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Abstract

A transcriptional regulatory network (TRN) constitutes the collection of regulatory rules that link environmental cues to the
transcription state of a cell’s genome. We recently proposed a matrix formalism that quantitatively represents a system of
such rules (a transcriptional regulatory system [TRS]) and allows systemic characterization of TRS properties. The matrix
formalism not only allows the computation of the transcription state of the genome but also the fundamental
characterization of the input-output mapping that it represents. Furthermore, a key advantage of this ‘‘pseudo-
stoichiometric’’ matrix formalism is its ability to easily integrate with existing stoichiometric matrix representations of
signaling and metabolic networks. Here we demonstrate for the first time how this matrix formalism is extendable to large-
scale systems by applying it to the genome-scale Escherichia coli TRS. We analyze the fundamental subspaces of the
regulatory network matrix (R) to describe intrinsic properties of the TRS. We further use Monte Carlo sampling to evaluate
the E. coli transcription state across a subset of all possible environments, comparing our results to published gene
expression data as validation. Finally, we present novel in silico findings for the E. coli TRS, including (1) a gene expression
correlation matrix delineating functional motifs; (2) sets of gene ontologies for which regulatory rules governing gene
transcription are poorly understood and which may direct further experimental characterization; and (3) the appearance of a
distributed TRN structure, which is in stark contrast to the more hierarchical organization of metabolic networks.
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Introduction

Complex regulatory networks control the transcription state of a

genome and consequently the functional activity of a cell [1]. Even

relatively simple unicellular organisms have evolved complicated

networks of regulatory interactions, termed transcriptional regu-

latory networks (TRNs), to respond to environmental stimuli [1,2].

External signals known to impact transcription in microorganisms

include carbon source, amino acid, and electron acceptor

availability, pH level, and heat and cold stress [2–6]. Mapping

the links between these environmental growth conditions through

signaling networks and ultimately to the resulting transcriptional

response is of primary interest in the study of cellular systems [1].

Consequently, reconstructions of the TRNs of model organisms

are underway [3].

To effectively describe the interconnected functions of the

regulated genes and associated regulatory proteins within a given

TRN, we recently developed a formalism involving a regulatory

network matrix called R [7]. The R matrix represents the

components (extracellular cues, metabolites, genes, and proteins,

including regulatory activators and repressors) and reactions

(regulatory rules) within a transcriptional regulatory system

(TRS). We illustrated how, by using the fundamental properties

of linear algebra, this matrix formalism allows characterization of

TRS properties and facilitates in silico prediction of the

transcription state of the genome under any specified set of

environmental conditions.

Importantly, as previously reported (see [7]), the R matrix is

distinct from existing approaches that use matrix formalisms and

matrix algebra to analyze gene expression data (e.g., see [8–12]),

as it describes relationships governing gene transcription derived

from experiments characterizing how specific inputs regulate the

expression of individual genes (e.g., ChIP-chip assays). In this way,

the R matrix extends previous approaches for characterizing

features of TRNs, including Boolean networks [2,13–16], Bayesian

networks [17], and stochastic equations [18] (see [1] for a review of

the field). By representing the regulatory rules in matrix form, we

can characterize the fundamental subspaces of the matrix (as

described below), which in turn uniquely represent properties of

the TRS that the R matrix contains. Furthermore, by using a

‘‘pseudo-stoichiometric’’ approach as discussed below, the R
matrix representation of a TRN is consistent with, and thus easily

integratable with, related approaches using stoichiometric matrices

to computationally represent the reactions underlying metabolic

and signaling networks [19–22].

To date, this approach for representing and analyzing TRSs has

only been applied to relatively small systems, including the well-

studied four-gene lac operon in Escherichia coli as well as a small 25-

gene prototypic TRS [7]. Although these model systems have been

useful for prototyping studies of the capabilities and behavior of
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the R matrix, a key unanswered question is how this approach

scales to larger, more complex biological systems. Here we present

first steps toward this end by assembling the R matrix for the

genome-scale E. coli TRN, for which regulatory relationships have

been previously characterized [23] and extensive experimental

data (e.g., gene expression datasets) are available [3,24]. To our

knowledge, the work that we present here represents the first R
matrix-based model of a genome-scale TRS, and this work has

enabled us to gain important insights into the behavior of the R
matrix at a larger scale, challenges associated with the scale-up, as

well as the underlying biology of E. coli transcriptional regulation.

Specifically, we derived R directly from a previously developed

genome-scale model of E. coli in which transcriptional regulatory

rules were overlaid on a constraint-based model of metabolism

[23]. This integrated transcriptional regulatory-metabolic model is

well-suited for these initial genome-scale R matrix efforts as

Boolean regulatory relationships are already defined and the

behavior of this model has been well-studied using constraint-

based analyses [23,25]. To validate our R matrix analysis, we

compared the expression states that we predicted for various

environmental growth conditions with available gene expression

data (as well as with predictions from the original Boolean model).

We also explored the fundamental subspaces of a related matrix

R* representing the complete E. coli TRS (to be defined below) to

describe key systemic properties, including new hypotheses about

network structure. Ultimately, this work yields an understanding of

how the E. coli transcriptional regulatory program functions as a

whole and demonstrates the utility of the regulatory network

matrix formalism in studying transcriptional regulatory systems at

the genome scale moving forward.

Methods

We formulated a regulatory network matrix R for the genome-

scale TRN of E. coli. Here, we summarize how we constructed the

R matrix representing the E. coli TRN, sampled the space of

possible environments for the TRN, and evaluated the funda-

mental subspaces of the matrix R* (for the complete E. coli TRS)

to describe systemic properties.

Updating an existing E. coli transcriptional regulatory
network reconstruction

Significant efforts have focused on identifying the components

and interactions that comprise the E. coli TRN [3]. These efforts

have ranged from large-scale experimentation using post-genomic

techniques [23,26] to compiling previously reported regulatory

relationships into literature-based representations of the E. coli

TRN [5,23]. Furthermore, several online resources have been

developed to integrate both high-throughput as well as low-

throughput (i.e., individual regulatory interactions elucidated

through targeted experiments) experimental data into compre-

hensive databases [3,24]. For example, EcoCyc [24] and

RegulonDB [3] are two online resources that provide extensive

information regarding transcription factor-target gene (DNA

binding site) relationships. RegulonDB also catalogs known

promoter sequences, experimentally-defined and computational-

ly-predicted operons, as well as environmental stimulus-transcrip-

tion factor relationships.

These data formed the basis for a previous integrated

regulatory-metabolic network reconstruction called iMC1010v1

[23]. In this model, Boolean rules dictating regulatory interactions

were overlaid on a constraint-based model of E. coli metabolism.

Here, these Boolean rules were used in the generation of a

regulatory network matrix R for the genome-scale E. coli TRN.

Three additional regulators (UlaR, MngR, and GntT) and their

respective regulatory targets were added to the list of components

and interactions, based on recent literature reports. In addition,

several regulatory rules were either updated or refined to reflect

current data, as measured using ChIP-chip assays and microarray

experiments. The Boolean rules governing transcription of 46 new

genes were added to the model, and the transcription rules for 11

other genes were modified. The underlying metabolic model was

also updated from iJR904 [27] to the recently expanded E. coli

model known as iAF1260 [28], including isozyme and multido-

main subunit enzymes defined by similar Boolean relationships.

The final E. coli TRN reconstruction was comprised of 147

environmental stimuli affecting 125 transcription factors that in

turn influence 503 downstream target genes (see Figure 1 and

Dataset S1). Ultimately, these target genes give rise to metabolic

enzymes and transporters.

Importantly, constructing Boolean rules from experimental

findings is not a trivial task. Published experimental data (ranging

from high-throughput chip-ChIP assays or expression arrays

spanning genome-scale information to ‘‘low-throughput’’ exper-

iments focused on particular genes) are scoured for evidence

indicative of a regulatory rule governing gene transcription, i.e.,

information describing how a transcription factor induces or

represses transcription of target genes. As an example, the phrase

‘‘Crp induces the expression of sdhC within E. coli’’ is translated

into a Boolean rule indicating that Crp is required for the

transcription of the gene sdhC (succinate dehydrogenase subunit

C) (i.e., ‘‘sdhC: IF (Crp)’’). Conversely, a phrase that states ‘‘sdhC

transcription is inhibited by either ArcA or Fnr’’ is translated into

a Boolean statement ‘‘NOT(ArcA OR Fnr).’’ There are times

when conflicts in the literature need to be resolved as well. In

these instances, it is important to gauge which dataset appears to

make a stronger case about a particular gene and its

transcriptional requirements, in terms of the specific experimental

conditions that were used and the corresponding likelihood for

error. Alternatively, it may be possible to include both rules in the

model separately and assess which one results in better model

validation. The rules listed in Dataset S1 are accompanied by

references.

Author Summary

Cells are comprised of genomic information that encodes
for proteins, the basic building blocks underlying all
biological processes. A transcriptional regulatory system
(TRS) connects a cell’s environmental cues to its genome
and in turn determines which genes are turned ‘‘on’’ in
response to these cues. Consequently, TRSs control which
proteins of an intracellular biochemical reaction network are
present. These systems have been mathematically de-
scribed, often through Boolean expressions that represent
the activation or inhibition of gene transcription in response
to various inputs. We recently developed a matrix formalism
that extends these approaches and facilitates a quantitative
representation of the Boolean logic underlying a TRS. We
demonstrated on small-scale TRSs that this matrix repre-
sentation is advantageous in that it facilitates the calcula-
tion of unique properties of a given TRS. Here we apply this
matrix formalism to the genome-scale Escherichia coli TRS,
demonstrating for the first time the predictive power of the
approach at a large scale. We use the matrix-based model of
E. coli transcriptional regulation to generate novel findings
about the system, including new functional motifs; sets of
genes whose regulation is poorly understood; and features
of the TRS structure.

Escherichia coli Regulatory Network Matrix

PLoS Computational Biology | www.ploscompbiol.org 2 June 2009 | Volume 5 | Issue 6 | e1000403



Figure 1. The Escherichia coli transcriptional regulatory system (TRS) at genome-scale. Panel A summarizes basic statistics of the E. coli
transcriptional regulatory system (TRS). Panels B and C illustrate the components and their interactions in the E. coli TRS. Nodes constitute
environmental cues (yellow), transcription factors (blue), and other target genes (dark gray). Edges (light gray) denote regulation (activation or
repression) between nodes. As depicted in panel B, extracellular cues typically affect the expression of transcription factors, which in turn affect the
expression of downstream target genes. In panel C, the hierarchical nature of the network is illustrated, with few global regulators affecting the
transcription of many downstream genes. Nodes that have at least 25 connections appear in the top layer, those that have at least five but fewer than
25 connections are in the middle layer, and those that have fewer than five connections are in the bottom layer. As an example, the five nodes in the
top layer are oxygen and the transcriptional dual regulators Crp, ArcA, Fnr, Lrp, and NarL. Path length seems to generally be a better indicator of
broader regulatory impact as longer paths indicate more influence on other regulators and thus more regulatory targets. This network was visualized
using Cytoscape [34].
doi:10.1371/journal.pcbi.1000403.g001

Escherichia coli Regulatory Network Matrix
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Generating a regulatory network matrix from Boolean
rules

In order to define the regulatory network matrix R for E. coli,

the Boolean rules from the updated integrated transcriptional

regulatory-metabolic model for E. coli were translated into pseudo-

stoichiometric relationships or ‘‘regulatory reactions.’’ As de-

scribed in [7], the term ‘‘pseudo-stoichoimetric’’ is intended to

indicate that this formalism delineates the relationships between

components of the network (i.e., the chemical transformations)

while not enforcing that the resultant reactions are mass-balanced

in a strictly stoichiometric manner. Thus, effectively, the regulators

(i.e., environmental cues and/or transcription factors that serve as

inputs to a given gene regulatory rule/reaction) are ‘‘consumed’’

and the gene products or proteins (i.e., outputs of a gene

regulatory rule/reaction) are ‘‘produced.’’ Importantly, however,

this formalism can account for mass-balanced relationships as they

become delineated in TRSs. To automate this conversion from

Boolean logic to pseudo-stoichiometric reactions for large-scale

systems, an expression parser was developed in Perl. Briefly, for

each gene, the parser converted Boolean statements into

regulatory reactions (i.e., pseudo-stoichiometric relationships) that

could be represented in a R matrix. We used the formalism

developed in [7] when implementing the expression parser to

perform this conversion. For example, experimental data suggest-

ing that transcription of (Gene 1) is induced if Metabolites A and B

are both present within the system was represented in Boolean

form, as in

Gene 1~ Metabolite Að Þ AND Metabolite Bð Þ: ð1Þ

This Boolean rule was then converted by the parser into a

reaction form, as in

Gene 1 : {1 Metabolite Að Þ{1 Metabolite Bð Þ?

z1 Protein 1ð Þ:
ð2Þ

When a Boolean rule was comprised of several clauses separated

by ‘‘OR’’ statements, as in

Gene 2~ Metabolite Að Þ OR Metabolite Bð Þ, ð3Þ

the expression parser generated multiple regulatory reactions for

the gene, as in

Gene 2 : {1 Metabolite Að Þ?z1 Protein 2ð Þ ð4Þ

and

Gene 2 : {1 Metabolite Bð Þ?z1 Protein 2ð Þ, ð5Þ

as satisfying each clause (the presence of Metabolite A or the

presence of Metabolite B) can result in protein synthesis

independently. (The parser is included as Protocol S1.) Effectively,

this parsing recast a gene’s regulatory rule in disjunctive normal

form (DNF) [29], with each clause of the DNF an independent

regulatory reaction describing gene transcription. Importantly, the

regulatory reactions distinguished the presence and absence of

metabolites and transcription factors, as each of these regulates

gene transcription differently. For example, consider a represen-

tative regulatory rule for the E. coli gene sdhC, shown at the top of

Figure 2. Based on experimental data, sdhC is known to be

transcribed if (1) both ArcA and Fnr are absent; (2) Crp is present;

or (3) Fis is present. In other words, transcription of sdhC is induced

by either Crp or Fis, and it is repressed by ArcA and Fnr in

tandem. Consequently, the absence of ArcA (ArcAA in Figure 2,

where the subscripts ‘‘A’’ and ‘‘P’’ indicate absence and presence,

respectively) as well as the absence of Fnr (FnrA in Figure 2) needs

to be incorporated into R. In addition, fully describing the system

with a R matrix required the inclusion of reactions governing both

activation and repression of gene transcription for each gene as

well as exchange reactions balancing the production of proteins

(see an example of this for the gene sdhC in Figure 2); these

effectively balanced the network so that functional states could be

calculated as described below (i.e., an input was ‘‘consumed’’ and

a product was ‘‘produced’’ without external manipulation).

Reactions governing inactivation of gene transcription were

included only for those genes whose protein products repress

transcription of downstream genes. The compiled set of regulatory

reactions effectively defined the E. coli R matrix, as illustrated in

Figure 2. See Dataset S1 for a complete reaction listing.

Ultimately, the complete R matrix was comprised of 1009

components (rows) spanning 1685 reactions (columns), including

579 exchange reactions. This study thus constituted the construc-

tion of the first genome-scale R matrix for an organism. The R
matrix is unique among matrix-based approaches in the field of

transcriptional regulation in that it catalogs experimentally-

characterized relationships governing gene transcription, thereby

facilitating in silico expression state analysis. Other matrix analyses

have interrogated experimental gene expression data (see [8–12]

for examples of these studies) without necessarily having an

underlying functional and/or predictive model.

The environment matrix and randomly simulating
environments

To evaluate the behavior of the genome-scale E. coli TRS in the

context of particular environments (i.e., sets of environmental cues

defined as present or absent), we further defined environment

matrices. Each environment matrix, E, was comprised of the same

number of rows as R. The columns of E delineated the availability

(i.e., presence or absence) of environmental cues, transcription

factors, and proteins with respect to a particular environment.

Consequently, in the case of the E. coli TRN, there were 776

different columns in E, one for each unique metabolite,

transcription factor, or target gene. For a given environment, E
is appended to R to form R*, which captures the complete TRS

(see Figure 2 for an example of how a particular gene rule was

combined with a representative environment to yield R*, as well

as [7] for further details about this process). In this way, multiple

environments were simulated by randomly selecting for the

availability of environmental cues and other inputs (see below).

These environments were used to assess the behavior of the system

across a random sampling of all possible environments. See

Dataset S2 for a listing of 1000 randomly-sampled environments

(as introduced below). In addition, separately, we evaluated two

specific environments (anaerobic and aerobic minimal media) for

which gene expression data have previously been experimentally

characterized, as described below (see Dataset S3 for these

environments).

Computing expression profiles. Although certain

fundamental subspaces of R* ( = [R E]) describe the expression

state of the system in the context of a particular environment (see

below), we utilized a linear programming (LP) strategy to

efficiently predict a route through the network given an

environment, i.e., an expression profile (see Figure 3A). This

Escherichia coli Regulatory Network Matrix
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Figure 2. Generating a matrix representing the E. coli TRS from Boolean rules. The process for converting a Boolean rule describing gene
transcription into a R matrix is illustrated using the gene encoding for succinate dehydrogenase membrane protein (sdhC) as an example. First, the
Boolean rule is converted into a set of regulatory reactions, such that each clause of the Boolean rule corresponds to a single regulatory reaction.
These regulatory reactions are then represented in matrix form (shaded in white), as described in [7]. In addition, to fully describe the system with R,
reactions governing the repression of gene transcription for each gene (i.e., the converse reactions, shaded in red) as well as exchange reactions
balancing the production of proteins (shaded in green) are added to R. Note that components delineating the presence and absence of regulators of
sdhC are included within R, including ArcAP and ArcAA, CrpP and CrpA, FisP and FisA, and FnrP and FnrA. Finally, to evaluate the behavior of the
regulatory model in the context of particular environments (i.e., sets of environmental cues that are present or absent), an environment matrix E
describing component availabilities is placed adjacent to R, forming R* and capturing the complete TRS. The columns of E (shaded in blue) delineate
the availability (i.e., presence or absence) of environmental cues, transcription factors, and proteins with respect to a particular environment. Multiple
environments may be simulated by randomly selecting for the availability of environmental cues and other inputs. For complete details about the
generation of R and R*, see [7].
doi:10.1371/journal.pcbi.1000403.g002

Escherichia coli Regulatory Network Matrix
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approach is similar to flux-balance analysis (FBA), which has been

used extensively in metabolic systems to predict the rates of

network reactions [30]. Briefly, given a stoichiometric network

reconstruction of a metabolic system and assuming steady-state

conditions, FBA is a constraints-based approach that optimizes for

a particular flux, all the while ensuring that certain biological

constraints such as mass balance and thermodynamics are

maintained [31].

Here, we initially assumed that each gene product was absent

from the system and constrained all 1106 regulatory relationships

(or pseudo-stoichiometric reactions) in the forward direction. We

used our LP strategy to iterate through the regulatory reactions

contained within R*, optimizing the ‘‘flux’’ associated with each

reaction (Figure 3A, line 4). If we observed that we were able to

obtain a flux distribution with a nonzero flux through the

‘‘optimized’’ reaction, then we predicted that the corresponding

reaction is ‘‘active’’ and associated gene ‘‘expressed.’’ This LP

strategy is predicated on a balance on each network component;

the consumption of an input as part of a regulatory reaction is

‘‘balanced’’ by the presence of the input within the environment,

Figure 3. Key analysis techniques to interrogate the regulatory network matrix. Panel A depicts the linear programming (LP) problem that
we solve in order to predict which genes are turned ‘‘on’’ (or ‘‘off’’) in response to a given environment. In particular, for a given environment (line 1),
we iterate through each regulatory reaction (lines 3 and 7) one by one, optimizing it while enforcing that the components are balanced and all
reactions within the system proceed in the forward direction (line 4). Note that M is the set of network components and N is the set of regulatory
reactions governing (activation and repression of) gene transcription. If the flux of the rth reaction being optimized is positive, then we consider that
reaction to be ‘‘active’’ and the corresponding gene to be ‘‘on’’ (lines 5–6). We repeat this process until the expression state of all genes matches a
prior expression state (lines 2 and 8), suggesting that a steady-state has been attained or the expression states demonstrate oscillatory behavior
characteristic of one or more feedback loops. The expression state at this point is the predicted expression state corresponding to the environment
(E) contained within R*. Panel B illustrates how a given R* matrix is decomposed into U, S, and V matrices using singular value decomposition (SVD).
We further depict how ‘‘eigen-connectivities’’ describing network regulators and targets are contained in the column and left null spaces (within U),
whereas collections of regulatory rules driven by eigen-connectivities (or ‘‘eigen-regulatory reactions’’) are contained within the row and null spaces
(within VT). (See Text S2 for additional details.)
doi:10.1371/journal.pcbi.1000403.g003

Escherichia coli Regulatory Network Matrix
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as represented in E, and only if the input is present can the

associated gene be ‘‘expressed.’’ To account for the different

hierarchical layers of control in transcriptional regulation, this

process of optimizing for the flux through each regulatory reaction

was repeated multiple times until the gene expression predictions

(i.e., ‘‘expressed’’ or ‘‘not expressed’’) were consistent for all the

genes within the model across multiple iterations (i.e., a ‘‘steady-

state’’ was achieved) or until an oscillation characteristic of one or

more feedback loops was observed in the regulatory relationships.

Notably, we varied the order in which we optimized the regulatory

reactions and ran our optimization procedure, and the results were

consistent, suggesting that we achieve ‘‘global’’ steady-states (data

not shown). (See Figure 3A and the accompanying figure caption

for additional details about our optimization procedure.) As the

matrix formalism is applied to higher-order regulatory systems in

the future, this issue of ‘‘global stability’’ will be further explored.

We also considered alternate objective functions, such as

simultaneously optimizing for all the regulatory reactions within

the TRN (see Text S1 for details).

Our LP strategy for predicting an expression state for a TRS in

response to a given environment is different from regulated flux

balance analysis (rFBA), which has been proposed for the analysis

of an integrated regulatory-metabolic network (see [6]). rFBA

incorporates gene expression predictions (as computed by a

Boolean or other model of transcriptional regulation) into the

FBA constraints for a metabolic network. For example, the

metabolic fluxes for reactions corresponding to genes that are not

expressed (according to a Boolean model of regulation) are

constrained to zero units in rFBA. Our LP strategy instead

determines which genes are transcribed through a TRS in

response to a given environment.

The fundamental subspaces of R*
We analyzed the fundamental subspaces of the regulatory

network matrix to describe properties of the E. coli TRS.

Specifically, a given TRN represented by R responds to

environmental signals whose states (i.e., presence or absence) need

to be specified [7]. Consequently, the R matrix is further

combined with an environment matrix E that characterizes the

environment against which a set of regulatory rules is to be

evaluated [7]. As the combination of R and E (i.e., the matrix R*)

captures the TRS being analyzed, we interrogated the fundamen-

tal subspaces of this matrix to describe properties of the E. coli

TRS.

Briefly, the four fundamental subspaces of a matrix, namely the

column space, left null space, row space, and null space, describe

key properties of the matrix and, in turn, the system that the

matrix represents [32]. In the case of R*, these fundamental

subspaces were previously shown to represent key system

properties for a prototypic TRS as well as the E. coli lac operon

TRS [7]. As shown in Figure 3B and described in more detail in

Text S2, singular value decomposition (SVD) is used to decompose

a matrix into three matrices, often named U, S, and V (see

Figure 3B) [32], and these matrices delineate the four fundamental

subspaces of the original matrix (see [7] and Figure 4B). We

performed SVD to characterize the fundamental subspaces of

multiple R* matrices (describing different randomly-generated

environments) for the E. coli TRS, and we summarize the results

below. As we describe in our ‘‘Results’’ below, our understanding

of the four fundamental subspaces of R*, which we originally

proposed in [7] on the basis of our work with two small-scale

systems, has been considerably enhanced by the extension of R
and R* to the genome-scale E. coli TRS.

Besides the fundamental subspaces, we also computed the

angles between columns and rows of R* as these are also

informative about the TRS that R* represents. For every pair of

column (or row) vectors contained in the matrix, we computed the

angle between the vectors by taking the inverse cosine of the dot

product between the vectors. The angles between columns of R*
indicate the similarity or dissimilarity in the rules governing

regulation of the genes. For example, a small angle between a pair

of columns suggests that the regulatory rules of the two

corresponding genes are relatively similar and affect the state of

the TRS in a similar fashion. Likewise, angles between rows of R*
indicate the overall similarity or dissimilarity of network

component participation in the generation of expression states.

For instance, a large angle between a pair of rows (e.g.,

extracellular cues) suggests that the two network components are

relatively dissimilar and affect the transcription of different sets of

genes or affect the transcription of the same genes in different ways

(e.g., one might be a transcriptional activator while the other is a

repressor).

Implementation details
As described above, a parser that converts Boolean logic into

regulatory reactions was implemented in Perl. A freely available

extreme pathway analysis program (ExPa, University of Califor-

nia, San Diego) [33] was used to convert the regulatory reactions

into a regulatory network matrix. Ultimately, this matrix was

imported into MATLAB v. 7.6 (part of the R2008a release

package, MathWorks, Natick, MA), and code was written to

explore the structure of the matrix and to simulate the behavior of

the TRN under various environments. The MATLAB represen-

tation of the E. coli R matrix and a sample R* matrix is provided

in Protocol S2. Maps of the E. coli TRS were constructed using

Cytoscape v. 2.6 [34].

Results

Here we present initial steps toward applying the regulatory

network matrix formalism to the genome-scale E. coli TRN. In

order to facilitate this process, a previously developed model of the

E. coli TRN [23] was updated to reflect recently published

regulatory interactions as well as an expansion of the underlying

metabolic model [28] (see Dataset S1). The resulting updated

Boolean rules describing the regulation of the underlying

components were then used to generate pseudo-stoichiometric

relationships or ‘‘regulatory reactions.’’ The compilation of these

reactions represents the scope of the R matrix for E. coli and

illustrates the complexity involved when applying this approach to

a genome-scale system.

Characteristics of the E. coli TRS
The R matrix of the E. coli TRS is comprised of 1009

components (rows) spanning 1685 reactions (columns), including

579 exchange reactions (see Figure 4A). As illustrated in Figure 1C,

the E. coli TRS exhibits a hierarchical structure, as highly

connected global regulators act broadly to influence the expression

of major and minor regulators and thus directly and indirectly

affect the transcription of numerous target genes. Examples of

global regulators include traditional regulators such as transcrip-

tional dual regulator Crp, which senses cyclic AMP (cAMP) levels

and thus monitors the nutritional status of the cell, and nucleoid

binding proteins such as histone-like nucleoid structuring protein

(H-NS) and factor for inversion stimulation (Fis), which bind the

chromosome and thus influence its topology within the cell in

addition to directly impacting gene expression. Alternative sigma

Escherichia coli Regulatory Network Matrix
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Figure 4. Characteristics of the regulatory network matrix for E. coli. Panel A summarizes basic statistics of the regulatory network matrix R.
Panel B shows the number of rules (i.e., regulatory reactions) per gene. Panels C and D depict the numbers of genes that each metabolite and
transcription factor, respectively, affect. The metabolites and transcription factors along the x axes are rank-ordered according to the numbers of
genes that they affect. Panel E illustrates the numbers of genes requiring the presence or absence of the corresponding numbers of metabolites.
Panel F illustrates the numbers of genes requiring the presence or absence of the corresponding numbers of transcription factors.
doi:10.1371/journal.pcbi.1000403.g004
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factors such as RNA polymerase sigma factor (RpoS) are also

found among this class of proteins as they influence the expression

of diverse and numerous targets in response to various cellular

stresses.

Scope of the genome-scale R matrix. As detailed in [7], in

order to properly account for genes that are regulated by the

absence of regulatory factors, both the presence and absence of

individual components had to be accounted. For instance, as

illustrated in Figure 2, both ArcAP (the presence of transcriptional

dual regulator ArcA) and ArcAA (the absence of ArcA) are

components of the R matrix representation of the TRN. This

convention approximately doubles the number of environmental

stimuli and transcription factors included. Since certain regulators

respond to multiple factors, the numbers of rules are more than the

numbers of genes. Figure 4A summarizes the scope of the R
matrix for the genome-scale E. coli TRN.

Features of the R matrix. Within the R matrix describing

the E. coli TRN, the number of regulatory reactions (or pseudo-

stoichiometric relationships) is of the same order of magnitude as

the number of regulated genes. In other words, most genes within

the TRN are described by only a few independent regulatory

reactions (or columns within R) (see Figure 4B). Only 15 genes

have five or more independent rules or regulatory events.

Interestingly, several of these genes are themselves

transcriptional activators or repressors, including transcriptional

dual regulators glcC (5 inputs) and marA (5 inputs), transcriptional

activators tdcA (10 inputs) and feaR (8 inputs), transcriptional

repressor exuR (5 inputs), and phenylacetaldehyde dehydrogenase

(feaB, 5 inputs). Consequently, the number of reactions represented

in R is only modestly increased over the number of regulated

components themselves, and the numbers of genes and regulatory

reactions are on the same order of magnitude (743 genes versus

1106 independent regulatory reactions).

The transcription of most genes is governed by only a few

regulators (Figures 4C, 4D, 4E, and 4F). In particular, most

metabolites affect the transcription of fewer than 10 genes

(Figure 4C), and the majority of transcription factors regulate less

than 10 downstream target genes (Figure 4D). Some notable

exceptions include oxygen, D-glucose, and the amino acid leucine,

which affect 50, 26, and 26 genes, respectively. As oxygen and

glucose are essential for cell survival, it is perhaps obvious that they

dominate the expression of many more genes than other

environmental cues. In addition, the most pervasive transcription

factor is Crp, which regulates 114 downstream genes. Other key

regulating proteins include the well-studied transcriptional dual

regulators Fnr (which affects 76 genes), ArcA (57 genes), and NarL

(44 genes); the transcriptional repressor PurR (24 genes); RNA

polymerase sigma N factor (RpoN, 21 genes); RpoS (21 genes);

and transcriptional dual regulator CysB (21 genes). Data in

Figures 4E and 4F demonstrate how the majority of genes are

regulated by the presence (along the y axis) or absence (along the x

axis) of few metabolites and transcription factors, respectively.

Notable exceptions include exuR, which requires 8 different

environmental cues to be absent for transcription.

Expression states
Model validation. To validate the in silico model of E. coli

transcriptional regulation as described in the R matrix, we

generated expression profiles of the 629 regulated genes in

response to two distinct environments for which gene expression

data have previously been measured [23]. Specifically, these

environments constituted anaerobic and aerobic minimal media

conditions, as detailed in [13] and summarized in Dataset S3. We

used a linear programming approach tailored specifically to R* as

described above (see ‘‘Methods’’) to determine the expression

states for the two environments. We then compared the differential

expression owing to the anaerobic to aerobic shift (i.e., which

genes went from being turned ‘‘off’’ in response to the anaerobic

minimal media to being turned ‘‘on’’ in response to the aerobic

minimal media, which ones went from ‘‘on’’ to ‘‘off,’’ and which

ones were unchanged) between our in silico predictions and actual

experimental data taken from [23]. The results of this validation

are presented in Figures 5A and 5B (see Dataset S4 for a legend

defining the genes shown in Figure 5A). The differential expression

for the anaerobic-aerobic shift predicted by the R* matrix-based

analysis demonstrated 73 percent agreement with the

experimentally-characterized profile, i.e., the change in

expression between the anaerobic and aerobic conditions was

consistent between the R* matrix predictions and the expression

data for 73 percent of the genes contained within the matrix. As a

control, we compared the differential expression that the model

predicted between two randomly-generated environments with

that measured experimentally for the anaerobic-aerobic shift, and

the accuracy in this case was only 51 percent (see Figures 5A and

5B), or significantly less than the 73 percent when corresponding

conditions were paired (p-value,0.01). This result was important

because it emphasized that our validation was not purely an

artifact of the regulatory rules or our LP analysis of the R* matrix.

We also compared the expression states predicted by our R*
matrix analysis for the anaerobic and aerobic minimal media with

those predicted by an equivalent Boolean model for the same

environments, and we obtained 100 percent agreement (results not

shown), thus ensuring that our representation of a Boolean TRS in

a pseudo-stoichiometric matrix form does not introduce any

sources of error.

We further analyzed the agreements and disagreements

between predicted and observed expression profiles for the

anaerobic-aerobic shift by gene ontology (GO) categories (see

Figure 5C). Specifically, we computed the percentages of genes

within each GO category for which the model predictions

matched with the experiments. This analysis enabled us to identify

specific GO categories containing large numbers of genes (.20

genes) but yet exhibiting less than 70 percent validation, including

energy metabolism and building block biosynthesis-related genes

(see GO categories shaded in light red in Figure 5C). These GO

categories represent starting points for further experimental

characterization of regulatory relationships within the E. coli

TRS. By contrast, certain GO categories containing large

numbers of genes were very well validated (see GO categories

shaded in light blue in Figure 5C). We discuss this result below (see

‘‘Discussion’’).

Sampling functional states. We further investigated

functional states of the E. coli TRS by generating expression

profiles for each of the 629 regulated genes, including 125

transcription factors, across 1000 randomly-sampled

environments. In other words, effectively we generated in silico

‘‘microarrays’’ for each of the 1000 randomly-sampled

environments. The 629 regulated genes are plotted in Figure 6A

as a (rank-ordered) function of the percentage of these 1000

environments in which they are expressed. While the majority of

genes were expressed in a fraction of the environments, 14 were

expressed in all of the simulated environments and seven were

expressed in none of the simulated environments. By contrast, 176

genes were expressed in between 49 and 51 percent of the

simulated environments. We explored these genes (see Dataset S5)

further. Specifically, the set of genes that were ubiquitously

expressed across the randomly-sampled environments is important

for carbon source uptake and energy metabolism, and thus likely
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Figure 5. Model validation. Panel A compares side-by-side the in silico and in vitro expression profiles for the anaerobic-aerobic minimal media
shift in E. coli. Genes whose expression level decreases from the anaerobic to aerobic medium are shaded in blue, whereas genes that are up-
regulated or unchanged are shaded in red and white, respectively. See Dataset S4 for a legend describing the placement of the genes within this
panel. In general, there is strong concordance between the in silico and in vitro data sets for the directed studies. However, a random shift simulated
in silico and also depicted illustrates poor concordance with experimental data as a random control. Panel B depicts the accuracy between the in silico
and in vitro expression profiles for the two simulated shifts. Panel C breaks down the model validation by gene ontology (GO) category. Specifically,
for the anaerobic-aerobic minimal media shift, presented are the percentages of genes within each GO category for which the predictions from our
model matched those from the experiments. GO categories with large gene populations that exhibit strong (and poor) validation are shaded blue
(red) for emphasis.
doi:10.1371/journal.pcbi.1000403.g005
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essential for E. coli survival. However, the specific genes contained

within this set are not obvious. For example, the large and small

subunits of glutamate synthase (gltB and gltD, respectively) are

expressed across all 1000 simulated environments, even when

alternate carbon sources are supplied within the environmental

medium. This result could be suggestive of incorrect or incomplete

gene annotations, or of novel pathways in which these genes

participate. Likewise, unexpectedly, none of the 125 transcription

factors included within the reconstructed E. coli TRN was

ubiquitously expressed; rather, many operon-specific

transcription factors such as cytR, gcvR, ilvY, kdpE, uhpA, and uhpB

were expressed in only about half of the simulated environments.

By contrast, the genes that were never expressed included those for

which redundant processes exist within E. coli, including for

example dicarboxylate DAACS transporter (dctA) and

dicarboxylate Dcu transporter (dcuB). There is evidence within

the literature that four dicarboxylate transporters exist within E.

coli and that dctA and dcuB are only expressed if the other two are

not [35]. Importantly, these types of outliers are not immediately

obvious by simply examining the Boolean rules governing gene

transcription. For example, in the case of the gene dctA, the

regulatory reaction is

dctA : {1 CRP noMANP {1 ArcAA

{1 DcuRP {1 RpoNP?z1 b3528 DctAð Þ:
ð6Þ

Inspecting this reaction by itself does not immediately suggest

that dctA would be expressed in zero of the simulated environ-

ments, particularly since multiple key transcription factors,

including Crp (in the absence of mannose), ArcA, transcriptional

activator DcuR, and RpoN, are involved. However, the nature of

upstream regulatory interactions is such that the precise

combination in which these transcription factors need to be

present for dctA to be transcribed is exceptionally rare. Conse-

quently, this redundancy that is apparent within the E. coli

regulatory network is not easy to infer without the type of

quantitative analysis afforded by the regulatory network matrix.

Correlated gene sets. Our analysis of E. coli expression

states across 1000 random environments also enabled the

generation of a gene expression correlation matrix (shown in

Figure 6B) containing the level of expression correlation across the

environments for every pair of genes within the E. coli TRS. In

particular, the correlation coefficient (rij) describing the level of

expression correlation between every pair of genes i and j within

the TRS was computed. Pairs of genes that are consistently

expressed together (either consistently ‘‘on’’ and/or ‘‘off’’ together)

have positive correlation coefficients (and are shaded in blue),

whereas pairs of genes in which one gene is consistently expressed

while the other is not (and vice-versa) have negative correlation

coefficients (and are shaded in red). When the expression between

a pair of genes is completely inconsistent, the rij value is equal to

zero (and the intersection of the genes within the matrix is shaded

in white).

Correlated gene expression is an indication of structural motifs

of the TRN, such as operons (as illustrated by the galactitol PTS

permease gat operon (item ‘‘1’’ in Figure 6B)). Indeed, as genes

belonging to an operon are often found adjacent to one another

within the genome (and consequently appear as such within the

reconstructed E. coli TRS), many operons are easily found along

the diagonal of the matrix as evidenced by the striking blue

(indicating strongly correlated expression) that appears there. In

addition, novel insights not necessarily obvious from a simple

inspection of the regulatory rules were attained, as in the case of

the genes L-serine deaminase I (sdaA) and threonine dehydroge-

nase subunit (tdh) (marked as ‘‘2’’ in Figure 6B). Based on literature

that was used to construct the R matrix describing the E. coli

TRS, sdaA is transcribed if one of several rules are satisfied, as

listed in Figure 6B, whereas tdh is transcribed if leucine is present

but Lrp is absent (see ‘‘2’’ in Figure 6B). By simple inspection,

these rules would not necessarily suggest whether sdaA and tdh

would be expressed together. However, our functional state

analysis revealed that in fact the expression of sdaA and tdh was

correlated 100 percent of the time. The rules governing the

expression of sdaA and tdh are comprised of transcription factors

whose expression themselves are governed by independent rules,

such that there exists an interconnectivity between sdaA and tdh.

This result is indicative of the complexity that exists within the E.

coli TRS and the interdependency of the TRN, and perhaps even

suggestive of evolutionary forces that have selected for physiology

such that different input requirements for the transcription of these

genes ultimately yield the same outcome for a given environment.

Such correlation may also be suggestive of pharmacological

strategies as inhibiting the function of one of these gene products

may effectively target functions related to the other. Likewise, from

a biological standpoint, it is interesting that the genes gltK and

manX are always expressed opposite of one another (see ‘‘3’’ in

Figure 6B). This result is not obvious by simply inspecting the

Boolean rules that govern the transcription of these genes (again,

see ‘‘3’’ in Figure 6B). However, as gltK is an integral membrane

component of the glutamate ABC transporter and manX is a

mannose PTS permease, this result suggests that E. coli elicits a

different transcriptional regulatory program in response to these

two different sugars. Furthermore, it provides evidence of how the

prokaryote has evolved direct, specific responses so that only those

genes necessary for a given environment are actually transcribed,

thus conserving energy.

The analysis of correlated gene sets within the E. coli TRS, made

easier by the regulatory network matrix formalism and associated

analysis, thus enables novel insights about structural and

functional properties of the system to be hypothesized, enhancing

our understanding of basic biology and potentially suggesting

strategies for therapeutic development. (See Text S3, Figure S1,

and Dataset S6 for the gene expression correlation clusters.)

Fundamental subspaces of R*
To further evaluate properties of the E. coli TRS, we considered

fundamental subspaces of multiple R*, with each R* correspond-

ing to a unique, randomly-generated environment. A representa-

tive subset of these randomly-generated environments is presented

in Dataset S2. We performed singular value decomposition (SVD)

on each R*, as described in [7] and shown in Figure 3B, yielding

R* = UNSNVT. The diagonal entries of the matrix S = diag(s1, s2,

… , sr), where r is the rank of R* and s1$s2$…$sr, indicate the

relative contribution of the corresponding left singular vector (a

column of U) and right singular vector (a row of VT) in the overall

construction of the TRS [36]. Note that an important feature of

SVD is that the singular vectors are orthonormal to each other

and consequently each principal mode is decoupled from all the

others.

Interestingly, across many different randomly-generated envi-

ronments, the singular value spectra of the matrix R* representing

the genome-scale E. coli TRS (i.e., the singular values s1, s2, … ,

sr) were relatively consistent, suggesting that the environment does

not contribute significantly to the properties of the TRS. The

number of inputs to the system ( = 147 environmental cues)

constitutes less than six percent of the columns within R*.
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Figure 6. Expression states. Panel A presents the genes as a (rank-ordered) function of the percentage of 1000 randomly-simulated environments
in which they are expressed. The majority of genes are expressed in a fraction of the environments, although some genes are expressed ubiquitously
and others never. See the text as well as Dataset S5 for a discussion of these relationships. Panel B depicts an expression correlation matrix,
delineating the level of correlation between pairs of genes across the 1000 randomly-simulated environments. Colors indicate that the expression of
two genes is correlated (blue if the expression of one gene is correlated with that of another gene, and red if the expression of one gene is correlated
with the lack of expression of another gene (or vice-versa)), and the darker the color the stronger the correlation observed. Note that genes that are
always expressed or never expressed across the 1000 environments are excluded from this analysis. Examples of interesting insights gained from the
gene expression correlation matrix are highlighted.
doi:10.1371/journal.pcbi.1000403.g006
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Furthermore, although the singular value of the first mode is larger

than that of the next closest mode (10.60.7.895), the singular

value spectrum of a given R* is rather uniformly distributed, as

shown in a representative spectrum in Figure 7A. In other words,

the information content of a given R* is evenly distributed

throughout the matrix, or, alternatively, there are few components

or reactions that dominate the genome-scale E. coli TRS that R*
describes. This result is particularly insightful as it contrasts with

the structural hierarchy (with few regulators affecting many genes,

and many affecting few genes) that is evident by purely inspecting

the network map (Figure 1C). Furthermore, whereas in metabolic

networks approximately 27 percent of the information content of a

stoichiometric matrix is often captured in the first four principal

modes (less than one percent of all the principal modes) [36], here,

to capture an equivalent information content of a regulatory

matrix, the first 150 principal modes (or about 15 percent of all the

principal modes) must be recapitulated. Thus, although a simple

inspection of the network would suggest that only a small handful

of regulators control a large fraction of the network, control of the

TRN is significantly more distributed. We discuss this result in

detail below (see ‘‘Discussion’’).

Column space. The column space is spanned by the first r

left singular vectors in U [32]. For metabolic systems, each mode

in the column space has previously been labeled an ‘‘eigen-

reaction,’’ describing principal chemical transformations of the

metabolic network. For example, the dominant eigen-reactions for

metabolic systems have been comprised of transitions of cofactors

participating in energy, redox, and phosphate metabolism,

including the conversion of ATP to ADP and Pi [36]. The first

mode of the column space for the R* matrix describing the E. coli

TRS is illustrated in Figure 7B. The figure contains the 15

components that make the greatest contribution to the column

space mode, while the inset of the figure depicts the entire mode

with components shaded according to the different cellular

processes to which their roles have been assigned (see the figure

legend). The first ‘‘eigen-regulatory reaction’’ (i.e., the first mode

of the column space for R*) is spanned by key regulators and their

targets. For example, the first mode contains the most ubiquitous

transcription factor in E. coli, Crp, and the most ubiquitous

metabolite in E. coli, oxygen, as well as their target genes (as an

example, b2799, which expresses FucO, a subunit of L-1,2-

propanediol oxidoreductase, is the target gene that contributes

most to this mode, as it requires both the absence of oxygen and

the presence of Crp for transcription). This result demonstrates

that aerobic control is a primary regulatory activity within E. coli.

Similarly, the second ‘‘eigen-regulatory reaction’’ (the second

mode) is spanned by other key regulators, including the absence of

ArcA and Fnr as well as their target genes, such as b2284 (nuoF,

which expresses a subunit of NADH ubiquinone oxidoreductase)

(not shown). Therefore, the dominant modes of the column space

of R* capture the components of the TRS that systemically affect

gene expression.

Another related aspect of the column space is the similarity or

dissimilarity of the regulatory reactions driving gene transcription.

As described above (see ‘‘Methods’’), the angle between pairs of

columns is indicative of how similarly two gene rules affect the

state of the E. coli TRS. Figure 7C illustrates the angles between all

pair-wise combinations of the columns (in blue) of the regulatory

network matrix R. There are a total of approximately 14,000

pairings with angles less than 90 degrees. Interestingly, only a few

regulatory rules exhibit very small angles (less than 45 degrees),

and these are mostly genes that have multiple OR clauses around

a particular regulator. Instead, most of the gene rules in the E. coli

TRS are very different from one another. The relatively few

instances of small angels support the hypothesis proposed above

that, while operons and regulons are observed within the E. coli

TRN, control of the network is significantly more distributed than

Figure 1B would imply.

Left null space. The left null space spans the final m2r

columns or left singular vectors contained in U [32]. The first

mode of the left null space for R* (containing a randomly-

generated environment) is illustrated in Figure 7D. Here the nodes

are labeled and shaded according to the different cellular processes

in which they participate. In this case, because R* is nearly full

rank, only 13 components appear in the left null space, and all of

these are extracellular metabolites. In contrast to the column

space, the left null space is spanned by the extracellular

metabolites that affect few regulatory reactions, such as

maltotetraose. Consequently, the left null space contains

disconnected components of the system. These features of the

network may constitute the most poorly characterized components

of the system worthy of further experimental study. Alternatively,

they may represent aspects of the E. coli TRS that are seldom used

but have not yet been selected out of the system through selective

pressure in the given environment. Importantly, while we

previously described an interpretation of the left null space of

R* (see [7]), this particular observation of disconnected system

components would not have been seen without inspecting a

network with the scope of the genome-scale E. coli TRS.

Row space. The row space is spanned by the first r singular

vectors or rows of VT [32]. For metabolic systems, the row space

has been shown to contain ‘‘eigen-connectivities,’’ or the metabolic

reactions participating in driving the conversions contained in the

column space (see above) [36]. For example, in the metabolic

network of E. coli, synthase reactions and ATP-coupled

transporters have the highest reaction participations of the first

singular vectors of VT [36]. Similarly, the row space of the E. coli

R* matrix shown in Figure 7E contains the regulatory rules that

drive the relationships observed in the column space. For example,

the six regulatory reactions that contribute most—and

equivalently—to the row space are b4198AC2, b4197AC2,

b4196AC2, b4195AC2, b4194AC2, and b4193AC2, all of which

require the same regulators, notably the absence of oxygen,

presence of Crp, and absence of transcriptional repressor UlaR,

for the transcription of the corresponding gene. Interestingly, the

corresponding genes are all part of the same operon within E. coli:

L-xylulose 5-phosphate 4-epimerase (b4198 or ulaF), L-xylulose 5-

phosphate 3-epimerase (b4197 or ulaE), 3-keto-L-gulonate 6-

phosphate decarboxylase (b4196 or ulaD), ulaC (b4195), ulaB

(b4194), and ulaA (b4193). Consequently, the row space of R*
provides insight into similarly expressed genes, or further

understanding of operon and regulon structure within the TRN.

Importantly, the row space of R* appears to distinguish between

two different operons that might be similarly regulated (i.e.,

effectively ‘‘regulons’’): the regulatory reactions b0902AC3,

b0903AC3, and b0904AC3 are identical to the regulatory

reaction b2492AC3. Genes b0902, b0903, and b0904 are found

in a different location from the gene b2492 within the E. coli

genome. However, they are all involved in formate transport and

constitute a putative regulon identified by this subspace analysis.

In addition, as with the column space, we evaluated the angles

between all pair-wise combinations of rows (i.e., network

components, including extracellular cues, transcription factors,

and target gene products). The results are presented in red in

Figure 7C. There are a total of approximately 200 row pairings

with angles less than 90 degrees, suggesting that the majority of

the components are regulators with unique sets of targets. This

finding indicates that the majority of regulators not only affect few
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Figure 7. Fundamental subspaces. The results of singular value decomposition (SVD) of a representative E. coli transcriptional regulatory system
(TRS) matrix R* are presented. Panel A illustrates the rank-ordered singular values of the matrix (top) and the corresponding cumulative sum of the
singular values (bottom). Panels B, D, E, and F depict the first modes of the column space, left null space, row space, and null space, respectively, of
R*. In panels B, E, and F, the 15 nodes (components or reactions) that contribute most to the corresponding subspace are presented in the larger
figure. The insets of these panels illustrate the complete modes, and here nodes are shaded according to Gene Ontology (GO) classifications: yellow
dots correspond to extracellular metabolites; yellow crosses correspond to transcriptional activators and repressors; cyan corresponds to periplasm
and surface genes and proteins; blue corresponds to metabolic genes and proteins; green corresponds to regulatory genes and proteins; red
corresponds to transport genes and proteins; black corresponds to genes and proteins of unknown (putative hypothetical) function; and magenta
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genes but also the amount of redundancy in the gene rules within

the network is minimal.

Null space. The null space of R* is spanned by the n2r

remaining expression states of the E. coli TRS (see Figure 7F). As

with the row space, these are further ‘‘eigen-connectivities’’ for the

system. For example, the first mode demonstrates the activation of

a subunit of the RNA polymerase sigma factor (rpoS) through

RpoSAC1. Importantly, the similarities between the row and null

spaces of R* in that they both define eigen-connectivities (i.e.,

expression states) for a TRS emerged through this first-ever

genome-scale implementation of the R matrix formalism.

Discussion

The results presented here represent the first steps toward

applying the regulatory network matrix formalism at the genome

scale. Specifically, we constructed a regulatory network matrix R
for the genome-scale E. coli transcriptional regulatory network,

including direct interactions between environmental stimuli,

transcription factors, and other downstream target genes.

Ultimately, we (1) identified features of the E. coli TRN, including

the numbers of components and regulatory relationships; (2)

validated our model in the context of available experimental data

and illustrated how the R matrix at genome scale affords

predictions of expression states for all possible systemic environ-

ments; and (3) characterized the fundamental subspaces of the

regulatory system matrix R* for the E. coli TRS, noting unique

properties about these subspaces of R* not previously observed,

including the distributed (and non-hierarchical) nature of the

functional states of the genome-scale transcriptional regulatory

network which is in contrast to that observed for genome-scale

metabolic networks.

As illustrated in Figures 1 and 4, for a system of 776 total

environmental stimuli, transcription factors, and target genes, R
scales to 1009 components (rows)61685 regulatory reactions

(columns), including 579 exchange reactions. When coupled with

an environment matrix E, the size of the eventual R* matrix

representing the complete TRS was 1009 rows by 2461 columns.

It is reasonable to expect that similar observations will be made for

systems that maintain similar distributions of inputs per regulated

gene (see Figure 4) as well as multi-subunit complex and isozyme

composition for metabolic enzymes and transporters.

Recently, the functional states of a prototypic TRS as well as a

small-scale E. coli lac operon TRS, as represented by this pseudo-

stoichiometric regulatory network matrix formalism, were char-

acterized. The sheer number of environmental stimuli defined in

this system, however, prohibits a comprehensive analysis encom-

passing all possible combinations as was performed for the

prototypic TRN in [7]. Instead, we performed a random sampling

of all possible environments to characterize key properties of the

functional states of the E. coli TRS. Specifically, we computed the

percentage of these randomly-simulated environments in which

the 629 regulated genes were expressed, identifying those genes

most significant to the E. coli regulatory program as those

ubiquitously expressed across the environments. Importantly, this

type of in silico expression analysis offers an efficient way to

characterize differences in a regulatory program across multiple

environments. Indeed, our results for two environments for which

microarray profiling has previously been completed exhibited

strong concordance with the experimental data.

This work constitutes the first genome-scale analysis of the

fundamental subspaces of R*, and understanding of these

subspaces has been significantly enhanced with the genome-scale

implementation. Specifically, we describe how the column and left

null spaces of R* are spanned by components of the system that

are either very connected or very disconnected, respectively,

among the regulatory relationships. For example, the column

space of a representative E. coli R* matrix contained Crp and

oxygen, two key systemic regulators. By contrast, the left null space

of a representative matrix contained such extracellular cues as D-

galactarate, which are minimally involved in the E. coli regulatory

program. Thus, the left null space can identify network features

that are poorly characterized (and require further experimental

interrogation) or network function with minimal effect on

phenotype. We further describe how the row and null spaces of

R* together describe all possible expression states of the E. coli

TRS for a given environment.

Interestingly, the singular value spectrum for the E. coli TRS is

uniformly distributed (see Figure 7A), implying that there are few

dominating components or reactions within the system. As

described previously, this result contrasts with the network

topology observed in Figure 1B as well as the connectivity

distributions shown in Figure 4, and it implies that the functional

states of the genome-scale E. coli TRS are diffuse. Moreover, the

result suggests that transcriptional regulation is inherently different

from metabolism, in which the first few principal modes

sufficiently recapitulate a significant fraction of the underlying

stoichiometric network [36]. Although an important caveat to this

result is that metabolism is far better studied than regulation, it is

noteworthy that control of many complex systems is distributed,

including chemical plants, pharmaceutical manufacturing pipe-

lines, electrical power grids, and sensor networks [37–39]. A

distributed control system (DCS) is one in which there exist

multiple controllers, with one or more of these controllers

managing each component or ‘‘subsystem.’’ DCSs facilitate cost

savings (as there exist fewer input/output connections), improved

scalability (as a central node does not become overburdened as

additional components are added), and greater redundancy (as no

one node serves as a key hub) [37]. These advantages are critically

important in biological systems. For example, there is increasing

evidence that control of energy balance is distributed through

different parts of the brain [40]. As a TRS constitutes the ‘‘control

system’’ for a single living cell, a distributed regulatory network

seems a likely choice for cells to evolve toward over time. Indeed, a

recent study identified a hidden distributed architecture underly-

ing the scale-free TRN of yeast [41]. Similarly, riboswitches, the

structured elements found in 59 untranslated regions of mRNAs

that regulate gene expression by binding to small metabolites, have

been shown to exhibit distributed functional effects within a

genome [42]. Whereas the structure of metabolic pathways

remains constant across multiple environments, our findings

suggest that there exist many direct and specific (i.e., one-to-one)

relationships between a given environment and the sets of genes

that are turned ‘‘on’’ (and, in turn, the fluxes through the

metabolic pathways). Thus, the uniform distribution of the

corresponds to genes and proteins belonging to other categories. The column and left null spaces are comprised of network components, including
the presence and absence of components, while the row and null spaces are comprised of regulatory reactions (rules), including environmental
availabilities of metabolites and regulated protein products. Panel C illustrates the angles between pair-wise combinations of rows (red) and columns
(blue) of the E. coli R matrix.
doi:10.1371/journal.pcbi.1000403.g007
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singular value spectrum that we have observed implies that, in

spite of the operon and regulon structure observed in the network

topology, there exists a need for a functional analysis rather than a

structural one. Further work exploring this type of a relationship in

other organisms may provide interesting insights into evolutionary

differences in their regulatory programs.

Among the E. coli TRN components, 125 are transcriptional

regulators. While a few of these are global regulators like Crp and

affect the expression of many genes, the majority of regulators

control few targets (see Figures 1 and 4). This architecture of the E.

coli TRN [43] has been explored extensively in recent years [44]. A

drawback to these structural studies is that their direct relevance to

the functional state of the cell is often unclear since they rely on

inferential associations, e.g., based on the functional annotation of

target genes to assign causal relationships to identified network

motifs.

The work presented here focuses on the network for which

relationships between environmental stimuli and transcription

factors are directly ascribed. In so doing, relationships between the

environment and transcriptional state can be mapped. Further-

more, the representation of the E. coli TRS in Figure 1B illustrates

the complexity of the network in terms of the numbers of

components and interactions. Tracing the edges to determine

which genes are transcribed under different environmental

conditions would be a difficult process. Instead, representing these

interactions in a structured matrix facilitates the use of linear

algebra techniques for characterizing emergent properties of a

TRS and generating novel hypotheses of the system.

While this work involves an investigation of a previously

constructed model of E. coli, this formalism may also prove useful

for structuring and analyzing emerging high-throughput data for

E. coli. For example, ChIP-chip data analyzing the genome-wide

binding profiles for several microbial transcriptional regulators,

including Crp, Fnr, and Lrp as well as various nucleoid binding

proteins and sigma factors have appeared [45–47]. These results

have suggested that, in spite of the interactions that have been

characterized thus far, there remains considerable complexity

within the E. coli TRS that needs to be further elucidated [46]. For

instance, as shown in Figure 5C, certain GO categories of genes

exhibited much poorer validation than others, suggesting that

specific parts of the TRS require further study. The model

performed well for aspects of E. coli biology that have been

thoroughly studied to date, namely regulation of genes involved

central metabolism and carbon uptake [27]. By contrast, energy

metabolism and building block biosynthesis-related genes exhib-

ited less than 70 percent validation. These results will likely be

similar for other organisms as well, as the initial focus of study for

biological systems has primarily been metabolism. Importantly,

given the distributed functional nature of the E. coli TRS, the

probability of a single incorrect gene expression prediction

resulting in a large-scale reduction in accuracy (owing to residual

effects upon downstream target genes) is small. Specific genes

whose model-predicted expression states did not match with

experimental measurements will nevertheless need to be explored.

A defined environmental perturbation is critical for proper

mapping of regulatory response and interactions with downstream

targets. Furthermore, ChIP-chip data in isolation are not sufficient

for this methodology to be successful. Corresponding transcrip-

tional profiling data in order to derive directionality of regulation

(i.e. up or downregulation of targets) are also important. Relatively

conservative criteria should be used in incorporating these data

into the R matrix.

Importantly, in spite of the advances using a R matrix

formalism, there are certain limitations to the pseudo-stoichio-

metric approach that we have utilized for representing the E. coli

TRS. In particular, as our reconstruction is based on an existing

Boolean model, it is binary both at the level of control (i.e., how

inputs affect individual genes) and expression (i.e., genes are

predicted to be turned ‘‘on’’ or ‘‘off’’ in response to a given

environment). In the future, mechanisms for incorporating species

concentrations (particularly at the level of inputs) will need to be

incorporated. In addition, during our analysis, the dynamics of the

TRS are approximated. Although for a given environment we

compute the sequence of expression states before a ‘‘steady-state’’

(or oscillation) is observed effectively tracing through the

dynamics, we do not incorporate time explicitly.

Nevertheless, the pseudo-stoichiometric approach to defining

regulatory interactions is akin to existing stoichiometric strategies

for modeling metabolic and signaling systems. Accordingly, future

work could directly incorporate the regulatory equations described

herein to develop a comprehensive model of the cell [48]. For

example, a recent approach characterizing dynamic properties of

integrated signaling, metabolic, and regulatory systems is predi-

cated on the availability of stoichiometric or pseudo-stoichiometric

matrix representations of these types of systems [49]. Ultimately,

in this way, the application of the R* matrix to genome-scale

regulatory networks may enable the quantitative investigation of

emergent properties of biochemical systems, including whole-cell

dynamics.

Supporting Information

Dataset S1 The genome-scale Escherichia coli transcriptional

regulatory system. This list provides the genes and regulatory rules

that are contained within our model of genome-scale E. coli

transcriptional regulation.

Found at: doi:10.1371/journal.pcbi.1000403.s001 (0.09 MB XLS)

Dataset S2 Randomly-sampled environments. The expression

states were predicted by our R matrix approach for each of these

1000 randomly-sampled environments.

Found at: doi:10.1371/journal.pcbi.1000403.s002 (0.96 MB XLS)

Dataset S3 Anaerobic and aerobic minimal media. These

anaerobic and aerobic minimal media conditions (reported in

[13]) were used to validate our R matrix representation of the E.

coli transcriptional regulatory system.

Found at: doi:10.1371/journal.pcbi.1000403.s003 (0.04 MB XLS)

Dataset S4 Gene legend for Figure 5A. A legend that defines the

genes as they are presented in the differential gene expression

diagrams in Figure 5A is provided.

Found at: doi:10.1371/journal.pcbi.1000403.s004 (0.03 MB XLS)

Dataset S5 Interesting genes identified from expression states

predicted for randomly-sampled environments. Figure 6A illus-

trates (rank-ordered) the percentage of the 1000 randomly-

sampled environments in which the 629 regulated genes within

the R matrix model are expressed. Genes that were always

expressed, never expressed, or expressed in about 50 percent of the

randomly-simulated environments are listed here.

Found at: doi:10.1371/journal.pcbi.1000403.s005 (0.21 MB XLS)

Dataset S6 Details about the clusters contained in Figure S1.

The gene expression correlation matrix was clustered, using

standard hierarchical clustering techniques described in Text S3

and as shown in the resultant dendrogram in Figure S1. Details

about the clusters highlighted in Figure S1 are presented.

Found at: doi:10.1371/journal.pcbi.1000403.s006 (0.14 MB XLS)

Protocol S1 Expression parser. For each gene, this Perl script

converts Boolean statements into regulatory reactions (i.e., pseudo-
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stoichiometric relationships) that may be represented in a

regulatory network matrix (R).

Found at: doi:10.1371/journal.pcbi.1000403.s007 (,0.01 MB

ZIP)

Protocol S2 MATLAB implementation of the genome-scale E.

coli R and R* matrices. The R matrix and a sample R* matrix are

represented as variables within a MATLAB workspace. See the

comments within the accompanying MATLAB m-file for details.

Found at: doi:10.1371/journal.pcbi.1000403.s008 (0.07 MB ZIP)

Text S1 Alternate objective functions for computing expression

states. As part of our linear programming (LP) framework for

computing expression states, we considered several different

objective functions. These objective functions and the correspond-

ing results are summarized.

Found at: doi:10.1371/journal.pcbi.1000403.s009 (0.01 MB PDF)

Text S2 Singular value decomposition (SVD) for exploring

fundamental subspaces of R*. Singular value decomposition

(SVD) is described in the context of its application to the R*
matrix.

Found at: doi:10.1371/journal.pcbi.1000403.s010 (0.11 MB PDF)

Text S3 Clustering the gene expression correlation matrix. The

gene expression correlation matrix was clustered, using standard

hierarchical clustering techniques. The clustering methodology

and results are presented (see Figure S1 and Dataset S6 as well).

Found at: doi:10.1371/journal.pcbi.1000403.s011 (0.01 MB PDF)

Figure S1 A dendrogram of the clustered gene expression

correlation matrix. The gene expression correlation matrix was

clustered, using standard hierarchical clustering techniques

described in Text S3. The resultant dendrogram is presented.

Found at: doi:10.1371/journal.pcbi.1000403.s012 (0.56 MB EPS)
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