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Abstract

Ligand virtual screening is a widely used tool to assist in new pharmaceutical discovery. In practice, virtual screening
approaches have a number of limitations, and the development of new methodologies is required. Previously, we showed
that remotely related proteins identified by threading often share a common binding site occupied by chemically similar
ligands. Here, we demonstrate that across an evolutionarily related, but distant family of proteins, the ligands that bind to
the common binding site contain a set of strongly conserved anchor functional groups as well as a variable region that
accounts for their binding specificity. Furthermore, the sequence and structure conservation of residues contacting the
anchor functional groups is significantly higher than those contacting ligand variable regions. Exploiting these insights, we
developed FINDSITELHM that employs structural information extracted from weakly related proteins to perform rapid ligand
docking by homology modeling. In large scale benchmarking, using the predicted anchor-binding mode and the crystal
structure of the receptor, FINDSITELHM outperforms classical docking approaches with an average ligand RMSD from native
of ,2.5 Å. For weakly homologous receptor protein models, using FINDSITELHM, the fraction of recovered binding residues
and specific contacts is 0.66 (0.55) and 0.49 (0.38) for highly confident (all) targets, respectively. Finally, in virtual screening
for HIV-1 protease inhibitors, using similarity to the ligand anchor region yields significantly improved enrichment factors.
Thus, the rather accurate, computationally inexpensive FINDSITELHM algorithm should be a useful approach to assist in the
discovery of novel biopharmaceuticals.
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Introduction

Ligand virtual screen is widely used in rational drug discovery

[1,2]. The first stage of structure-based ligand screening is the

prediction of the binding mode adopted by the small molecule

complexed to its target receptor protein; a variety of algorithms

have been developed to achieve this goal [3,4]. The next step is to

estimate the relative binding affinity of the docked ligands [5,6].

Of course, it is not sufficient that a given ligand binds favorably to

given protein; rather, to minimize side effects, it must also bind

selectively. Classical molecular docking has been used to address

both goals. However, only is it computationally expensive, but

there are significant issues associated with ligand ranking [5,7].

Thus, fast and accurate methods for both binding pose prediction

and ligand ranking need to be developed.

With the rapid increase in the number of experimentally solved

protein structures, protein homology modeling has become a

powerful tool in modern structural biology [8,9]. Comparative

modeling methods identify homologous protein structures and use

them as structural templates to model the target protein of unknown

tertiary structure. Using a high sequence identity template with a

clear evolutionary relationship to the target, the modeled target

structure can have a root-mean-square-deviation, RMSD, from the

native structure ,2 Å [10]. In the ‘‘twilight zone’’ of sequence

identity [11], structural information extracted from weakly

homologous structure templates identified by threading is sufficient

to provide approximately correct 3D models for a significant

fraction of protein targets [12,13]. In contrast to protein structure

prediction, information from related 3D structures is rarely used in

the large-scale modeling of protein-ligand complexes.

One example of an approach that employs such information is

CORES, an automated method for building three-dimensional

protein-ligand complexes [14]. CORES directly utilizes the

conformation and binding pose of key structural elements of the

target ligand, termed ‘‘molecular frameworks’’, found in templates

that are closely related to the protein target. Its practical utility was

demonstrated on a set of protein kinases in which ligands

containing related frameworks were found to bind in the same

orientation. A similar approach designed specifically for kinases,

kinDOCK, performs ligand comparative docking by using a

kinase family profile to align the related kinase-ligand complexes

onto the target kinase’s structure and then directly transfers the

ligand coordinates [15]. KinDOCK typically docks target ligands

into the kinase binding pocket within a 2 Å RMSD from the

crystal structure. Moreover, an original clustering procedure based

on the binding pose similarity was proposed to highlight the

structural similarities and differences within a set of multiple X-ray

structures complexed with different ligands [16]. Other examples

of ligand docking studies that utilize structural information

extracted from closely related protein-ligand complexes include

the analysis of cathepsin inhibitor specificity [17], the examination

of carbohydrate recognition by the viral VP1 protein [18],
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screening for selective bacterial sirutin inhibitors [19] and the

design of small molecule inhibitors of the macrophage migration

inhibitory factor [20]. Typically, modeling templates for the target

ligands are extracted from 3D structures of small molecules

complexed to closely related proteins.

In our previous study, we observed that evolutionarily remotely

related proteins identified by threading often share a common ligand-

binding site [21]. Both the localization of the binding site and

chemical properties of bound ligands are strongly conserved. This

forms the basis of the FINDSITE binding site prediction/protein

functional inference/ligand screening algorithm [21]. Furthermore,

we found that a pocket-specific potential of mean force derived from

known protein-ligand complexes identified for a given target

sequence by threading is often more specific than generic

knowledge-based potentials derived from ligand-protein complexes

found in the PDB [22]. This enhanced specificity suggests that the

binding mode and protein-ligand interactions in distantly related

protein families are conserved during evolution. To confirm this

hypothesis, here, we present the results of ligand binding mode

analysis of evolutionarily distant proteins identified by state-of-the-art

threading methods [23]. The ligands that bind to the common

binding site contain a set of strongly conserved anchor functional

groups as well as a variable region that imparts specificity to a

particular family member. Furthermore, the degree of sequence and

structure conservation of residues in contact with the ligand anchor

functional groups are higher than those contacting ligand variable

regions. Exploiting these observations, we develop FINDSITELHM

(LHM stands for Ligand Homology Modeling) that employs

structural information extracted from weakly related proteins to

perform rapid ligand docking and ranking by homology modeling;

we compare its accuracy to classical ligand docking/ranking

approaches [4,22,24].

Results

Binding site prediction by FINDSITE
The protocol followed in this study is a direct extension of

FINDSITE [21], a threading-based method for ligand-binding site

prediction and functional annotation that detects the conservation

of functional sites and their properties in evolutionarily related

proteins. For a given target sequence, FINDSITE identifies ligand-

bound template structures from a set of distantly homologous

proteins (here, we limit ourselves to target proteins having ,35%

sequence identity to their closest template, but this arbitrary

restriction would be removed in real world predictions) recognized

by the PROSPECTOR_3 threading approach [23] and superim-

poses them onto the target’s (experimental or predicted) structure

using the TM-align structure alignment algorithm [25]. Binding

pockets are identified by the spatial clustering of the center of mass

of template-bound ligands that are subsequently ranked by the

number of binding ligands.

Ligand anchor substructure identification
For each target protein, the template-bound ligands that occupy

a top-ranked, predicted binding site are clustered using the

SIMCOMP chemical similarity score [26]. The ‘‘anchor’’

substructure is then identified in each cluster as described in

Methods. First, we examine the anchor substructure size relative to

the average molecule size. Applying the approach to a represen-

tative benchmark set of 711 ligand-protein complexes (where the

target proteins have pairwise sequence identity to their templates

,35%, see Methods), as shown in Figure 1, in most cases, at least

50% of a ligand is comprised of an anchor region whose functional

groups are conserved in .90% of the template ligands. Those

clusters in which the anchor region is smaller than 50% of the

ligand are mostly short oligosaccharides, with a sugar monomer

identified as a common substructure. This also explains the high

standard deviation in the average ligand molecule size. For some

difficult cases, our graph isomorphism analysis didn’t provide a

sufficient number of atomic equivalences to recognize a common

substructure. In contrast, those targets near the diagonal have an

anchor equivalent to the average molecule size and represent

strongly conserved ligands with little chemical variability; e.g.

hemes. In addition, there are targets with a very small number of

templates, all having very similar ligands. Nonetheless, for the

majority of targets, a well-defined anchor substructure with a co-

occurring variable region is detected.

Having identified the anchor substructure, we next investigate

the structural conservation of its binding mode. Figure 1 (inset

plot) shows the histogram of the average pairwise RMSD among

the anchor groups upon global superposition of the template

proteins. Note that the properties of the native ligand are not used

in any way to identify the anchor region’s properties. Clearly, in

most cases, the average pairwise RMSD is ,2.5 Å.

Properties of protein binding residues
We next examine the properties of the protein’s ligand-binding

region. Given the chemical conservation of the anchor substruc-

ture as well as the strong structural conservation of it’s binding

mode, for binding residues, one would expect that residues

contacting ligand anchor groups are more conserved than average.

The degree of sequence and structure conservation was calculated

for consensus binding residues (CBRs), defined as residues

contacting a ligand in at least 25% of the threading templates.

This criterion was previously found to maximize the overlap

between predicted and observed binding residues [21] and

provides sufficient statistics to calculate the sequence and structural

features of binding residues. We used a probability threshold to

define anchor/non-anchor CBRs based on the protein-ligand

contacts extracted from the threading templates. The probability

of a residue to be an anchor residue simply corresponds to the

fraction of contacts formed by all residues in the equivalent

Author Summary

As an integral part of drug development, high-throughput
virtual screening is a widely used tool that could in principle
significantly reduce the cost and time to discovery of new
pharmaceuticals. In practice, virtual screening algorithms
suffer from a number of limitations. The high sensitivity of all-
atom ligand docking approaches to the quality of the target
receptor structure restricts the selection of drug targets to
those for which high-quality X-ray structures are available.
Furthermore, the predicted binding affinity is typically
strongly correlated with the molecular weight of the ligand,
independent of whether or not it really binds. To address
these significant problems, we developed FINDSITELHM, a
novel threading-based approach that employs structural
information extracted from weakly related proteins to
perform rapid ligand docking and ranking that is very much
in the spirit of homology modeling of protein structures.
Particularly for low-quality modeled receptor structures,
FINDSITELHM outperforms classical all-atom ligand docking
approaches in terms of the accuracy of ligand binding pose
prediction and requires considerably less CPU time. As an
attractive alternative to classical molecular docking, FINDSI-
TELHM offers the possibility of rapid structure-based virtual
screening at the proteome level to improve and speed up the
discovery of new biopharmaceuticals.

Ligand Homology Modeling
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position in the template structures with anchor functional groups

of bound ligands. Differences in the degree of sequence and

structure conservation between anchor and non-anchor CBRs

were calculated on increasing the probability threshold from 0.1 to

0.9 using Student’s t-test for independent samples. Shannon’s

information entropy is used to measure the sequence variability at

a particular position in a target protein (see Methods). Analysis of

the sequence entropy revealed a significantly higher sequence

conservation of residues in contact with the anchor functional

groups than those in contact with ligand variable regions

(Figure 2A). Next, we analyzed the structural features of CBRs

in terms of the experimental B-factors that reflect local mobility

[27] and find that the B-factors of residues in contact with the

anchor region of the ligands are significantly lower (Figure 2B and

2C which shows the B-factors of the Cas and side chain heavy

atoms, respectively). The conservation of the anchor-binding pose

is consistent with the relatively lower B-factors observed for the

residues in spatial proximity to the anchor functional groups.

These results differ significantly from random (Figure 2D).

Ligand binding pose prediction
Given that Figure 1 (inset) strongly suggests that the localization

of the anchor substructure and its internal conformation is

conserved, we developed FINDSITELHM, a very simple, rapid

approach for ligand binding pose prediction. Using the consensus-

binding mode of the anchor substructure, we align the ligand of

interest to the anchor region and then, optionally, minimize the

ligand conformation to remove steric clashes. This procedure can

be thought of as ‘‘ligand docking by homology modeling’’. Here,

only weakly related template proteins (,35% sequence identity to

the target) selected by threading were used to derive the consensus

anchor-binding mode. In Table 1, using the crystal structures as

the target receptors for ligand docking for the 711 ligand-protein

set, the results are compared to three established ligand docking

approaches [4,22,24] in terms of the heavy atom RMSD from the

crystal structure. Target proteins are divided into three subsets

with respect to the coverage of the predicted anchor substructure.

For the first subset (full coverage) that consists of proteins for which

a portion of their target ligands cover at least 90% of the functional

groups in the predicted anchor substructure, simple ligand

superposition is quite successful and outperforms regular ligand

docking approaches. For these cases, using all-atom minimization

with Amber [28], the predicted binding mode can be refined to an

average RMSD from the crystal structure of ,2.5 Å. An example

of successful refinement is presented for the human fibroblast

collagenase in Figure 3, where the final ligand heavy atom RMSD

is 0.63 Å. In contrast, the RMSD from AutoDock is 2.77 Å.

The second subset (partial coverage) comprises target ligands that

do not fully cover any of the predicted anchor substructure. Here, the

average RMSD of the binding mode predicted by FINDSITELHM is

higher than AutoDock and is comparable to Q-Dock and LIGIN.

However, it is still better than random ligand placement. Finally, if

none of the predicted anchor substructures are even partially covered

by a target ligand (low coverage), the results of docking using

FINDSITELHM are indistinguishable from random. Here, traditional

ligand docking approaches, particularly AutoDock, give much better

results. In addition to anchor structure coverage, the performance of

FINDSITELHM depends on the overall accuracy of binding pocket

prediction and the conservation of the anchor-binding mode; this is

discussed in further detail below and presented in Figure 4, see below.

Figure 1. Average molecule size 6SD (one standard deviation) plotted as the function of average anchor size for the largest
clusters of similar compounds bound to the top-ranked predicted binding pockets. Dotted lines separate clusters for which different
anchor sizes were found (100%, 75%, 50% and 25% of the average ligand molecule respectively). Inset: cumulative distribution of the average
pairwise RMSD of the anchor groups upon global superposition of the template proteins.
doi:10.1371/journal.pcbi.1000405.g001

Ligand Homology Modeling

PLoS Computational Biology | www.ploscompbiol.org 3 June 2009 | Volume 5 | Issue 6 | e1000405



Figure 2. The degree of sequence and structure conservation for the protein’s ligand-binding region. (A) Average sequence entropy,
average normalized B-factor for (B) the Ca atoms and (C) the side chain heavy atoms as well as (D) a random property assigned to anchor and non-
anchor CBRs. The populations of anchor and non-anchor CBRs were determined using different probability thresholds for anchor residues. Top plots
show the p-value of the t-test applied to both populations of CBRs with respect to the property under consideration.
doi:10.1371/journal.pcbi.1000405.g002

Table 1. Docking results for the FINDSITELHM dataset in terms of ligand heavy atom RMSD from the crystal structure.

Docking algorithm Full coverage* Partial coverage{ Low coverage{

Targets1 522 142 47

FINDSITELHM" 2.8162.15 4.7962.33 5.0862.08

FINDSITELHM+minimizationI 2.5562.28 4.7062.52 5.0362.20

AutoDock 3.1262.61 4.3462.71 3.8863.15

Q-Dock 3.2662.12 4.9362.35 4.9062.21

LIGIN 4.7062.59 4.8662.59 4.4662.52

Random 5.8561.67 5.7461.58 5.0261.49

RMSD values are reported for three subsets comprising ligands with different anchor region coverage.
*Target ligand covers $90% of the anchor functional groups.
{Target ligand covers $50% and ,90% of the anchor groups.
{Target ligand covers ,50% of the anchor groups.
1Number of target proteins.
"Ligand superposed onto the consensus anchor-binding mode.
ISuperposed conformation minimized with Amber. All results are in Å.
doi:10.1371/journal.pcbi.1000405.t001

Ligand Homology Modeling
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Here, we note that using the fraction of the anchor region that is

aligned for a given ligand (Figure 4A), or the average pairwise RMSD

of the anchor ligand functional groups (Figure 4B), we can predict the

expected accuracy of binding pose prediction without knowing the

experimental result. Not surprisingly (Figure 4C), when the accuracy

of the binding pocket prediction as provided by FINDSITE

improves, the accuracy of the ligand pose prediction by FINDSI-

TELHM also improves.

Weakly homologous protein models frequently have significant

structural inaccuracies in side-chain and backbone coordinates and

thus, are much more challenging targets for ligand binding pose

prediction. The performance of FINDSITELHM, AutoDock, Q-Dock

and LIGIN in ligand docking when protein models are used as the

target receptors was assessed for the Dolores dataset of 205 proteins

[22,29]; the average Ca RMSD to native of these protein models is

3.7 Å. Table 2 presents ligand docking results using crystal structures

as well as weakly homologous protein models in terms of the fraction

of recovered binding residues and specific native contacts. Consid-

ering the complete dataset and receptor crystal structures, the

accuracy of FINDSITELHM is slightly lower than AutoDock and Q-

Figure 3. Ligand binding pose prediction for human fibroblast collagenase (PDB-ID: 1hfc). Predicted poses (thick, solid) from
FINDSITELHM: (left) superimposed ligand with the anchor portion colored in white, (middle) minimized conformation with Amber and (right)
generated by AutoDock are compared to the experimental binding pose of hydroxamate inhibitor (thin, transparent). RMSD values were calculated
for heavy atoms. Selected binding residues are shown.
doi:10.1371/journal.pcbi.1000405.g003

Figure 4. Confidence index for ligand docking by FINDSITELHM. Box and whiskers plots of the relationship between the accuracy
FINDSITELHM in terms of the RMSD from the crystal ligand pose calculated for its heavy atoms and (A) the coverage of the anchor substructure by a
target ligand, (B) the structural conservation of anchor binding mode expressed as the average pairwise RMSD (pRMSD) of the anchor functional
groups, and (C) correlation between the pocket prediction accuracy by FINDSITE assessed by the distance between the predicted pocket center and
the predicted center of mass of the native ligand. Boxes end at the quartiles Q1 and Q3; a horizontal line in a box is the median. Whiskers point at the
farthest points within 1.5 times the interquartile range and circles represent the outliers.
doi:10.1371/journal.pcbi.1000405.g004

Ligand Homology Modeling
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Dock. This is because the predicted anchor substructure was fully

covered ($90%) by the target ligand only for 62.4% of the receptors;

partial ($50% and ,90%) and low (,50%) coverage of the anchor

substructure was found for 25.4% and 12.2% of the targets,

respectively. This partly reflects the fact that the placement of the

ligand variable region has a random component that diminishes the

overall accuracy. Consistent with the decrease in ligand RMSD on

minimization, the fraction of binding residues and native contacts

increases.

In contrast, for protein models, FINDSITELHM recovered more

binding residues and specific native contacts than both all-atom

docking approaches, AutoDock and LIGIN. Considering only the

most confident cases for which FINDSITE was likely to predict the

binding pocket center with #4 Å accuracy (‘‘Easy’’ targets) and

the predicted anchor substructure fully (partially) covered by the

target ligand, the fraction of binding residues and specific native

contacts recovered by FINDSITELHM is 0.66 (0.61) and 0.49

(0.43), respectively. However, now the all-atom minimization

procedure applied to the binding poses predicted by FINDSI-

TELHM caused a loss of the specific native contacts. This reflects

the fact that structure adjustments are required to remove the

repulsive ligand-residue interactions that are not accommodated

by simple minimization. Nevertheless, these results represent a

significant improvement over traditional all-atom docking against

modeled receptor structures. We also note the high sensitivity of

all-atom docking approaches to the quality of the receptor

structures; for weakly homologous protein models, the perfor-

mance of AutoDock and LIGIN is no better than random ligand

placement into the predicted binding sites. The performance of Q-

Dock for protein models was notably higher, since it was explicitly

designed to deal with structural inaccuracies in predicted receptor

models. Finally, in contrast to classical ligand docking approaches,

FINDSITELHM is computationally less expensive, and typically

requires less than a minute of CPU time (see Table S1).

FINDSITELHM docking confidence
An interesting question that is very important from the practical

point of view, is when should we expect a successful binding mode

prediction by using ligand docking by homology modeling? In

addition to the coverage of an anchor structure that clearly

impacts docking accuracy (Figure 4A), we also investigated the

relationship between pocket prediction accuracy, expressed as the

distance between the predicted pocket center and the geometric

center of the native ligand, the conservation of anchor binding

mode in terms of the average pairwise RMSD of the anchor

functional groups, and the accuracy of FINDSITELHM binding

mode prediction assessed by the heavy atom RMSD from the

crystal ligand pose. As expected, the average accuracy of the

binding mode prediction by FINDSITELHM decreases with

decrease in the degree of the conservation of the anchor

substructure (Figure 4B). The RMSD of the predicted ligand-

binding pose is ,2 Å on average for highly conserved anchor

substructures whose pairwise RMSD is ,2 Å. For moderately

conserved anchor substructures with a pairwise RMSD of 2–4 Å,

the RMSD of the predicted ligand-binding mode is ,3 Å in most

cases. Finally, accompanied by weak (.4 Å) structural conserva-

tion of an anchor, docking accuracy drops to .3 Å on average. In

addition, the drop off in ligand binding pose prediction correlates

with the overall accuracy of binding pocket prediction by

FINDSITE (Figure 4C). The most accurate ligand binding poses

were obtained for precisely detected pockets, where the pocket

center was predicted within 2 Å from the geometric center of the

native ligand. Considering the structural conservation of the

derived anchor substructure, its coverage by a target ligand and

the FINDSITE confidence index for pocket detection [21], (all

properties which can be calculated without knowledge of the native

binding pose), one can roughly estimate the quality of the

performance of FINDSITELHM in ligand binding pose prediction.

Anchor region identification and analysis
The results of the application of FINDSITELHM to glutathione

S-transferase (PDB-ID: 1a0f), MTA phosphorylase (PDB-ID: 1sd2)

and lysine aminotransferase (PDB-ID: 2cjd) are presented.

Figures 5–10 present the common ligand anchor substructures/

variable groups identified from weakly homologous threading

templates for these 3 proteins. In Figure 11, the degree of sequence

and structure conservation of amino acid residues for these

proteins is projected onto the target protein surface and compared

Table 2. Docking results for the Dolores dataset in terms of the fraction of recovered binding residues and specific native contacts.

Docking algorithm Binding residues Native contacts

Crystal* Model{ Crystal* Model{

Targets{ 205 / 166 / 120 205 / 164 / 117 205 / 166 / 120 205 / 164 / 117

FINDSITELHM1 0.64 / 0.70 / 0.76 0.55 / 0.61 / 0.66 0.46 / 0.52 / 0.59 0.38 / 0.43 / 0.49

FINDSITELHM+minimization" 0.67 / 0.73 / 0.79 0.53 / 0.59 / 0.63 0.47 / 0.53 / 0.61 0.28 / 0.32 / 0.35

AutoDock 0.73 / 0.77 / 0.82 0.50 / 0.54 / 0.57 0.52 / 0.57 / 0.64 0.25 / 0.27 / 0.30

Q-Dock 0.77 / 0.81 / 0.85 0.64 / 0.70 / 0.74 0.51 / 0.55 / 0.63 0.39 / 0.45 / 0.50

LIGIN 0.64 / 0.69 / 0.72 0.47 / 0.50 / 0.53 0.39 / 0.42 / 0.46 0.20 / 0.22 / 0.23

Random 0.55 / 0.60 / 0.63 0.50 / 0.54 / 0.57 0.27 / 0.30 / 0.32 0.23 / 0.25 / 0.27

Direct transferI 0.77 / 0.78 / 0.78 0.69 / 0.70 / 0.71

Three values (A/B/C) are reported for: (A) all targets, (B) FINDSITE ‘‘Easy’’ targets with at least partial anchor coverage and (C) FINDSITE ‘‘Easy’’ targets with full anchor
coverage.
*Crystal structures.
{protein models used as targets for binding site prediction and ligand docking.
{Number of target proteins.
1Ligand superimposed onto the consensus anchor-binding mode.
"Superimposed conformation minimized with Amber.
ILigand transferred directly from the crystal structure.
doi:10.1371/journal.pcbi.1000405.t002

Ligand Homology Modeling
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Figure 5. Ligand anchor identification for glutathione S-transferase from E. coli (PDB-ID: 1a0f). Common anchor substructure (A)
identified from weakly homologous threading templates as well as different variable groups (R) found in ligands complexed with the template
proteins are presented.
doi:10.1371/journal.pcbi.1000405.g005

Ligand Homology Modeling
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Figure 6. Caption as in Figure 5.
doi:10.1371/journal.pcbi.1000405.g006

Ligand Homology Modeling
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to a random distribution. In Figures 12–14, using the target crystal

structure, the results of flexible ligand docking by FINDSITELHM

(including refinement) are compared to ligand binding poses

predicted by classical docking approaches and the consistently

better performance of FINDSITELHM is demonstrated. In the case

of Figure 14 where the RMSDs of LIGIN and random pose

prediction are the same as FINDSITELHM, the pyridoxal-59-

phosphate moiety is clearly better placed by FINDSITELHM. All

have the same RMSD mainly due to the incorrect placement of

the variable region.

Relationship of anchor regions to conserved enzyme
substrate substructures

Recently, a detailed picture of the evolution and diversification

of enzyme function was drawn from the analysis of conservation of

substrate substructures in 42 major enzyme superfamilies [30].

Based on graph isomorphism analysis, highly conserved substruc-

tures were identified in all substrates of a particular enzyme

superfamily. For the remaining substrate substructures, called

reacting substructures, substantial variation in chemical properties

within the superfamily was found. Systematic analysis of the

substrates in 42 major SCOP [31] enzyme superfamilies revealed

chemically conserved patterns that typify individual superfamilies

[30]. This approach is very similar in spirit to FINDSITELHM;

both demonstrate how evolutionary pressure directs the evolution

of protein molecular function. The structural and chemical

patterns of enzyme substrates, or small ligands in general, have

been conserved during evolution due to the strong conservation of

the structural and chemical features of the binding site residues.

We next analyzed the overlap between the conserved substrate

substructures (CSSs) identified at the SCOP superfamily level [30]

and the anchor regions in ligands bound to evolutionarily related

proteins selected by threading. The results presented in Figure 15

show that the highly conserved substructures of the enzyme

substrates identified by Babbitt and colleagues [30] to a large

extent overlap with the anchor substructures detected by our

threading-based approach; in over 70% of the cases, the anchor

substructure covers at least 70% of CSS’s atoms. Detailed results

obtained for 4-a-glucanotransferase from T. litoralis (PDB-ID:

1k1w) and D-xylose isomerase from Arthrobacter sp. (PDB-ID: 1die)

are presented in Tables S2 and S3, respectively. We find that the

highly conserved substructures of the enzyme substrates frequently

overlap with the conserved anchor substructures detected by our

threading-based approach. The set of ligands that bind to the

Figure 7. Ligand anchor identification for the human MTA phosphorylase (PDB-ID: 1sd2; SCOP superfamily/family: Purine and
uridine phosphorylases/Purine and uridine phosphorylases; EC: 2.4.2.28). Common anchor substructure (A) identified from weakly
homologous threading templates as well as different variable groups (at the positions R1–R7) found in ligands complexed with the template proteins
are presented.
doi:10.1371/journal.pcbi.1000405.g007

Ligand Homology Modeling
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Figure 8. Ligand anchor identification for lysine aminotransferase from M. tuberculosis (PDB-ID: 2cjd). Common anchor substructure (A)
identified from weakly homologous threading templates as well as different variable groups (R) found in ligands complexed with the template
proteins are presented.
doi:10.1371/journal.pcbi.1000405.g008

Ligand Homology Modeling
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Figure 9. Caption as in Figure 8.
doi:10.1371/journal.pcbi.1000405.g009

Ligand Homology Modeling
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common binding site in distantly evolutionarily related proteins

contain a set of strongly conserved ‘‘anchor’’ functional groups

and ‘‘variable’’ regions that account for a specificity toward a

particular family member.

As a consequence of the ligand clustering procedure that

precedes anchor identification, the anchor substructures typically

contain more atoms than CSSs and are not confined to enzymes.

Both features are important for practical application in ligand

docking by homology modeling, as demonstrated by FINDSI-

TELHM simulations, where the consensus anchor-binding mode is

used as a reference framework for the superposition of a query

ligand. Furthermore, common anchor substructures are observed

across ligands bound to weakly related proteins that belong to

more than one superfamily. These subtle evolutionary relation-

ships detected by sensitive threading techniques [32,33] are of

paramount importance for novel biopharmaceutical discovery that

could be accounted for to identify potential off-site drug targets

and reduce side effects.

Figure 10. Caption as in Figure 8.
doi:10.1371/journal.pcbi.1000405.g010
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Application of FINDSITE/FINDSITELHM to ligand screening
HIV-1 protease plays a crucial role in the life cycle of HIV

[34,35]; thus, it is an important drug target for AIDS treatment

with a number HIV-1 protease inhibitors identified [36,37].

Several (Table 3) are FDA-approved anti-HIV drugs. Here, we

selected HIV-1 protease as an example to demonstrate the

performance of FINDSITELHM in ligand-based virtual screening

using the coverage of anchor substructures as a simple scoring

function.

The performance of FINDSITELHM alone and in combination

with FINDSITE in virtual screening for HIV-1 protease inhibitors

is presented in Figure 16. Both FINDSITE and FINDSITELHM

perform considerably better than a random ligand selection. The

molecular fingerprints constructed by FINDSITE recovered

Figure 11. Sequence and structure conservation for the selected ligand-binding sites. (A) Glutathione sulfonic acid complexed with
glutathione S-transferase, PDB-ID: 1a0f; (B) 59-methylthiotubercidin complexed with MTA phosphorylase, PDB-ID: 1sd2; and (C) lysine and piridoxal-59-
phosphate complexed with lysine aminotransferase, PDB-ID: 2cjd. Sequence entropy (red – low, green – high), normalized crystallographic B-factors
(red – low, green – high) and random value (red – 0.0, green – 1.0) are presented in left, middle and right column, respectively. The ‘‘anchor’’ part of
the molecule is presented in white, whereas the variable part is shown in black.
doi:10.1371/journal.pcbi.1000405.g011
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slightly more known active compounds in the top-ranked fraction

of the screening library than anchor-based FINDSITELHM; the

enrichment factor calculated for the top 1% (10%) is 27.0 (6.8) and

23.3 (5.9) for FINDSITE and FINDSITELHM, respectively.

Clearly, fusion by ranks outperforms the individual scoring

functions with the enrichment factor of 38.1 (7.3) for the top 1%

(10%) of ranked ligands. These results suggest that the anchor-

based approach is able to detect active compounds for which the

fingerprint-based method assigns relatively low score. Further-

more, using the combined FINDSITE/FINDSITELHM approach,

4 (7) out of 10 FDA-approved HIV-1 protease inhibitors are found

in the top 1% (5%) of the screening library (Table 3).

Discussion

Conservation of protein sequence and structural patterns is

widely used to study protein molecular function [38–40]. Indeed,

the structural and chemical characteristics of a binding site are

important for understanding ligand selectivity and cross-reactivity

[41,42]. In that regard, our sequence entropy analysis suggests that

residues contacting anchor functional groups have been subjected

to higher evolutionary conservation pressure than those contacting

ligand variable regions. Furthermore, the conservation of the

anchor-binding pose is consistent with the relatively low

experimental B-factors observed for residues contacting anchor

functional groups. The significantly higher structural plasticity of

variable region binding residues could reflect the different types/

sizes of functional groups found in the ligand variable substruc-

tures that might be responsible for ligand specificity for particular

protein family members.

Binding site analysis also has practical implications. In the

simplest case, using the ligand binding modes extracted from

closely related structures and incorporated as spatial restraints in

protein structure modeling provides better homology models of

protein binding sites [43]. In large-scale computational experi-

ments involving ligand docking, using the AnnoLyze approach the

transfer of ligands from known structures of closely related protein-

ligand complexes is an attractive alternative to CPU-expensive,

classical ligand docking approaches [44]. Here, we have shown

that this idea is in fact more general and applies to evolutionarily

Figure 12. Ligand binding pose prediction for glutathione S-transferase (PDB-ID: 1a0f). Predicted poses (thick sticks) from FINDSITELHM

(superimposed ligand with the anchor portion colored in white and minimized conformation), AutoDock, LIGIN, Q-Dock and a randomly placed
ligand are compared to the experimental binding pose (thin sticks). RMSD values were calculated for heavy atoms.
doi:10.1371/journal.pcbi.1000405.g012
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distant proteins. Indeed, evolution provides a type of signal

averaging to identify the essential features associated with ligand

binding. This insight can be profitably exploited in a variety of

contexts.

For example, for evolutionary distant proteins, we identify the

subset of ligands whose pose is conserved, viz. the anchor region.

Then, based on the observation that across a set of weakly related

proteins, not only is the chemical identity of anchor functional

groups strongly conserved but also the anchor binding mode, with

an average pairwise RMSD ,2.5 Å in most cases. FINDSI-

TELHM uses the consensus binding mode of an anchor

substructure as the reference coordinates to perform rapid flexible

ligand docking by superposition. This results in an average ligand

heavy atom RMSD from native of 2.5 Å for those ligands that

contain a significant portion of the anchor region. Moreover, for

predicted protein structures, with considerably less CPU time,

FINDSITELHM outperforms all-atom ligand docking approaches

in terms of the fraction of recovered binding residues and specific

native contacts.

The accuracy of FINDSITELHM is affected by several factors:

First, for a given target, the set of evolutionarily related template

structures needs to be identified. Given the improvements in

threading approaches [23,45] and the completeness of the fold

library [46], one can expect to obtain a set of templates for the

majority of single domain targets. Next, the docking performance

of FINDSITELHM is well correlated with the overall accuracy of

binding pocket prediction by FINDSITE. Typically, high accuracy

in ligand binding pose prediction requires the binding site to be

precisely detected within a distance of 2 Å. This level of accuracy

in pocket prediction is usually achieved for Easy targets, as

classified by FINDSITE [21]. Finally, the average accuracy of the

binding mode prediction by FINDSITELHM decreases with the

decrease in the coverage of the anchor substructure by the target

ligand as well as with the decrease in the degree of the anchor

structural conservation. Here, the growing number of protein

crystal structures solved in the complexed state with chemically

diverse small organic molecules expands the pool of suitable

targets for FINDSITELHM. It is noteworthy from the practical

point of view that all these properties can be calculated during the

modeling procedure, without knowing the native binding pose.

Thus the expected accuracy of FINDSITELHM in ligand binding

pose prediction can be estimated with fairly high confidence.

Also as shown for HIV-1 protease, using just the target protein’s

sequence as input, FINDSITE/FINDSITELHM can efficiently and

Figure 13. Ligand binding pose prediction for MTA phosphorylase (PDB-ID: 1sd2). Description as in Figure 12.
doi:10.1371/journal.pcbi.1000405.g013
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rather accurately rank a large ligand library. Since for the majority

of gene products, at least weakly homologous proteins can be

identified in structural databases by current threading methods

[23] and approximately correct protein models can be generated

by protein structure prediction techniques [10,12,13], FINDSI-

TELHM offers the possibility of proteome-scale structure-based

virtual screening for novel biopharmaceutical discovery. This

would have a great advantage over just screening single proteins. It

affords the possibility of identifying lead compounds with desired

selectivity that could be further exploited at the outset of the drug

development process to reduce side effects.

We note that similarity in global fold alone is usually insufficient

for effective function interference and results in a high false positive

rate [47]. For that reason, the most effective function prediction

methods, such as ProFunc [48], AnnoLite [44] or Mark-Us [49]

typically combine structure- and sequence-based techniques. In that

respect, an important component of FINDSITE/FINDSITELHM is

the template selection by threading that employs a strong sequence

profile term [23]. This allows the detection of evolutionarily distant

homologues [21] with clear functional relationships to the protein of

interest not only in terms of the localization of the binding site, but

also in the detailed chemical and structural aspects of ligand

binding, particularly those that impart binding specificity. Thus,

threading provides a richness to functional annotation that to date

was not fully exploited.

Methods

Dataset
High quality protein–ligand complex X-ray structures were

taken from the Astex diverse set used to validate the GOLD

docking algorithm [50] and from a non-redundant Q-Dock

dataset [22]. In the Astex set, we excluded complexes in which the

binding site is formed by more than one protein chain. From the

Q-Dock set, we exclude proteins with .35% sequence identity to

any protein in the Astex set. We only include proteins for which at

least 5 ligand-bound weakly homologous threading templates can

be identified by protein threading and the binding pocket can be

predicted by FINDSITE [21] within 4.5 Å from the bound ligand;

this represents about 67% of protein targets. The final dataset

consisting of 711 complexes is found at http://cssb.biology.gatech.

edu/skolnick/files/FINDSITELHM.

In addition to the crystal structures used as the target proteins,

we evaluated the performance of FINDSITELHM in ligand

Figure 14. Ligand binding pose prediction for lysine aminotransferase (PDB-ID: 2cjd). Description as in Figure 12.
doi:10.1371/journal.pcbi.1000405.g014
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docking against weakly homologous protein models for the

Dolores dataset [22,29] of 205 protein models generated by our

protein structure prediction protocol, TASSER [13].

Binding pocket prediction
For a given amino acid sequence, the PROSPECTOR_3

threading algorithm [23] is used to identify weakly homologous

structure templates where templates with .35% sequence identity

to target protein are excluded. Structures that bind a ligand are

identified by FINDSITE [21] and superimposed onto the

reference crystal structure by TM-align [25]. FINDSITE employs

an average linkage clustering procedure to cluster the centers of

mass of template-bound ligands to detect putative binding sites

and then ranks them by the number of ligands.

Anchor substructure definition
Template-bound ligands that occupy top-ranked predicted

binding pockets are clustered using a SIMCOMP similarity (SC)

cutoff of 0.7. SIMCOMP is a chemical compound-matching

algorithm that provides atom equivalences [26]. Each cluster of

Figure 15. Coverage by anchor and non-anchor functional groups of conserved enzyme substrate substructures from 35 ligand
clusters identified for 24 enzymes identified by Babbitt and coworkers [30].
doi:10.1371/journal.pcbi.1000405.g015

Table 3. Library ranks assigned to FDA-approved drugs in virtual screening for HIV-1 protease inhibitors.

Generic name* CAS number{ Max TC{ Library rank1

FINDSITE FINDSITELHM FINDSITE/FINDSITELHM

Amprenavir 161814-49-9 0.470 13,552 45,271 16,549

Atazanavir 198904-31-3 0.472 4,766 1,661 520

Darunavir 206361-99-1 0.424 30,287 61,485 35,740

Fosamprenavir 226700-81-8 0.434 28,659 79 5,041

Indinavir 150378-17-9 0.576 878 1,434 119

Lopinavir 192725-17-0 0.660 32 1,836 92

Nelfinavir 159989-64-7 0.595 5,013 12,514 2,227

Ritonavir 155213-67-5 0.459 28,511 5,181 6,481

Saquinavir 127779-20-8 0.596 87 7,397 650

Tipranavir 174484-41-4 0.398 26,044 22 4,244

*From: http://www.fda.gov/oashi/aids/virals.html.
{CAS Registry at http://www.cas.org/.
{Maximal Tanimoto coefficient to template-bound ligands (,35% target -template sequence identity).
1Ranks assigned by FINDSITE, FINDSITELHM and these resulted from data fusion (FINDSITE/FINDSITELHM); the screening library consists of 124,363 compounds; ranks in
bold and italics are within the top 5% and 1% of the library, respectively.

doi:10.1371/journal.pcbi.1000405.t003
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ligand molecules is used to detect an anchor substructure. The

equivalent atom pairs provided by SIMCOMP are projected onto

ligand functional groups. Here, we used the set of 17 functional

groups defined in [22]. The anchor substructure is defined as a

maximum set of conserved functional groups present in at least

90% of the ligands from a single cluster.

Protein sequence conservation
The degree of sequence variability was calculated for each

consensus binding residue using Shannon’s information entropy [51]:

si~{
X7

k~1

pk log2 pkð Þ bit½ � ð1Þ

where pk is the probability that the i-th residue position is occupied by

an amino acid of class k, with the amino acid classification given in

[52]. The sequence entropy was calculated only for ligand-bound

threading templates that share a common binding pocket. Residue

equivalences were provided by TM-align [25].

Protein structure conservation
Raw experimental B-factors were extracted from the PDB [53]

and normalized using the procedure described in [54], with outliers

detected and removed using the median-based method [55].

Ligand docking by FINDSITELHM

The FINDSITELHM docking procedure superimposes the target

ligand onto the consensus binding pose, the anchor conformation

averaged over the seed compounds (the largest set of compounds

that have their anchor substructures within a 4 Å RMSD from

each other), of the identified anchor substructure. We note that no

structural information from the crystal structure of the target complex is used. If

multiple anchor substructures are detected, we select the one

derived from the cluster of template-bound ligands with the

highest average chemical similarity to the target ligand, as assessed

by its SIMCOMP score [26]. This maximizes the coverage of the

selected anchor. If atom equivalences for non-anchor atoms can be

established between the target ligand and any template-bound

ligand, their positions are also included in the set of the reference

coordinates. Often, by including additional coordinates, approx-

imately correct positions of ligand variable groups can provide a

good initial conformation for post-docking refinement, e.g. in

Figures 3, 12, and 13. If none of the identified anchor

substructures is covered by the target ligand, it is randomly placed

in the predicted pocket. Ligand flexibility is accounted for by the

superposition of multiple conformations of the target ligand (for

details see classical ligand docking protocols). The conformation

that can be superposed onto the reference coordinates with the

lowest RMSD to the predicted anchor pose is selected as the final

model.

All-atom refinement
Crude models of protein-ligand complexes generated by

FINDSITELHM were optionally refined by a simple energy

minimization in Amber 8 [28]. We used the Amber force field

03 [56] for proteins and the general Amber force field [57], GAFF,

for ligands. The parameterization of ligands was done in a fully

automated fashion with the aid of Antechamber 1.27 [58]. If

necessary, the system was neutralized by calculating a Culombic

Figure 16. Enrichment behavior for FINDSITE (molecular fingerprints) and FINDSITELHM (anchor coverage) approaches compared
to a random ligand selection in virtual screening for HIV-1 protease inhibitors. FINDSITE/FINDSITELHM corresponds to the results obtained
by applying data fusion.
doi:10.1371/journal.pcbi.1000405.g016
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potential on the grid of 1 Å using LEaP (Amber 8) in order to

place chloride (sodium) ions at the positions of the highest (lowest)

electrostatic potential around the initial protein-ligand complex.

Protein atoms were fixed, while the ligand conformation was

energy minimized in vacuum by 1000 cycles of a steepest-descent

procedure, followed by 1000 cycles of a conjugate gradient

procedure.

Classical ligand docking
AutoDock. We used AutoDock 3 [4] in the flexible ligand

docking simulations. Input files for both receptors and ligands

were prepared using MGL Tools 1.5.2 [59]. A grid spacing of

0.375 Å was used, with the box dimensions depending on the

target ligand size, such that the ligand’s geometric center was not

allowed to move more than 7 Å away from the predicted binding

pocket center. Each docking simulation consisted of 100 runs of a

genetic algorithm (GA) using the default GA parameters. The

lowest-energy conformation was taken as the final docking result.

Q-Dock. We followed the protocol for low-resolution ligand

docking using Replica Exchange Monte Carlo (MC) described in

detail in [22]. Ligand flexibility was accounted for by docking the

ensemble of, at most 50, non-redundant (1 Å pairwise RMSD

cutoff) discrete ligand conformations; the number of

conformations depends on the number of rotatable bonds and

the hybridization of bonded atoms. We used a 7 Å radius docking

sphere (7 Å is the maximal allowed distance between the ligand’s

geometric center and the center of the predicted binding pocket).

The simulations utilized 16 replicas and consisted of 100 attempts

at replica exchange and 100 MC steeps between replica swaps.

The final model corresponds to the lowest-energy conformation.

LIGIN. This all-atom docking approach uses molecular shape

complementarity and atomic chemical properties to predict the

optimal binding pose of a ligand inside the receptor binding pocket

[24]. LIGIN is a rigid-body docking approach that by default

ignores ligand flexibility. Here, we adopted the idea of ligand

docking using conformational ensembles [22,60,61] to mimic the

ligand flexibility in LIGIN. To the best of our best knowledge,

such pseudo-flexibility in LIGIN was never before tested. For a

given target, we used exactly the same ensemble of multiple ligand

conformations as in Q-Dock simulations and FINDSITELHM, and

docked each of them into the predicted binding site using LIGIN.

The docking procedure was repeated 1000 times for each ligand

conformer. The final binding mode corresponds to that of

maximal complementarity found in the complete set of ligand

conformers. Atom types were assigned using LPC [62]; no

receptor residues were permitted to have steric overlap with the

ligand.

Highly conserved substructures observed in ligands
complexed to evolutionarily related proteins

From our dataset of 711 protein-ligand complexes, we selected

only enzymes in which the anchor substructure (or multiple

anchor substructures) derived for the top-ranked predicted binding

pockets consists of $50% and #90% of the average ligand

molecule’s size and matches the native ligand. Subsequently,

native ligands were scanned for the presence of CSSs. Here, we

used the collection of the CSSs compiled for 42 major enzyme

superfamilies by Babbitt and colleagues [30], from which we

removed those substructures that consist of less than 5 atoms. A

CSS was considered to be present in the native ligand if the native

ligand atoms cover at least 90% of its atoms, as reported by

SIMCOMP [26]. This procedure resulted in 24 enzymes and 35

ligand clusters. Next, for each cluster and the associated anchor

substructure, we examined the fraction of CSS’s atoms covered by

the anchor functional groups as well as the fraction covered by the

non-anchor groups.

Virtual screening of HIV-1protease
The screening library consists of 1089 known HIV-1 protease

inhibitors (MDL activity index: 71523) extracted from the MDL

Drug Data Report [63] and 123,274 lead-like background

compounds from the Asinex Platinum Collection [64].

A weakly homologous model of HIV-1 protease was generated

from the amino acid sequence (PDB: 1w5y) using TASSER [13].

Only distantly related (,35% sequence identity to HIV-1

protease) structure templates were used. The predicted model

used in this study has a 4.91 Å (4.09 Å) RMSD to native

calculated for all heavy atoms (Ca atoms).

Scoring functions for virtual screening
We applied two ligand-based virtual screening techniques to

rank the screening library: a fingerprint-based method imple-

mented in FINDSITE and simple scoring by the anchor

substructure coverage, where the anchor substructures were

identified by FINDSITELHM. In both cases, we used a collection

of ligands bound to weakly homologous (,35% sequence identity

to the target) threading templates identified by PROSPECTOR_3

with a Z-score $4. FINDSITE constructs ligand templates for

fingerprint-based virtual screening by clustering the molecules that

occupy the top-ranked predicted binding site using the Tanimoto

coefficient (TC) [65] cutoff of 0.7 [21]. Here, we employed the

1,024-bit molecular fingerprints from Daylight Chemical Infor-

mation Systems [66]. The representative molecules selected from

the clusters were used to rank a compound library using a

weighted Tanimoto coefficient (mTCave):

mTCave~
Xn

i~1

wiTCave
i ð2Þ

where n is the number of ligand clusters, wi is the fraction of

ligands that belong to cluster i, and TCave
i is the averaged TC

(TCave) calculated for the representative ligand from cluster i and a

library compound.

The overlap between two fingerprints was measured by TCave

[67–69]:

TCave~ TCzTC’ð Þ=2 ð3Þ

where TC9 is the TC calculated for bit positions set to zero rather

than to one as in the traditional TC [65].

In virtual screening by anchor coverage, we used the anchor

substructures detected for HIV-1 protease by FINDSITELHM as

described in Methods. For a given library compound, we

calculated the coverage of the anchor substructure that was

derived from the cluster of template-bound ligands with the

highest average chemical similarity, as assessed by SIMCOMP

score [26]. The screening library was then ranked by decreasing

anchor coverage.

Finally, we applied data fusion to combine the results from

virtual screening using the fingerprint-based (FINDSITE) and the

anchor-based (FINDSITELHM) approaches. Data fusion tech-

niques are commonly used in chemoinformatics to merge

screening results generated by different descriptors or scoring

functions [70–74]. Typically, chemical data fusion employs the

combination of rankings from individual screening experiments

using one of several different fusion rules, such as MIN, MAX or

SUM [75]. Here, we applied the SUM rule that is expected to be
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less sensitive to noisy input than both extreme rules [70] and is

generally preferred when fusion is by rank [71]. For a given library

compound k, a combined score (CS) is calculated from:

CSk~
Xn

i~1

ri ð4Þ

where n is the number of ranked lists (in our case, n = 2:

FINDSITE and FINDSITELHM) and ri denotes the rank position

of the library compound k in the i-th ranked list.

Enrichment factor
To assess the performance of FINDSITE/FINDSITELHM in

virtual screening for HIV-1 protease inhibitors, we calculated the

enrichment factor (EF) [76,77] for the top 1% and 10% of the

ranked screening library:

EF~
Isampled

Nsampled

�
Itotal

Ntotal

ð5Þ

where Isampled is the number of known HIV-1 protease inhibitors in

the top-ranked fraction of Nsampled compounds, Itotal and Ntotal is the

total number of inhibitors and the library compounds, respective-

ly.

The maximal enrichment factors for the top 1% and 10% of the

ranked library are 100 and 10, respectively. In addition to the

enrichment factor, we assessed the results in terms of the

enrichment behavior, i.e. the fraction of known inhibitors retrieved

in the top-ranked fraction of the ranked screening library.

Supporting Information

Table S1 Docking times for the Dolores dataset. All docking

simulations were performed using a 2.0 GHz AMD Opteron

processor. Timings reported for LIGIN, Q-Dock and FINDSI-

TELHM include the pre-docking generation of ligand conforma-

tional ensemble (median: 23 s on a 3.4 GHz P4).

Found at: doi:10.1371/journal.pcbi.1000405.s001 (0.04 MB PDF)

Table S2 Multiple common anchor substructures (blue) identi-

fied from weakly homologous threading templates for 4-a-

glucanotransferase from T. litoralis (PDB-ID: 1k1w) compared to

the conserved substrate substructure reported by Chiang et al.

2008 (red). The overlap between both substructures is colored in

green. The anchor substructures are presented for selected ligand

clusters obtained for top-ranked binding pockets.

Found at: doi:10.1371/journal.pcbi.1000405.s002 (0.35 MB PDF)

Table S3 Multiple common anchor substructures (blue) identi-

fied from weakly homologous threading templates for D-xylose

isomerase from Arthrobacter sp. (PDB-ID: 1die) compared to the

conserved substrate substructure reported by Chiang et al. (red).

The overlap between both substructures is colored in green. The

anchor substructures are presented for selected ligand clusters

obtained for top-ranked binding pockets.

Found at: doi:10.1371/journal.pcbi.1000405.s003 (0.30 MB PDF)
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