval can decrease infectivity. These results suggest

that risk assessments based on current dose-response data might be

over-estimating risk of infection. An important corollary is that risk

of infection for a given exposure dose may depend on the route of

transmission based on their differences in the pattern of exposure.

Discussion

We examined a dynamic mechanistic model where immune

system effects generated dose response dependence on the timing

of doses. The specific aspects of our model that generate these

dose-timing effects are: 1) decreases in available immune effectors

because they are being eliminated as they kill pathogens; and 2)

increases in available immune effectors due to both pathogen

dependent and independent recruitment. An additional mecha-

nism resulting in decreases in available immune effectors that is

not included in our model could be the time of immune effector

engagement with pathogens in the killing process. The dose-timing

effects we illustrate would be absent in a model where some

effector like a T-cell instantaneously kills pathogens or pathogen

generating cells, where no killing capacity is lost with each kill, and

where effector dynamics are not otherwise altered by encounters

with pathogens. Any such model, however, is highly unrealistic,

and therefore we conclude that the dose-timing effects presented in

our model could be important and warrant further study.

Dose-timing effects have implications for microbial risk

assessment, for infection transmission system modeling, and for

the evolution of emerging pathogens. Considering a microbial risk

assessment example, the implications of our findings suggest that

exposure routes with different dose-timing dynamics could have

different risks and therefore result in different clean up protocols

for contamination events such as a norovirus outbreak or a

Katrina-like disaster. Dose timing could, therefore, affect decisions

on which venues to close or what the total dose that workers would

be permitted to accrue during a cleanup operation.

Considering modeling infection transmission, the standard

approach is to define a contact and a transmission probability

per contact while the physical route of transmission is ignored.

Modeling the physical route of transmission is important when it is

Figure 7. Predicted effects of varying exposure times (Te) when inoculated with Poliovirus type 1. Parameters are defined as stated in
Figure 4.
doi:10.1371/journal.pcbi.1000399.g007

Figure 8. Predicted effects of varying exposure times (Te) when
inoculated with Cryptosporidium parvum. The top graph comes
from simulations using the parameter set defined in Figure 5. The
bottom graph comes simulations using the parameter set
R~ hp, dp, ai , ci,di, li

� �
~ 4:4901, 2:2761,7:4790, 1:2570,0:4241, 0:7871f g.

doi:10.1371/journal.pcbi.1000399.g008
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necessary to specify how much transmission is taking place in

particular public venues and when specifying which control

actions in these venues will reduce transmission. When different

routes have different temporal exposure patterns, we demonstrate

here that there is considerable potential for immune system effects

to alter the ratio by which airborne transmitted and hand-fomite

transmitted pathogens generate new infections. If we had data on

infection risks under different dose-timing patterns, we could say

more precisely how much difference in risk there might be from an

airborne and a hand-fomite mediated pathogen. Unfortunately

such data is lacking.

The evolution of emerging infection implications derive from

the route of transmission effects just discussed. When pathogens

first jump species, they are likely to encounter strong innate

immune responses to which they must evolve some escape

strategy. That means very high transmission doses will be required

to sustain transmission and that low dose exposure over longer

times such as occurs with airborne transmission will be the most

unlikely to be effective in transmitting infection. But, as escape

from innate immune responses evolves, the balance could begin to

favor airborne transmission which might be more effective in

disseminating infection.

We do not have enough dose timing data for any infection to

evaluate either the microbial risk assessment implications, the

infection transmission system implications, or the emerging

infection evolution implications. Any data providing indications

of the magnitude of dose-timing effects generated by any type of

immunity to any agent would provide an important first step that

would at least indicate what range of effects might be expected.

Animal studies could compare the risks associated with a single

instantaneously delivered dose with the same dose magnitude

delivered over extended periods of time. Measurements of specific

immune effector dynamics, such as interferon gamma [26] would

improve our mechanistic understanding of a cumulative dose

effect and indicate how to refine our models for different animal/

pathogen systems.

The issue of dose-response trial design is crucial for advancing

both quantitative microbial risk assessment and analysis of

population infection transmission systems. Due to the absence of

a prior theoretical framework, there has been no motivation to

conduct dosing trials that take multiple doses and multiple dosing

times into account. Now that the potential effects of dose timing

have been demonstrated and the practical significance of such

measurements for microbial risk assessment and transmission

system analyses is more evident, we hope to see such experiments.

Acknowledgments

We thank John Coffin, Igor Rouzine, and Patrick Nelson for their valuable

comments on early versions of this paper.

Author Contributions

Conceived and designed the experiments: JMP JEE CNH JSK. Performed

the experiments: JMP JEE JSK. Analyzed the data: JMP JEE JSK.

Contributed reagents/materials/analysis tools: JMP JEE JSK. Wrote the

paper: JMP JEE JSK.

Figure 9. Predicted effects of different temporal patterns of exposure when inoculated with Cryptosporidium parvum. The main
figure displays the probability of infection as function of the number of inoculation events. The line with circular markers comes from simulation
results using the parameter set defined in Figure 5, and the line with square markers comes from simulation results using the parameter set
R~ hP, dP, aI , cI , dI , lIf g~ 4:4901, 2:2761, 7:490, 1:2570, 0:4241, 0:7871f g The insets below demonstrate three temporal patterns for three
different patterns of inoculation events: A = 1, B = 4 and C = 50 events respectively. The solid line represents one instance of the 5000 replicas used in
the experiment. The dashed line represents the average of dose inoculated over time.
doi:10.1371/journal.pcbi.1000399.g009
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